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Abstract

We study the following online problem: at each time unit, one of m identical items is offered
for sale. Bidders arrive and depart dynamically, and each bidder is interested in winning one item
between his arrival and departure. Our goal is to design truthful mechanisms that maximize the
welfare, the sum of the utilities of winning bidders.

We first consider this problem under the assumption that the private information for each bidder
is his value for getting an item. In this model constant-competitive mechanisms are known, but
we observe that these mechanisms suffer from the following disadvantage: a bidder might learn his
payment only when he departs. We argue that these mechanism are essentially unusable, because
they impose several seemingly undesirable requirements on any implementation of the mechanisms.

To crystalize these issues, we define the notions of prompt and tardy mechanisms. We present
two prompt truthful mechanisms – one deterministic and the other randomized, that guarantee a
constant competitive ratio. We also prove that our deterministic mechanism is optimal for this
setting.

We then study a model in which both the value and the departure time are private information.
While in the deterministic setting only a trivial competitive ratio can be guaranteed, we use ran-
domization to obtain a prompt truthful Θ( 1

log m )-competitive mechanism. Finally, we show that no
truthful randomized mechanism can achieve a ratio better than 1

2 in this model.

1 Introduction

1.1 Background

The field of algorithmic mechanism design attempts to handle the strategic behavior of selfish agents
in a computationally feasible way. To date, most work in this field has sought to design truthful
mechanisms for static settings, such as auctions. In reality, however, the setting of many problems is
online, meaning that the mechanism has no prior information regarding the identity of the participating
players, or that the goods that are for sale are unknown in advance. Examples include sponsored search
auctions [12], single-good auctions [10], and even pricing WiFi at Starbucks [5].

This paper considers the following online auction problem: at each time unit exactly one of m
identical items is offered for sale. The item at time t is called item t. There are n bidders, where bidder
i arrives at time ai and departs at time di, both unknown before bidder i’s arrival. The interval [ai, di]
will be called bidder i’s time window, and the set of items offered in i’s time window will be denoted
by Wi. Each bidder is interested in winning at most one of the items within Wi. Let vi denote the
value to the ith bidder of getting an item in Wi. Our goal is to maximize the social welfare: the sum of
the values of the bidders that get some item within their time window. As usual in online algorithms,
are goal is to optimize the competitive ratio: the worst-case ratio between the welfare achieved by the
algorithm and the optimal welfare.

This problem is equivalent to scheduling unit-length jobs on a single machine. In the non-strategic
setting, this problem and its variants have been widely studied (e.g., [1, 8, 3]). The best determin-
istic algorithm to date guarantees a competitive ratio of ≈ 0.547 [4, 11], while it is known that no



deterministic algorithm can obtain a ratio better than 2√
5+1

≈ 0.618 [2]. In the randomized setting, a

competitive ratio of 1 − 1
e is achieved by [1], and no algorithm can achieve a ratio better than 0.8 [2].

This scheduling problem provides an excellent example of the extra barriers we face when designing
online mechanisms. The only general technique known for designing truthful mechanisms is the VCG
payment scheme. In the offline setting we can obtain an optimal solution in polynomial time (with
bipartite matching), and then we can apply VCG. In the online setting, however, it is impossible to
find an optimal solution, and thus we cannot use VCG. Yet, truthful competitive mechanisms do exist.
The competitive ratio of these mechanisms depends on the specific private-information model each
mechanism was designed for. This paper considers two different natural models:

• The Value-Only model: Here, the private information of bidder i consists of only his value
vi, and the arrival time and the departure time are known to all (but both are unknown prior to
the arrival of bidder i).

• The Generalized Model: The private information of bidder i consists of two numbers: his
value vi and his departure time di. The arrival time is public information (but unknown prior to
the arrival of bidder i).

1.2 The Value-Only Model: Is Monotonicity Enough?

The only private information of a bidder in the value-only model is his value, and thus this model falls
under the category of single-parameter environments – environments in which the private information
of each bidder consists of only one number. Fortunately, designing truthful mechanisms for single-
parameter environments is quite well understood: an algorithm is truthful if and only if it is monotone.
That is, a winning bidder that raises his bid remains a winner.

Using the above characterization, it is possible to prove that the greedy algorithm is monotone [7]
(see Section 2.4 for a description). Together with the result of [8], this gives a truthful mechanism that
is 1

2 competitive.
However, a closer look at this mechanism may make one wonder if it is indeed applicable. The

notions of prompt and tardy mechanisms we define next highlight the issue.

Definition 1.1 We say that a mechanism for the scheduling problem is prompt if a bidder that wins
an item always learns his payment immediately after winning the item. A mechanism is tardy if it is
not prompt.

The tardiness in the above mechanism [7, 8] is substantial: there are inputs for which a bidder
learns his payment only when he departs. Tardy mechanisms seem very unintuitive for the bidders,
and in addition they suffer from the following disadvantages:

• Uncertainty: A winning bidder does not know the cost of the item that he won, and thus does
not know how much money he still has available. E.g., suppose the mechanism is used in a Las
Vegas ticket office for selling tickets to a daily show. A tourist that wins a ticket is uncertain of
the price of this privilege, and thus might not be able to determine how much money he has left
to spend during his Las Vegas vacation.

• Debt Collection: A winning bidder might pay the mechanism long after he won the item. A
bidder that is not honest may try to avoid this payment. Thus, the auctioneer must have some
way of collecting the payment of a winning bidder.

• Trusted Auctioneer: A winning bidder essentially provides the auctioneer with a “blank check”
in exchange for the item. Consequently, all bidders must trust the honesty of the auctioneer.
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Even if the bidders trust the auctioneer, they may still want to verify the exact calculation of the
payment, to avoid over-payments that make winning the item less profitable, or even unprofitable.
In order to verify this calculation, the bids of all bidders have to be revealed, leading to an
undesirable loss of privacy.

Notice that all of these problems are due to the online nature of the setting, and do not arise in
the offline setting. To overcome these problems, we present prompt mechanisms for the scheduling
problem. Prompt mechanisms are very intuitive to the bidders as they (implicitly) correspond to take-
it-or-leave-it offers: a winning bidder is offered a price for one item exactly once before getting the item,
and may reject the offer if it is not beneficial for him. We improve upon the greedy algorithm of [7, 8]
by showing a different mechanism that achieves the same competitive ratio, but is also prompt.

Theorem: There exists a 1
2 -competitive prompt and truthful mechanism for the scheduling problem

in the value-only model.

We show that this is the best possible by proving that no prompt deterministic mechanism can guarantee
a competitive ratio better than 1

2 .
We also present a randomized mechanism that guarantees a constant competitive ratio. The

achieved competitive ratio of the latter algorithm is worse than the competitive ratio of the determinis-
tic algorithm. Yet, the core of the proof studies a balls-and-bins problem that might be of independent
interest.

1.3 The Generalized Model

While truthful mechanisms for single-parameter settings are well characterized and thus relatively
easy to construct, truthful mechanisms for multi-parameter settings, like the generalized model, are
much harder to design. The online setting considered in this paper only makes the design of truthful
mechanisms a more challenging task.

The scheduling problem in the generalized model illustrates this challenge. Lavi and Nisan [9]
introduced the scheduling problem to the mechanism design community. They showed that no truthful
deterministic mechanism for this multi-parameter problem can provide more than a trivial competitive
ratio. As a result, Lavi and Nisan suggested looking for a weaker solution concept, set-nash, and
provided mechanisms with a constant competitive ratio under this notion. We stress that the set-nash
solution concept is much weaker than the dominant-strategy truthfulness considered in this paper.

By contrast with [9], instead of relaxing the solution concept, we use the well-known idea that
randomization can help in mechanism-design settings [14]. We provide randomized upper and lower
bounds in the generalized model for the scheduling problem.

Theorem: There exists a prompt truthful randomized Θ( 1
log m)-competitive mechanism for the

scheduling problem in the generalized model.

The main idea of the mechanism is to extend the randomized mechanism for the value-only model to
the generalized model. Specifically, we use the random-sampling method introduced in [6] in order to
be able to “guess” the departure time of each bidder. This mechanism is also a prompt mechanism.
We notice that it is quite easy to obtain mechanisms with a competitive guarantee of the logarithm of
the ratio between the highest and lowest valuations. However, since this ratio might be exponential
in the number of items or bidders, this guarantee is quite weak. By contrast, the competitive ratio
our mechanism achieves is independent of the ratio between the highest and lowest valuations, and the
mechanism is not required to know the highest and lowest valuations in advance.

Theorem: No truthful randomized mechanism for the scheduling problem in the generalized model
can obtain a competitive ratio better than 1

2 .
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The proof of this bound is quite complicated. We start by defining a family of recursively-defined
distributions on the input, and then show that no deterministic mechanism can obtain a competitive
ratio better than 1

2 on this family of distributions. We then use Yao’s principle to derive the theorem.
The main open question left in the generalized model is to determine whether there is a truthful

mechanism with a constant competitive ratio.

Paper Organization

In Section 2 we describe prompt mechanisms for the value-only case, and prove a that no deterministic
tardy algorithms can achieve a ratio better than 1

2 . Lower and upper bounds for the generalized case
are proved in Section 3.

2 Prompt Mechanisms and the Value-Only Model

2.1 A Deterministic Prompt 1
2
-Competitive Mechanism

The mechanism maintains a candidate bidder cj for each item j. To keep the presentation simple and
without loss of generality, we assume an initialization of the mechanism in which each item j receives
a candidate bidder cj with a value of 0 for winning an item (i.e., vcj = 0).

The mechanism runs as follows: at each time t we look at all the bidders that arrived at time t. We
consider these bidders one by one in some arbitrary order (independent of the bids): for each bidder
i we look at the set of all candidates in i’s time window, and let cj be the candidate bidder with the
smallest bid (if there are several such candidates select one arbitrarily). Formally, cj ∈ arg mink∈Wi

ck.
We say that i competes on item j. Now, if vcj < vi, we make i the candidate bidder for item j. After
all the bidders that arrived in time t have been processed, we allocate item t to the candidate bidder
ct.

The next theorem proves that this algorithm is monotone, i.e., a bidder that raises his bid is still
guaranteed to win. This is also a necessary and sufficient condition for truthfulness. We are still left
with the issue of finding the payments themselves. First, observe that the payment of each winning
bidder must equal his critical value: the minimum value he can declare and still win. Notice that this
value is indeed well defined if the algorithm is monotone. For each bidder i this value can be found
by using a binary search on the values in i’s domain. Clearly, this procedure takes a polynomial time.
See, e.g., [13] for a more thorough discussion. By the discussion above, it is clear that a mechanism
is prompt if and only if i’s critical value can be found by the time a i wins an item. In this case, the
payment can also be calculated in polynomial time.

Theorem 2.1 The above mechanism is prompt and truthful. Its competitive ratio is 1
2 .

Proof: To show that the mechanism is truthful we have to show that it is monotone: that is, a winning
bidder i still wins an item by raising his value vi to v′i. First, observe that fixing the declarations of
the other bidders, i competes on item j regardless of his value. We now compare two runs of the
mechanism, with i declaring vi and with i declaring v′i, and show that at each time the candidate for
any item j′ is the same in both runs. In particular, it follows that the set of winners stays the same,
and thus the mechanism is monotone.

Look at the next bidder e that arrives after i. For a contradiction, suppose that the candidate for
some item changes after bidder e arrives. It follows that i declaring v′i causes e to compete on an item
different than the one that e competes on when i declares vi. This is possible only if e is competing
on j if i declares vi, but if i declares v′i, e competes on h �= j. It follows that if i declares v′i both i
and e compete on j, and that i wins j. Thus, vi ≥ ve. When i raises his bid e competes on h. Let ch

be the candidate for h at the time that e arrives. We have that v′i > vch
> vi, and thus ve < vch

so e
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does not become a candidate on h, and the set of candidates stays the same. To finish the proof for
the monotonicity of the mechanism, we look at the rest of the bidders one by one, and repeat the same
arguments.

As for the promptness of the mechanism, observe that the identity of the item that i competes on
is determined only by the information provided by bidders that had already arrived by the time of i’s
arrival. The winner of any item j is of course completely determined by the information provided by
bidders that arrived by time j. Thus, we can calculate the payment of a winning bidder immediately
after he wins an item.

We now analyze the competitive ratio of the mechanism. Let OPT = (o1, ..., om) be the optimal
solution, and ALG = (p1, ..., pm) be the solution constructed by the mechanism. That is, oj is the
bidder that wins item j in OPT and pj is the bidder that wins item j in ALG. We will match each
bidder i that wins an item in OPT to exactly one bidder l that wins an item in ALG. Furthermore,
we will make sure that vi ≤ vl, and that each bidder in ALG is associated with at most two bidders in
OPT. This is enough to prove a competitive ratio of 1

2 .
The bidders are matched as follows: for each item j, let oj1 , · · · , ojkj

be the bidders (ordered by
their arrival time) that won an item in the optimal solution and are competing on j. Now match each
ojr to pjr+1 for r < kj . Match ojkj

to pj, the bidder that wins j in ALG (it is possible that pj = ojkj
).

Observe that bidder pj is associated with at most two bidders that win some item in OPT: bidder
ojkj

, and at most one bidder (oji) that is competing on an item j, where j is the item that oj (= oji+1) is
competing on in ALG. To finish the proof, we only have to show that vojkj

≤ vpj and voji
≤ vpj . Since

ojkj
and pj both compete for slot j (possibly they are the same bidder) and pj wins, vojkj

≤ vpj . Now
we show the second claim. When oji+1 arrives, oji is already competing on slot j; as oji+1 chooses to
compete on slot j rather than slot j′ which is also in its interval, it must be that the current candidate
for slot j has value at least voji

. But the eventual winner of slot j, pj, can only have a larger value; i.e.
voji

≤ vpj .

2.2 A Prompt Randomized Mechanism

In this section we present a randomized prompt O(1)-competitive mechanism for the online scheduling
problem in the value-only model. The analysis of the competitive ratio of the mechanism is related to
a variant of the following balls-and-bins question:

Balls and Bins (intervals version): n balls are thrown to n bins, where the ith ball is thrown
uniformly at random to bins in the interval Wi = [ai, di]. We are given that the balls can be placed in
a way such that all bins are filled, and each ball i is placed in exactly one bin in [ai, di]. What is the
expected number of full bins?

The theorem below proves that for every valid selection of the ai’s and di’s in expectation at least 1
10

of the bins will be full (notice that in the scheduling problem the “balls” have weights). There is a gap
between this ratio and the worst example we know: in Subsection 2.3 we present an example in which
at most 11

24 of the bins are full in expectation. Improving the analysis of the balls and bins question
will almost immediately imply an improvement in the guaranteed competitive ratio of the mechanism.

The Mechanism

1. When bidder i arrives, assign it to exactly one item in Wi to compete on uniformly at random.

2. At time j conduct a second-price auction on item j among all the bidders that were selected to
compete on item j in the first stage.
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Theorem 2.2 The mechanism is prompt and truthful, and guarantees a competitive ratio of 1
10 .

Proof: To see that the mechanism is truthful, recall that in the value-only model the arrival time
and the departure time of each bidder are public information. It follows that the identity of bidders
competing on a certain item is determined only by the outcome of the random coin flips. It is well
known that a second-price auction is truthful, and thus we conclude that the mechanism is truthful.
Clearly, the mechanism is prompt since the price is determined by the second-price auction which is
conducted before allocating the item to the winning bidder.

We now turn to analyzing the competitive ratio of the mechanism. Instead of analyzing the com-
petitive ratio of the mechanism, we will analyze the competitive ratio of the following process. In
addition to the input of the mechanism, the input of the process consists also of “forbidden” sets
S1 ⊆ W1, ..., Sn ⊆ Wn. Later we will see how to construct these sets in a way that guarantees a
constant competitive ratio.

1. For each bidder i that won an item in the optimal solution, select exactly one item j in Wi to
compete on uniformly at random. If j ∈ Si then bidder i is not competing on any item at all.

2. At time j allocate item j to one bidder i, where bidder i is selected uniformly at random from
the set of all bidders that are competing on item j.

We will compare runs of the mechanism and the process in which the same random coins are used
in Step 1. We argue that the competitive ratio of the mechanism is at least as good as the competitive
ratio of the process. To see this, observe that in the first step we are restricting ourselves only to
bidders that won an item in the optimal solution. Furthermore, some of these bidders are eventually
not competing on any item at all. Also, the bidder that is assigned item j is selected uniformly at
random from the set of the bidders that are competing on item j, while in Step 2 of the mechanism the
bidder with the highest valuation is assigned item j. Obviously, the mechanism does at least as well as
the process. We will need the following technical lemma:

Lemma 2.3 Let Cj be the random variable that denotes the number of bidders competing on item j
(the congestion of item j). Let Ui,j be the random variable that gets the value of the utility of bidder i
from winning item j (that is, vi if bidder i wins item j, and 0 otherwise). Then,

E[Ui,j |i is competing on item j] ≥ vi

E[Cj ] + 1

Proof: We start by bounding from above E[Cj |i is competing on item j]. That is, the expected
congestion of item j given that bidder i is competing on item j. We first observe that the expected
congestion produced by all other bidders apart from bidder i cannot exceed E[Cj ], since the item chosen
for each bidder to compete on is selected independently. Taking into account that we are given that
bidder i is already competing on item j, we conclude that E[Cj |i is competing on item j] ≤ E[Cj ] + 1.

Now we prove the main part of the lemma. Notice that E[Ui,j |i is competing on item j] =
Pr[i won item j|i is competing on item j] · vi. Let E denote the set of all coin flips in which bidder i
is competing on item j (observe that each event e ∈ E occurs with equal probability). We let nj(e)
denote the congestion of item j in event e.

E[Ui,j |i is competing on item j] = Σe∈E
vi

|E| · nj(e)
≥ vi

E[Cj ] + 1

where the first equality is by the definition of expectation, and the second inequality is by the convexity
of the function 1

x , and Jensen’s inequality.
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As evident from the lemma, if the expected congestion of all items that are in bidder i’s time window
is O(1), then bidder i’s expected utility is Θ(vi). Unfortunately, it is quite easy to construct instances
in which for every i, Si = ∅ and some items face super-constant congestion. Instead, we will specify for
each bidder i a set of items Si, of size at most half of the size of his time window. We will see that by
a proper choice of the Si’s the expected congestion of every item is bounded by 4.

Then, as each bidder i (that participates in the optimal solution) has a probability of at least one
half of competing on some item, by Lemma 2.3 bidder i recovers in expectation at least 1

2 · 1
E[Cj]+1 of

his value; by Lemma 2.4 this bidder receives in expectation at least 1
10 of his value. Using the linearity

of expectation, we conclude that the mechanism is 1
10 -competitive.

Lemma 2.4 There exist sets S1, ..., Sn such that for each bidder i, Si ⊆ Wi, and |Si| ≤ |Wi|
2 , and for

each item j, E[Cj ] ≤ 4.

Proof: The proof of the lemma consists of m stages. In each step we will consider bidders with time
windows of length exactly t, where t will take values in descending order from m to 1. We will show for
each bidder i with |Wi| = t how to construct his set Si. By the end of each step, we will be guaranteed
that if |Wi| ≥ t, then for each item in Wi \ Si, the expected congestion is at most 4.

Let us start by handling the case where t ≥ m
2 . Fix some bidder i with Wi ≥ m

2 . Recall that we
are considering only bidders that get an item in the optimal solution. The number of items is m, so
we need to take into account at most m bidders. Observe that since Wi ≥ m

2 , the average expected
congestion of an item in Wi cannot exceed 2. We let Si be the set of all items in Wi for which the
expected congestion is at most 4. By simple Markov arguments, |Si| ≤ |Wi|

2 . We now have that for
every bidder i with |Wi| ≥ m

2 , and for each j ∈ Wi \ Si, E[Cj ] ≤ 4.
Let us now consider Step t, where t < m

2 . We start by considering the congestion due to bidders
with time windows of length at most t, and then we will see that our analysis remains almost the same
when including bidders with larger time windows.

Fix some bidder i with |Wi| = t. We now bound from above the total congestion of the items in
Wi. In the optimal solution, there are at most t bidders that won an item in Wi. Their contribution
to the congestion of Wi is bounded from above by assuming that each one is competing on items in Wi

time window with probability 1. Hence, the total contribution of these bidders is at most t.
Consider the bidders that won one item j, ai− t ≤ j ≤ ai−1, in the optimal solution. (Our analysis

will only improve if ai − t ≤ 0.) Clearly, if bidder b won item j in the optimal solution, it must be the
case that item j is within b’s time window. Since a bidder is selected to compete on an item uniformly,
it is easy to verify that his contribution to the expected congestion of Wi is maximized when his arrival
time is j and his departure time is j + t − 1. (Recall that we are only considering bidders with time
window of size at most t.) In this case, his contribution to the expected congestion of Wi is j+t−ai

t .
Summing over all bidders (with time windows of size at most t) that won one item j, ai− t ≤ j ≤ ai−1,
we get that the total contribution of these bidders is at most t

2 .
Similarly, the total contribution of bidders with time windows of size at most t that won items di +1

to di + t in the optimal solution is at most t
2 . It is easy to see that all other bidders with time windows

of at most t contribute nothing to the expected congestion of items in Wi. In total, we get that the
total expected congestion of items in Wi (due to bidders with time window of length at most t) is at
most t

2 + t
2 + t = 2t, and thus the average expected congestion due to these items is at most 2.

As before, we let Si be the set of all items in Wi for which the expected congestion is at most 4.
Again, standard Markov arguments assure that |Si| ≤ |Wi|

2 . We now have that for every bidder i with
|Wi| = t, and for each j ∈ Wi \ Si, the average expected congestion incurred by bidders with time
windows of size at most t is at most 4. We still need to take into account the congestion incurred
by bidders with time windows larger than t. Here we observe that by our construction of the Si’s,
these bidders can only contribute to the congestion of items with an expected congestion of at most 4.
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Therefore, we claim that for each bidder i with |Wi| ≥ t, and j ∈ Wi \ Si, we have that E[Cj ] ≤ 4. We
finish the proof of the lemma by considering smaller values of t, down to t = 1.

2.3 A Bad Example

The following example shows that the mechanism presented has a competitive ratio strictly worse than
1
2 . The example is an instance of the balls and bins question presented earlier. For 1 ≤ i ≤ n

3 , we let
Wi = [i, 2n

3 ]. For n
3 < i ≤ n, we let Wi = [n3 , i].

The probability that bin i in [1, n
3 ] will be empty is:

Pr[no ball falls to bin i ∈ [1, n
3 ] ] = Πi

t=1 Pr[ball t does not fall to bin i ∈ [1, n
3 ] ]

= Πi
t=1(1 − 1

2n
3 − t + 1

) = Πi
t=1(

2n
3 − t

2n
3 − t + 1

) =
2n
3 − i

2n
3

We now calculate the expected number of empty bins in the range [1, n
3 ]. Observe that the probability

of bin i ∈ [1, n
3 ] to be equal to the probability of bin n − i + 1. Thus, the expected number of empty

bins in [1, n
3 ] is equal to the expected number of empty bins in [2n

3 , n]:

n
3∑

t=1

2n
3 − t

2n
3

=
n
3 (2n

3 − 1 + n
3 )

2 · 2n
3

=
n − 1

4

Next we handle bins in the range [n3 , 2n
3 ]. Due to reasoning similar to the previous calculations, the

probability that no ball i, n
3 ≤ i ≤ 2n

3 , falls into bin t in this range is t−n
3

n
3

. The probability that no

ball i, 1 ≤ i ≤ n
3 falls to bin t is Π

n
3
j=1(1 − 1

2n
3
−i+1

) =
n
3
2n
3

= 1
2 . Similarly, the probability that no ball i,

2n
3 ≤ i ≤ n falls to bin t is 1

2 . Thus, with probability t−n
3

n
3

· 1
4 no ball falls into bin t, n

3 ≤ t ≤ 2n
3 .

To conclude, the expected number of empty bins in the ranges [1, n
3 ] and [2n

3 , n] together is ≈ n
2 .

The expected number of empty bins in [n3 , 2n
3 ] is Σ

2n
3

t= n
3

t−n
3

n
3

· 1
4 ≈ 1

8 · n
3 . In total, about 13

24 of the bins are
empty in expectation. We note that this constant can be somewhat increased by recursively applying
this construction on balls in the middle third (and keeping the other balls’ time windows the same).
Details are omitted from this extended abstract.

2.4 Limitations of Deterministic Tardy Mechanisms

Here we show that the prompt mechanism of Subsection 2.1 is optimal. In order to develop some
intuition about tardy mechanisms, we start by showing that the greedy mechanism of [7] is tardy.

Recall that the greedy mechanism allocates item t to the bidder with the highest valuation that
is present at time t (and has not been assigned any item yet). Consider the following example: two
bidders, red and green, arrive at time 1. The red bidder has a value of 10 for winning an item, and
a departure time of time 5. The green bidder has a value of 6 and a departure time of 1. We will
consider two scenarios: in the first one, four bidders arrive at time 2, each of them with value 100 and
a departure time of 5. In the second scenario, there are no more arrivals. First, observe that the greedy
mechanism will assign the red bidder the first item. To see that the red bidder cannot learn his payment
immediately, recall the following characterization of the payment in single-parameter mechanisms: the
payment of a winning bidder is equal to the minimum value he can bid and still win.

In order to win an item in the first scenario, the red bidder must declare a value of at least 6, and
therefore this is his payment in this scenario. However, in the second scenario a declaration of 0 will
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make him win the second item. The mechanism cannot distinguish between the two scenarios when
the red bidder wins at time 1, and thus cannot determine the payment at time 1. We conclude that
the greedy mechanism is tardy.

The following proposition shows that every tardy deterministic mechanism for the scheduling prob-
lem achieves a competitive ratio of no better than 1

2 . The proof can be found in the appendix.

Proposition 2.5 Every tardy deterministic mechanism for the scheduling problem (even in the value-
only model) has a competitive ratio of no better than 1

2 .

3 New Bounds for Randomized Mechanisms in the General Model

3.1 Limitations of Randomized Mechanisms in the Generalized Model

In this section we prove that every randomized mechanism for the scheduling problem in the generalized
model cannot guarantee a competitive ratio better than 1

2 . In the deterministic setting, Lavi and Nisan
[9] showed that a deterministic truthful mechanism can guarantee only a trivial competitive ratio.

The proof of this theorem uses Yao’s principle, which essentially says that the competitive ratio of
the best randomized mechanism is equal to the competitive ratio of the best deterministic mechanism
over a worst-case distribution of inputs.

Theorem 3.1 Every truthful mechanism for the scheduling problem in the generalized model cannot
guarantee a competitive ratio better than 1

2 .

Proof: The proof begins by presenting a distribution over the input. We will see that no deterministic
truthful mechanism can achieve a competitive ratio better than 2

3 on this distribution. By Yao’s
principle, every randomized mechanism guarantees a competitive ratio no better than 2

3 . Later, we will
extend this distribution to attain the ratio claimed in the theorem.

Before presenting the distribution itself, let us start by developing the technical tools needed for
proving the bound. The next lemma shows that the decision whether to bid for an item must be made
very “early”. This property will play a crucial role for proving the bound. The proof of the lemma is
in the appendix.

Lemma 3.2 Fix some mechanism for the online scheduling problem. Then, for every bidder that
arrives at time t, there exists a price pi (that depends only on the bids of the other bidders that arrive
by time t) such that:

• If pi < vi then i is guaranteed to win some item in the future.

• If pi > vi, and pi �= ∞ then i does not win any item at all.

• If pi = ∞ then i may or may not win the current item, independently of i’s bid (i.e., independently
of i’s value or departure time).

By letting pi be ∞ the mechanism either “postpones” the decision whether to assign this bidder an
item or not, or decides to assign i the current item, regardless of i’s bid. For example, in the randomized
mechanism we present in Subsection 3.2, some bidders never get an item, no matter what their value or
departure time are. We also note that although a somewhat similar lemma appears in [9], our lemma
is different in several aspects: first, our lemma is weaker than [9] since we are working in a setting in
which a distribution on the input is known, while [9] “alters” the input according to the algorithm.
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Second, in the randomized setting we also have to consider the case where the algorithm “postpones”
the decision regarding a certain bidder 1.

Let us now describe a distribution for which no deterministic algorithm can obtain a competitive
ratio better than 2

3 . The distribution takes two parameters, c1 and c2, that represent values, and
another parameter t that determines the time during which this distribution is “active”.

BasicDist(t, c1, c2): m bidders arrive at time t, each one with a departure time m and a value of c2

for winning an item. The actual distribution is obtained from the basic distribution as follows; Exactly
one of the following events is chosen with probability 1

3 :

1. Exactly one of the bidders that arrived at time t is selected uniformly at random to have a value
of c1 and a departure time of t.

2. m − 1 additional bidders arrive at time t + 1, each one with value c1.

3. The basic distribution is left unchanged. I.e., no more arrivals, changes of values, etc.

The idea behind this distribution is that the main contribution to the welfare can come from each of
the three scenarios with equal probability. However, every mechanism can handle up to two scenarios,
and provides a competitive ratio of 0 in case the remaining scenario occurs. The next lemma makes
this intuition formal.

Lemma 3.3 Every deterministic mechanism obtains a competitive ratio of at most 2
3 on BasicDist(1, c1, 1),

where c1 >> 1.

Proof: Let p1 be the fraction of the bidders such that given that all other bids are c2, the bidder will
be offered a price below 1. Similarly, let p2 denote the fraction of the bidders such that given that all
other bids are c2, the bidder will be offered a price above c2, but below c1.

Let us now consider the expected utility in each of the three scenarios possible in the distribution.
If Scenario 1 occurs, then the competitive ratio we achieve depends on whether we postpone the “large”
bidder. Postponing him (and this occurs with probability 1− p1 − p2) will result in a competitive ratio
close to 0. Otherwise, the competitive ratio will be close to 1. Thus the expected competitive ratio in
this case is p1 + p2.

By Lemma 3.22, we must assign all bidders that are offered a price below c2 an item. Clearly, the
expected contribution of these bidders is m · p1. If Scenario 2 occurs, the best we can do is to allocate
the remaining m · (1 − p1) slots to the high-value bidders that arrive at time 2. Observe that m · p1

of the high-value bidders are not assigned at all, and thus we lost a fraction of about p1 of the total
welfare. The expected competitive ratio in this case is 1 − p1.

If Scenario 3 occurs, then we lose (again, by the lemma) all bidders that are offered a price larger
than c2, but are not postponed. As before, the expected number of these is 1 − p2, and this is the
expected competitive ratio we get for this scenario.

Recall that each scenario occurs with probability of exactly 1
3 . In total, the expected competitive

ratio we get is at most:
1
3
· (p1 + p2) +

1
3
· (1 − p1) +

1
3
· (1 − p2) =

2
3

1Notice that this is not a problem in the deterministic setting, since if there exist a scenario in which the mechanism
postpones a newly arrived bidder to a later stage, we can always set the value of this bidder to ∞ and his departure time
to the current item, and then the mechanism cannot guarantee any competitive ratio at all.

2Lemma 3.2 requires that the prices will be different than the value of the bidder. For this to be true we might randomly
add some “noise” to all values of c2. By choosing high enough precision, the chance of a price to be equal to a value is
negligible. We omit this from the description of the distribution (and the analysis) to keep the presentation simple.
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Let us now specify a recursive family of distributions that will be used in the proof of this theorem.
We assume that r is some large enough constant and positive integer. The parameter that determines
a specific member of the family of distributions is a positive integer t.

MainDistt(c0, c1, ..., cr): m− (r − t) bidders arrive at time r − t + 1, each one with departure time m
and a value of cr−t+1 for winning an item. Exactly one of the following events will now occur:

1. With probability 1
2t+1 , exactly one of the bidders that arrived at time r−t+1 is selected uniformly

at random to have a value of cr−t and a departure time of r − t + 1.

2. With probability 1
2t+1 , MainDist is left unchanged. I.e., no more arrivals, changes of values, etc.

3. With probability 1 − 2
2t+1 , the next stages are determined by MainDistt+1(c0, c1, ..., cr).

We also need to define MainDist0:

MainDist0(c0, c1, ..., cr): m − r bidders are arriving at time r, each one with departure time m and a
value of c0 for winning an item.

Lemma 3.4 Fix some positive integer r. Every deterministic truthful mechanism cannot obtain an
expected competitive ratio better than r+1

2r+1 on MainDistr(c0, ..., cr), where cr >> ... >> c0.

The proof of this lemma is in the appendix.

3.2 A Randomized Mechanism for the Generalized Model

Designing mechanisms in the generalized model is much more complicated, as the main tools we have
for designing mechanisms in multi-parameter settings, VCG, cannot be applied in an online setting.
To overcome this obstacle, we extend the mechanism from Section 2. Before describing the mechanism
itself, we note again that a mechanism that provides a competitive ratio that is equal to the logarithm
of the highest valuation, can be easily constructed. However, this requires us to know in advance the
highest valuation. In addition, if this value is exponentially high, the guaranteed competitive ratio
might be polynomially large. The mechanism below overcomes both issues.

Suppose that m is known in advance. Then, a poly-logarithmic randomized mechanism can be
constructed as follows: For each bidder i we select uniformly at random a value d′i that will take an
integer value between 1 and log m. We will assume that the length of the time window of the ith bidder
is 2d′i and run the mechanism from Section 2. From now on, we will only consider bidders for which
we “guessed” the length of their time window correctly. That is, bidders in which 2d′i−1 ≤ |Wi| ≤ 2d′i .
The expected fraction of these bidders is Θ( 1

log m), and clearly these bidders also hold in expectation
a logarithmic fraction of the welfare achieved in the optimal solution. For these bidders, the analysis
of the mechanism yields, with minor deviations, that we are able to recover a constant fraction of the
value they hold. In total, we get a mechanism that guarantees a competitive ratio of Θ( 1

log m). The
following mechanism handles the case where m is not known in advance, and improves the competitive
ratio guarantee. A formal description and a proof can be found in Appendix A.4.
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Jǐŕı Sgall, and Tomáš Tichý. Online competitive algorithms for maximizing weighted throughput
of unit jobs. In STACS, pages 187–198, 2004.

11



[2] Francis Y. L. Chin and Stanley P. Y. Fung. Online scheduling with partial job values: Does
timesharing or randomization help? Algorithmica, 37(3):149–164, 2003.
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A Appendix

A.1 Proof of Proposition 2.5

Proof: Consider the following setting: two bidders arrive at time 1, each of them with a value of 1,
and a departure time of time 2. Suppose there are no more arrivals of other bidders. Any mechanism
that achieves a competitive ratio better than 2 must assign one bidder the first item, and the other
item to the second bidder. Let a be bidder that was assigned the first item, and b be the bidder that
was assigned the second item.

Claim A.1 Let M be a tardy mechanism with a finite competitive ratio. In the scenario described
above, there is no declaration of a value vb that makes bidder b win the first item.
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Proof: Denote the payment of bidder b for winning the second item with a declaration of 1 by pb.
Observe that pb < 13. We consider two cases, one in which b declares a value of w > 1, and one in
which b declares a value of w < 1.

Suppose that bidder b raises his bid from 1 to w, and consequently is assigned the first item.
The mechanism is not tardy, so the payment of bidder b is determined immediately. Suppose, for a
contradiction, that this payment is higher than pb. In this case, if bidder b’s true value is w, he can
improve his profit by declaring a value of 1, and be assigned the second item. Hence the payment must
be at most pb. Clearly, the payment can not be strictly less than pb, since otherwise if b’s true value is
1, he has an incentive to declare a value of w and increase his profit. Thus the payment must be equal
to pb, but now we will see that this cannot be the case. Consider the following setting: b’s true value is
1, and therefore he does not win the first item. On time 2 a bidder c that is going to depart at time 2
and value w′ >> w arrives. In order to maintain a finite competitive ratio the mechanism must assign
bidder c the second item. We get that if bidder b’s true value is 1, he has an incentive to declare a
value of w (and therefore win the first item for a payment of pb), and the mechanism is not truthful.

Let us now handle the other case, where b bids a value w, w < 1, and win the first item (notice
that his payment is less than 1). As before, if a bidder c with a departure time of 2, and a very high
value arrives at time 2, then the mechanism must assign c the second item in order to guarantee a finite
competitive ratio. If bidder b’s true value is 1, he is an incentive to declare w instead, and win the first
item. The claim follows.

Let us now alter the scenario described above, and let b’s value be w >> 1. By the claim, the
mechanism will not assign bidder b the first item. Consider the case in which at time 2 bidder c with
a departure time of 2 and a value of w arrives. The total welfare the mechanism achieves is at most
1 + w, while the optimal welfare is 2 · w. The proposition follows.

A.2 Proof of Lemma 3.2

Proof: We start by fixing a bidder i that arrives at time t. First, assume this bidder has a departure
time of t. In this setting the private information of bidder i consists only of one number: vi. By
well-known arguments for single parameter settings, there exists a threshold value that depends only
on the bids of the other bidders such that if i bids above it he wins an item, and otherwise he gets no
item. Let pi to be this threshold value. The lemma trivially follows for this case.

Now consider the case in which the departure time of i is not necessarily t. If vi > pi and bidder i
does not win any item at all, then bidder i has an incentive to declare a departure time of t, contradicting
the truthfulness of the mechanism. Thus, if vi > pi the mechanism must guarantee bidder i that he
will win some item before his departure time.

Consider now the case where vi < pi. Suppose that bidder i wins some item with price of p′.
Clearly, p′ < pi, otherwise bidder i’s profit is negative. Now assume that instead of bidder i we
have another bidder i′ with the same arrival time and departure time as bidder i but with value vi′ ,
vi < pi < vi′ . Observe that i′ has an incentive to declare a value of vi (instead of vi′). Again, we
obtained a contradiction to the truthfulness of the mechanism.

The third condition holds trivially by the properties of truthful mechanisms.

A.3 Proof of Lemma 3.4

Proof: We will see that for any positive integer t every deterministic mechanism can not obtain a
competitive ratio better than r+1

2r+1 on MainDistr(c0, ..., cr). We will do so by induction on t. First ob-

3Indeed, pb can also be equal to 1. In this case we can add some “noise” to the value of the bidders described above,
and get a strict inequality.
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serve that if t = 1 then the our claim is correct because MainDist1(c0, ..., cr) is identical to BasicDist,
and the competitive ratio follows. We now prove the lemma for t > 1.

Let p1 denote the fraction of the bidders such that given that all other bids are cr−t+1, the bidder
is offered a price below cr−t+1. Let p2 denote the fraction of the bidders such that given that all other
bids are cr−t+1 the bidder is offered a price above cr−t+1, but still below cr−t+1. Let p1 = Σipi

1
n′ , and

p2 = Σip
i
2

n′ , where n′ denotes the number of bidder that arrived at time t.
Let us now analyze the expected competitive ratio under any possible scenario. If Scenario 1 occurs,

then with probability of p1 + p2 we do not postpone the high-value bidder. (If we do, we attain no
reasonable competitive ratio.) In this case the expected competitive ratio is p1 + p2.

In Scenario 2, we lose all bidders that are offered a value which was too high. The fraction of welfare
that the the rest of the bidders hold is at most 1 − p2, and this is an upper bound for the expected
competitive ratio of this stage.

Finally, if Scenario 3 occurs, then the welfare is completely dominated by bidders that arrive accord-
ing to MainDistt+1. We lose a fraction of (1− p1) of the bidders that we are committing to serve. By
induction, the expected competitive ratio we can achieve now is bounded from above by t

2t−1 (1 − p1).
To finish the proof, we calculate the overall expected competitive ratio for the current value of t:

1
2t + 1

· (p1 + p2) +
1

2t + 1
· (1 − p2) +

2t − 1
2t + 1

· ( t

2t − 1
(1 − p1)) =

t + 1
2t + 1

− (p1 · (1 − t)
2t + 1

≤ t + 1
2t + 1

A.4 A Randomized for the Generalized Model

The Mechanism:

1. Add each bidder that arrives to one of the following groups: to the statistics group STAT with
probability 1

2 , to the competitors group C with probability 1
4 , or to the impatient bidders group

I with probability 1
4 .

2. Let m′ be the largest departure time among bidders that are currently in STAT . (That is,
m′ = maxi∈STAT di.) For each bidder in C with arrival time of t select a departure time uniformly
at random from the following set: t, t + 1, t + 3, t + 7, ..., t + 24 log m′ − 1.

3. For each bidder i in C with arrival time of t select uniformly at random an item in [t,t + d′i] to
compete on.

4. Conduct a second-price auction on item t among all bidders that were selected to compete on
item t, and all bidders in I that arrived in time t. Allocate item t to the winner.

Theorem A.2 There exists a prompt truthful Θ( 1
log m)-competitive mechanism.

Proof: The truthfulness of the mechanism trivially follows because each bidder participates in at
most one second price auction whose participants are determined only by the outcome of the random
coins. Also note that bidders in STAT are never assigned any items, and thus have no incentive to
misreport their preferences. The promptness of the mechanism is also obvious. All that is left is to
show is that the mechanism is Θ( 1

log m) competitive.
The analysis is divided into two different cases. In the first case, there is a bidder i that holds at

least a fraction of 1
16 log m of the optimal welfare. In this case, with probability 1

4 we will select bidder i
to the group I. (If this is not the case, we assume that the value of the solution obtained is 0.) Look at
time t in which bidder i arrives. We conduct a second-price auction on item t, with the participation of
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bidder i. Surely, the winner in this auction holds a value of at least a fraction of 1
16 log m of the optimal

welfare. To conclude this case, with probability 1
2 we are able to recover at least 1

16 log m fraction of the
welfare, thus the mechanism is indeed Θ( 1

log m) competitive in this case.
Let us now consider the case where no bidder holds a fraction of 1

16 log m of the optimal welfare. We
first claim that since no bidder dominates the optimal welfare, with probability 1− o(1) the bidders in
C hold a fraction of at least 1

8 of the optimal welfare. The claim follows from the fact that each bidder
has a probability of 1

4 to be selected to C (proof of claim omitted – see, e.g., [6]). We will now see that
we can recover at least a logarithmic fraction of the welfare of bidders in C.

Look at the bidders that won some item in the optimal solution, and order them by their arrival
time, o1, ..., om. Now select at most log m bidders b1, ..., blog m in the following way: o1 is set to be b1.
We set b2 to be ot, where t is the smallest index such that dot > 2do1 , and so on. Notice that indeed
we select at most log m bidders this way. Observe that for any t, if bt is selected to STAT (and this
happens with probability of 1

2), we will guess correctly the departure time d′i (up to a constant factor)
with probability of at least Θ( 1

log m), for all bidders i such that bt ≤ i ≤ bt+1. In other words, for each

bidder i in C \ ∪log m
t=1 {bt} we guess his departure time correctly with probability of Θ( 1

log m).

All that is left to prove is that the set C \∪log m
t=1 {bt} holds a constant fraction of the optimal welfare.

If we prove this, we will be able to use the analysis of the mechanism of Section 2 to show that we
recover a constant fraction of the welfare obtained by bidders in C \ ∪log m

t=1 {bt} whose departure times
were guessed correctly. This will be enough to show that the mechanism is Θ( 1

log m) competitive.
With probability of 1 − o(1), the value of bidders in C is at least 1

8 of the value of the optimal
solution. The value of bidders in ∪log m

t=1 {bt} is at most log m · OPT
16 log m . Thus the value that bidders in

C \ ∪log m
t=1 {bt} hold is at least 1

16 of the optimal solution. This concludes the proof of the theorem.
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