Skip to main content

A Hierarchical Model for Cooperative Games

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4997))

Abstract

Classically, a cooperative game is given by a normalized real-valued function v on the collection of all subsets of the set N of players. Shapley has observed that the core of the game is non-empty if v is a non-negative convex (a.k.a. supermodular) set function. In particular, the Shapley value of a convex game is a member of the core. We generalize the classical model of games such that not all subsets of N need to form feasible coalitions. We introduce a model for ranking individual players which yields natural notions of Weber sets and Shapley values in a very general context. We establish Shapley’s theorem on the nonemptyness of the core of monotone convex games in this framework. The proof follows from a greedy algorithm that, in particular, generalizes Edmonds’ polymatroid greedy algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algaba, E., Bilbao, J.M., van den Brink, R., Jiménez-Losada, A.: Cooperative games on antimatroids. Discr. Mathematics 282, 1–15 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bilbao, J.M., Jiménez, N., Lebrón, E., López, J.J.: The marginal operators for games on convex geometries. Intern. Game Theory Review 8, 141–151 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bilbao, J.M., Lebrón, E., Jiménez, N.: The core of games on convex geometries. Europ. J. Operational Research 119, 365–372 (1999)

    Article  Google Scholar 

  4. Derks, J., Gilles, R.P.: Hierarchical organization structures and constraints in coalition formation. Intern. J. Game Theory 24, 147–163 (1995)

    Article  Google Scholar 

  5. Dietrich, B.L., Hoffman, A.J.: On greedy algorithms, partially ordered sets, and submodular functions. IBM J. Res. & Dev. 47, 25–30 (2003)

    Article  MathSciNet  Google Scholar 

  6. Danilov, V., Koshevoy, G.: Choice functions and extending operators (preprint, 2007)

    Google Scholar 

  7. Edmonds, J.: Submodular functions, matroids and certain polyhedra. In: Proc. Int. Conf. on Combinatorics (Calgary), pp. 69–87 (1970)

    Google Scholar 

  8. Edelman, P.H., Jamison, R.E.: The theory of convex geometries. Geometriae Dedicata 19, 247–270 (1985)

    Article  MathSciNet  Google Scholar 

  9. Fujishige, S.: Submodular Functions and Optimization. 2nd edn.; Ann. Discrete Mathematics 58 (2005)

    Google Scholar 

  10. Faigle, U.: Cores of games with restricted cooperation. Methods and Models of Operations Research 33, 405–422 (1989)

    Article  MathSciNet  Google Scholar 

  11. Faigle, U., Kern, W.: The Shapley value for cooperative games under precedence constraints. Intern. J. Game Theory 21, 249–266 (1992)

    Article  MathSciNet  Google Scholar 

  12. Faigle, U., Kern, W.: Submodular linear programs on forests. Math. Programming 72, 195–206 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Faigle, U., Kern, W.: On the core of ordered submodular cost games. Math. Programming 87, 483–489 (2000)

    Article  MathSciNet  Google Scholar 

  14. Faigle, U., Kern, W.: An order-theoretic framework for the greedy algorithm with applications to the core and Weber set of cooperative games. Order 17, 353–375 (2000)

    Article  MathSciNet  Google Scholar 

  15. Faigle, U., Peis, B.: Two-phase greedy algorithms for some classes of combinatorial linear programs. In: SODA 2008 (accepted, 2008)

    Google Scholar 

  16. Frank, A.: Increasing the rooted-connectivity of a digraph by one. Math. Programming 84, 565–576 (1999)

    Article  MathSciNet  Google Scholar 

  17. Fujishige, S.: Dual greedy polyhedra, choice functions, and abstract convex geometries. Discrete Optimization 1, 41–49 (2004)

    Article  MathSciNet  Google Scholar 

  18. Grabisch, M., Xie, L.J.: The core of games on distributive lattices (working paper)

    Google Scholar 

  19. Grabisch, M., Xie, L.J.: A new investigation about the core and Weber set of multichoice gamse. Mathematical Methods of Operations Research (to appear)

    Google Scholar 

  20. Gilles, R.P., Owen, G., van den Brink, R.: Games with permission structures: the conjunctive approach. Intern. J. Game Theory 20, 277–293 (1992)

    Article  MathSciNet  Google Scholar 

  21. Hoffman, A.J., Schwartz, D.E.: On lattice polyhedra. In: Hajnal, A., Sós, V.T. (eds.) Proc. 5th Hungarian Conference in Combinatorics, pp. 593–598. North-Holland, Amsterdam (1978)

    Google Scholar 

  22. Hsiao, C.-R., Raghavan, T.E.S.: Shapley value for multi-choice cooperative games. Games and Economic Behavior 5, 240–256 (1993)

    Article  MathSciNet  Google Scholar 

  23. Koshevoy, G.: Choice functions and abstract convex geometries. Math. Soc. Sci. 38, 35–44 (1999)

    Article  MathSciNet  Google Scholar 

  24. Moulin, H.: Choice functions over a finite set: a summary. Soc. Choice Welfare 2, 147–160 (1985)

    Article  MathSciNet  Google Scholar 

  25. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, Ann. Math. Studies, vol. 28, pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  26. Shapley, L.S.: Cores of convex games. Intern. J. Game Theory 1, 12–26 (1971)

    MathSciNet  MATH  Google Scholar 

  27. Weber, R.J.: Probabilistic values for games. In: Roth, A.E. (ed.) The Shapley Value, pp. 101–120. Cambridge University Press, Cambridge (1988)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faigle, U., Peis, B. (2008). A Hierarchical Model for Cooperative Games. In: Monien, B., Schroeder, UP. (eds) Algorithmic Game Theory. SAGT 2008. Lecture Notes in Computer Science, vol 4997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79309-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79309-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79308-3

  • Online ISBN: 978-3-540-79309-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics