
Modelling the Performance of the Gaussian

Chemistry Code on x86 Architectures

Joseph Antony1, Mike J. Frisch2, and Alistair P. Rendell1

1 Department of Computer Science, The Australian National University, ACT
0200, Australia. {joseph.antony, alistair.rendell}@anu.edu.au

2 Gaussian Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492, USA.

Summary. Gaussian is a widely used scientific code with application areas in chem-
istry, biochemistry and material sciences. To operate efficiently on modern architec-
tures Gaussian employs cache blocking in the generation and processing of the two-
electron integrals that are used by many of its electronic structure methods. This
study uses hardware performance counters to characterise the cache and memory be-
havior of the integral generation code used by Gaussian in Hartree-Fock calculations.
A simple performance model is proposed that aims to predict overall performance
as a function of total instruction and cache miss counts. The model is parameterised
for three different x86 processors – the Intel Pentium M, the P4 and the AMD
Opteron. Results suggest that the model is capable of predicting execution times to
an accuracy of between 5 and 15%. Use of this model in developing a dynamic cache
blocking scheme is also discussed.

1 Introduction

It is well known that technological advances have driven processor speeds
faster than main memory speeds, and that to address this issue complex cache
based memory hierarchies have been developed. Obtaining good performance
on cache based systems requires that the vast majority of the load/store in-
structions issued by the processor are serviced using data that resides in cache.
In other words, to achieve good performance it is necessary to minimize the
number of cache misses [4].

One approach to achieving this goal is to implement some form of cache
blocking [10]. The objective here is to structure the computational algorithm
in such a way that it spends most of its time working with blocks of data that
are sufficiently small to reside in cache, and only periodically does it move
data between main memory and cache.

Gaussian [5] is a widely used computational chemistry code that employs
cache blocking to perform more efficient integral computations [8,14]. The inte-
grals in question lie at the heart of many of the electronic structure methods
implemented within Gaussian, and are associated with the various interac-
tions between and among the electrons and nuclei in the system under study.

2 Joseph Antony, Mike J. Frisch, and Alistair P. Rendell

Since many electronic structure methods are iterative, and the number of in-
tegrals involved too numerous for them to be stored in memory, the integrals
are usually re-computed several times during the course of a typical calcula-
tion. For this reason algorithms that compute electronic structure integrals
fast and on-demand are extremely important to the computational chemistry
community.

To minimize the operation count, integrals are usually computed in
batches, where all integrals in a given batch share a number of common in-
termediates [7]. In the PRISM algorithm used by Gaussian, large batch sizes
give rise to large inner loop lengths. This is good for pipelining, but poor
if it causes cache overflows and the need to fetch data from main memory.
To address this problem Gaussian imposes a cache blocking by limiting the
maximum size of an integral batch. This in effect says that the time required
to recompute the common shared intermediates is less than the time penalty
associated with having inner loops fetch data quantities from main memory.

In the current version of Gaussian there is a “one size fits all” approach
to cache blocking, in that the same block size is used regardless of the exact
characteristics of the integrals being computed. A long term motivation for
our work is to move away from this model towards a dynamic model where
cache blocking is tailored to each and every integral batch. As a first step to-
wards this goal, this paper explores the ability of a simple Linear Performance
Model (LPM) to predict the performance of Gaussian’s integral evaluation
code purely as a function of instruction count and cache misses.

It is important to note that the LPM is very different to that used in typical
analytic or simulation based performance studies. Analytic models attempt to
weight various system parameters and present an empirical equation for per-
formance, whereas simulation studies are either trace3 or execution4 driven
with each instruction considered in order to derive performance metrics. Ana-
lytic models fail, however, to capture dynamic aspects of code execution that
are only evident at runtime, while execution or trace driven simulations are
extremely slow, often being 100-1000 times slower than execution of the actual
code. The LPM on the other hand, effectively ignores all the intricate details
of program execution and assumes that, over time these details can be aver-
aged out and incorporated into penalty factors associated with the average
cost of issuing an instruction and the average cost of a cache miss.

In this study, three x86 platforms – the Intel Pentium M, P4 and AMD
Opteron – are considered. On-chip hardware performance counters are used
to gather instruction and cache miss data from which the LPM is derived.
The paper is broken into the following sections: section 2 discusses the back-
ground to this study, the tools and methodology used, and introduces the

3 Trace driven simulation uses a pre-recorded list of instructions in a tracefile for
later interpretation by a simulator.

4 An execution driven simulator interprets instructions from a binary source to
perform its simulation.

Gaussian Performance Modelling 3

LPM; section 3 uses the LPM for a series of experiments on the three differ-
ent platforms and discusses the results. Previous work, conclusions and future
work are covered in sections 4 and 5.

2 Background

2.1 The Hartree-Fock Method

Electronic structure methods aim to solve Schrödinger’s wave equation for
atomic and molecular systems. For all but the most trivial systems it is nec-
essary to make approximations. Computational chemists have developed a
hierarchy of methods each with varying computational cost and accuracy.
Within this hierarchy the Hartree-Fock (HF) method is relatively inaccurate,
but it is also the bedrock on which more advanced and accurate methods are
built. For these reasons the HF method was chosen as the focus of this work.

At the core of HF theory is the concept of a molecular orbital (MO), where
one MO is used to describe the motion of each electron in the system. The
MOs (φ) are expanded in terms of a number (N) of basis functions (χ) such
that for MO φi:

φi =

N
∑

α

cαiχα (1)

where cαi are the expansion or molecular orbital coefficients. In HF methods
the form of these coefficients is optimized so that the total energy of the
system is minimized. The basis functions used are normally located at the
various atomic nuclei, and are a product of a radial function that depends
on the distance from that nuclei, and an angular function such as a spherical
harmonic Ylm

5 [8]. Usually the radial function is a Gaussian Gnl(r)
6, and it

is for this reason that the Gaussian code is so named.
The matrix form of HF equations is given by:

FC = SCε (2)

where C is the matrix of molecular orbital coefficients, S a matrix of (overlap)
integrals between pairs of basis functions, ε a vector with elements correspond-
ing to the energy of each MO, and F is the so called Fock matrix defined by:

Fµν = Hcore
µν +

N
∑

λσ

Ne
∑

i

CλiC
∗

σi[(µν |λσ) − (µλ | νσ)] (3)

where Ne is the number of electrons in the system. In equation 3 each ele-
ment of the Fock matrix is expressed in terms of another two-index quantity
(Hcore

µν) that involves other integrals between pairs of basis functions, and

5 Ylm(θ, ϕ) =
√

2l+1
4π

(l−m)!
(l+m)!

P m
l (cos θ)(eimϕ)

6 Gnl(r) = 2(2α)3/4

π1/4

√

22n−l−2

(4n−2l−3)!!
(
√

2αr)2n−l−2 exp(−αr2)

4 Joseph Antony, Mike J. Frisch, and Alistair P. Rendell

the molecular orbital coefficients (C) contracted with a four-index quantity
(µν |λσ). Since F depends on C, which is the same quantity that we seek
to determine,equation 2 is solved iteratively by guessing C, building a Fock
matrix, solving equation 2 and then repeating this process until convergence
is reached. The four-index quantities, (µν |λσ), are the electron repulsion in-
tegrals (ERIs) that are of interest to this work, and arise due to repulsive
interactions between pairs of electrons. They are given by:

(µν |λσ) =

∫∫

χµ(r1)χν(r1)
1

|r1 − r2|
χλ(r2)χσ(r2) dr1 dr2 (4)

where r1 and r2 are the coordinates of two electrons. For a given basis the
number of two-electron integrals grows as O(N4), so evaluation and processing
of these quantities quickly becomes a bottleneck. (We note that for large
systems it is possible to reduce this asymptotic scaling through the use of
pre-screening and other techniques [13], but these alternative approaches
still require a substantial number of ERIs to be evaluated and processed.)

In the outline given above it has been assumed that each basis function
is a single Gaussian function multiplied by a spherical harmonic (or similar).
In fact it is common to combine several Gaussian functions with different
exponents together in a fixed linear combination, treating the result as one
contracted Gaussian basis function. We note also that when a basis function
involves a spherical harmonic (or similar) of rank one or higher (i.e. l ≥ 1),
it is normal to include all orders of spherical harmonic functions within that
rank (i.e. ∀m : −l ≤ m ≤ l). Thus if a basis function involves a spherical
harmonic of rank 2, all 5 components are included as basis functions. Thus
there are three parameters that characterise a basis function; i) its location,
ii) its degree of contraction and the exponents of the constituent Gaussians,
and iii) the rank of its angular component. In the PRISM [12] algorithm
functions that have the same items ii) and iii) the same are treated together,
with a batch of ERI integrals defined by doing this for all of the four functions
involved. The size of these batches can quickly become very large since the
same basis set is generally applied to all atoms of the same type within the
system under study, e.g. all oxygen or hydrogen atoms in the system. It is for
this reason that Gaussian imposes cache blocking to limit maximum batch
sizes.

2.2 Linear Performance Model

The Linear Performance Model (LPM) gives the total number of cycles re-
quired to execute a given code segment as:

Cycles = α ∗ (ICount) + β ∗ (L1Misses) + γ ∗ (L2Misses) (5)

where ICount is the instruction count, L1Misses the total number of Level 1
cache misses, L2Misses the total number of Level 2 cache misses, and α, β,

and γ are fitting parameters. Intuitively the value of α reflects the ability of

Gaussian Performance Modelling 5

the code to exploit the underlying superscalar architecture, β is the average
cost of an L1 cache miss, and γ is the average cost of an L2 cache miss. We
will collectively refer to α, β and γ as the Processor and Platform specific
coefficients (PPCoeffs). They will be derived by performing a least squares fit
of the Cycles, ICount, L1Misses and L2Misses counts obtained from hardware
performance counters for a variety of cache blocking sizes.

2.3 PAPI

PAPI [3], a cross platform performance counter library, is used to obtain
hardware counter data. It uses on-chip performance counters to measure
application events of interest like instruction and cycle counts as well as other
cache events. The three x86 machines used, the Intel Pentium M, P4 and the
AMD Opteron, have different numbers of on-chip performance counters. Each
on-chip performance counter can count one particular hardware event. The
following hardware events are used in this study; PAPI L1 TCM (Total level
one (L1) misses (data and instruction)), PAPI L2 TCM (Total level two (L2)
misses), PAPI TOT INS (Total instructions) and PAPI TOT CYC (Total cycles).
PAPI also supports hardware performance counter event multiplexing. This
uses an event sampling approach to enable more events to be counted than
there are available hardware registers. Events counted using multiplexing will
therefore have some statistical uncertainty associated with them.

It is noted that on the P4 processor PAPI does not have a PAPI L1 TCM

preset event, as it is not exposed by the underlying hardware counters. Instead
PAPI L1 DCM and PAPI L1 ICM are used to count the total number of data and
instruction cache misses respectively.

Table 1 lists processor characteristics and the cache and memory latencies
measured using lmbench [11]. The P4’s L1 instruction cache is a trace cache
[6], unlike the Pentium M and Opteron. Hyperthreading on the P4 was turned
off for this study. PAPI’s event multiplexing was used on the Pentium M, as
this processor has only two hardware counters, but four hardware events are
required by the LPM.

2.4 Methodology

Gaussian computations are performed on a small system consisting of a sol-
vated potassium ion surrounded by 11 water molecules with the geometry
obtained from a snapshot of a molecular dynamics simulation. This work
uses two basis sets denoted as 6-31G* and 6-31G++(3df,3pd) [8]. The for-
mer is a relatively modest basis set, while the latter would be considered large.
Cache blocking in Gaussian is controlled by an input parameter cachesize,
this was set to values of 2, 8, 32, 128, 256 and 512 kilowords. The default
value of this parameter equates to the approximate size of the highest level
of cache on the machine being used, and from this value the sizes of various
intermediate buffers are derived. For each blocking size performance counter
results were recorded for one complete iteration of the HF procedure and
averaged over five runs.

6 Joseph Antony, Mike J. Frisch, and Alistair P. Rendell

Pentium M P4 Opteron

Clock Rate (Ghz) 1.4 3.0 2.2
Ops. per Cycle (Cy) 3 3 3
Memory Subsystem NtBr NtBr HT

Perf. Counters (No.) 2 18 4

L1 DCache Size (Kb) 32 16 64
Associativity (Ways) 8 8 2

Line size (Bytes) 64 64 64
Cache Policies LRU, WB P-LRU LRU, WB, WA

L2 Unified Size (MB) 1 1 1
Associativity (Ways) 8 8 16

Line size (Bytes) 64 64 64
Relation to L1 Inclusive Inclusive Exclusive
Cache Policies LRU P-LRU P-LRU

lmbench Latencies for
L1 DCache Latency (Cy) 3 4 3
L2 Unified Latency (Cy) 9 28 20
Main Memory Latency (Cy, ≈) 201 285 405

NtBr = Northbridge, HT = HyperTransport,
LRU = Least Recently Used, P-LRU = Pseudo-LRU,

WB = Write Back, WA = Allocate on Write

Table 1. Processor characteristics of clock rate, cache sizes and measured latencies
for L1 DCache, L2 cache and main memory latencies for the three x86 processors
used in the study.

Block
Size

6-31G* 6-31G++(3df,3pd)
Pentium M P4 Opteron Pentium M P4 Opteron

2 42.0 28.2 20.8 4440 3169 2298
8 36.7 24.2 17.0 3849 2821 1970
32 30.0 19.8 13.6 2914 2210 1484
128 31.8 20.2 17.0 2869 2121 1701
256 37.0 22.0 20.2 3349 2259 1856
512 42.0 24.8 22.0 3900 2516 2214

x 36.6 23.2 18.4 3554 2516 1921
σ 5.0 3.2 3.1 618 409 308

Table 2. Timings (seconds) for HF benchmark using the 6-31G* and 6-
31G++(3df,3pd) basis sets as a function of the cache blocking parameter. Also
shown are the average (x) times and their standard deviations (σ).

3 Observed timings and hardware counter data

Observed timings

Table 2 shows the execution times obtained on the three different hardware
platforms as a function of the different cache block sizes and when using the 6-
31G* and 6-31G++(3df,3pd) basis sets. These results clearly show that cache
blocking for integral evaluation has a major effect on the overall performance
of the HF code in Gaussian. As the block size is increased from 2 to 512
kilowords the total execution time initially decreases, reaches a minimum,

Gaussian Performance Modelling 7

and then increases again. Exactly where the minimum is located is seen to
vary slightly across the different platforms, and between the two different
basis sets. Also shown in Table 2 are the execution times averaged over all the
different cache block sizes on a given platform, together with the corresponding
standard deviation. Although, the absolute value of the standard deviations
are significantly smaller for the 6-31G* basis, as a percentage of average total
execution times they are roughly equal for both basis sets at around 15%.

 2.5

 2.0

 1.5

 1.0

 0.5

5121283282

Block Size

Pentium M

T
ot

al
 L

ev
el

 1
 M

is
se

s
(R

ed
)

T
ot

al
 L

ev
el

 2
 M

is
se

s
(G

re
en

) x1012x1012x1011

5121283282

Block Size

Pentium 4

T
ot

al
 L

ev
el

 1
 M

is
se

s
(R

ed
)

T
ot

al
 L

ev
el

 2
 M

is
se

s
(G

re
en

) x1011

5121283282

 1.0

 0.8

 0.6

 0.4

 0.2

Block Size

AMD Opteron

T
ot

al
 L

ev
el

 1
 M

is
se

s
(R

ed
)

T
ot

al
 L

ev
el

 2
 M

is
se

s
(G

re
en

) x1011

In
st

ru
ct

io
n

C
ou

nt
 (

B
lu

e)
In

st
ru

ct
io

n
C

ou
nt

 (
B

lu
e)

In
st

ru
ct

io
n

C
ou

nt
 (

B
lu

e)
T

ot
al

 C
yc

le
s

(P
in

k)
T

ot
al

 C
yc

le
s

(P
in

k)
T

ot
al

 C
yc

le
s

(P
in

k)

Fig. 1. Hardware counter data as a function of the cache blocking parameter for the
HF method using the 6-31G++(3df,3pd) basis set on the three different hardware
platforms

Hardware counter data

Hardware counter data for the 6-31G++(3df,3pd) basis set is given in Figure
1. The left hand axis of the graph (y1) has two quantities namely Total Level 1
Misses (L1Misses) and Total Level 2 Misses (L2Misses), while the right hand
axis (y2) has Total Cycles (Cycles) and Instruction Count (ICount). The x

axis is plotted using a log2 scale.
The cycle counts shown in Figure 1 are directly related to the times given in

Table 2 by the clock speeds (see Table 1). Hence they show a similar behavior,
decreasing initially as the block size increases, reaching a minimum and then
increasing. In contrast the instruction counts show a steep initial decrease, but
then appear to level off for large block sizes. This behavior reflects the fact that
similar integrals, previously split into multiple batches, will be computed in
fewer batches as the block size increases. Mirroring this behavior the L1 and L2
cache misses are initially low, increase when the blocking size is expanded, and
ultimately will plateau when there are no more split batches to be combined
(although this is not evident for the block sizes given in the figure).

Obtained PPCoeffs

Using the LPM (equation 5) and the hardware performance counter data for
the HF/6-31G* calculations, a least squares fit was performed in order to
obtain the PPCoeffs values given in Table 3. For the Pentium M and Opteron
the values of α, β and γ appear reasonable. Specifically a value of 0.67 for

8 Joseph Antony, Mike J. Frisch, and Alistair P. Rendell

Processor α β γ

Pentium M 0.67 13.39 63.60
P4 2.87 -59.35 588.46

Opteron 0.64 7.13 388.23

P4a 0.86 – 323.18

Table 3. PPCoeff (α, β, γ) values for the Pentium M, P4 and Opteron obtained from
HF, 6-31G* results. See text for further details. a Results obtained when ignoring
counts for L1 cache misses.

α on the Pentium M and 0.64 on the Opteron, implies that the processors
are issuing 1.5 and 1.6 instructions per cycle respectively. Given that both
processors (and also the P4) can issue upto three instructions per cycle these
values are in the typical range of what might be expected.

The values for β and γ are average L1 and L2 cache miss penalties re-
spectively, or alternatively β is the average cost of referencing data in L2
cache, while γ is the average cost of referencing data in main memory. The
actual costs for referencing the L2 cache and main memory as measured using
lmbench are given in Table 1. Thus for the Pentium M a value for β of 13.39
can be compared with the L2 latency of 9 cycles (Table 1), and a value for γ

of 63.60 can be compared with 201. On the Opteron the equivalent compar-
isons are 7.13 to 20, and 388.23 to 405. These results for β, and particularly
those for γ are roughly in line with what we might expect if we note that
they are averages, while those measured by lmbench are worst case scenarios;
hardware smarts such as prefetching and out-of-order execution are likely to
mask some of the latencies associated with a cache miss in Gaussian, but not
for lmbench (by design).

In contrast to the Pentium M and Opteron systems the results for the P4
are clearly unphysical with a negative value for β. The reason for this will be
outlined in a future publication [2], but in essence it is due to the nature of
the P4 micro-architecture which makes it very hard to count accurately the
L1 cache misses. If, however, we ignore L1 misses and restrict the LPM to
just the instruction count and L2 cache misses we obtain the second set of P4
data given in Table 3. This is far more reasonable,with a value for α that now
equates to 1.2 instructions per cycle compared to an unlikely previous value
of 0.37. Similarly the latency for a main memory reference is now less than
that recorded by lmbench.

The PPCoeffs in Table 3 were derived using performance counter data
obtained from running with the 6-31G* basis set. It is of interest to combine
these values for α, β and γ with the instruction and cache miss counts recorded
with the larger 6-31G++(3df, 3pd) basis set, and thereby obtain predicted
cycle counts for this larger calculation. The difference between these predicted
cycle counts and the actual cycle counts gives a measure of the ability of the
LPM to make predictions outside of the domain in which it was originally
parameterised. Doing this we find RMS differences between the predicted and
measured execution times of 456, 268 and 95 seconds for the Pentium M, P4

Gaussian Performance Modelling 9

(2 parameter LPM) and Opteron processors respectively. Compared to the
average execution times given in Table 2, this represents an error of ∼13%
on the Pentium M, ∼10% on the P4, and ∼5% on the Opteron. Since the
total execution time varies by over 50% as the block size is changed, these
results suggest that the LPM is accurate enough to make useful predictions
concerning the performance of Gaussian as a function of total instruction and
cache misses.

4 Previous work

Using a sparse set of trace based cache simulations, Gluhovsky and O’Krafka [9]
build a multivariate model of multiple cache miss rate components. This can
then be used to extrapolate for other hypothetical system configurations. Vera
et al. use cache miss equations [15] to obtain an analytical description of
cache memory behavior of loop based codes. These are used at compile time
to determine near optimal cache layouts for data and code. Snavely et. al
use profile convolving [1] a trace based method which involves the creation
of a machine profile and an application profile. Machine profiles describe the
behavior of loads and stores for the given processor, while the application
profile is a runtime utility which captures and statistically records all memory
references. Convolving involves creating a mapping of the machine signature
and application profile, this is then fed to an interconnect simulator to create
traces that aids in predicting performance. The LPM, in comparison to these
methods is lightweight in obtaining application specific performance charac-
teristics. PPCoeffs are obtained using hardware counter data which can then
be used by either trace based or execution based simulators.

5 Conclusions and Future work

A linear performance model was proposed to model the cache performance
of Gaussian. PPCoeffs (α, β, γ) obtained intuitively correspond to how well
the code uses the superscalar resources of the processor, the average cost in
cycles of an L1 cache miss and the average cost in cycles of an L2 miss.

Experiments show optimal batch sizes are both platform and computa-
tion specific, hinting that a dynamic means of varying batch sizes at runtime
might be useful. In which case the LPM could be used to determine cache
blocking sizes prior to computing a batch of integrals. On completing each
batch cache metrics gather could then be used to guide a runtime search to-
ward the most optimal blocking size. The predictive ability of the LPM can
be used to aid experiments which use cache simulation tools. These tools are
capable of simulating caches of current and possible future processors and
yield instruction counts, number of L1 and L2 misses. In tandem with the
LPM, cycle counts can be computed thus allowing determination of which
microarchitectural features have the greatest impact on code performance.

10 Joseph Antony, Mike J. Frisch, and Alistair P. Rendell

For future work we propose to test the usefulness of the LPM at runtime
to aid in searching for optimal blocking factors and use it to study the effect
of microarchitectural changes on code performance.

Acknowledgments

This work was possible due to funding from the Australian Research Coun-
cil, Gaussian Inc. and Sun Microsystems Inc. under ARC Linkage Grant
LP0347178. JA and APR wish to thank Alexander Technology for access
to an AMD Opteron cluster and DCS TSG.

References

1. A. Snavely and N. Wolter and L. Carrington. Modelling Application Perfor-
mance by Convolving Machine Signatures with Application Profiles. IEEE
Workshop on Workload Characterization, December 2001.

2. Joseph Antony, M. J. Frisch, and A. P. Rendell. Future Publication.
3. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. PAPI. Intl. Journal

of HPC Applications, 14(3):189–204, 2000.
4. David E. Culler, Anoop Gupta, and Jaswinder Pal Singh. Parallel Computer

Architecture: A Hardware/Software Approach. Morgan Kaufmann Publishers,
Inc., San Francisco, California, USA, 1999.

5. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, and
J. R. Cheeseman et. al. Gaussian 03, Revision C.01. Gaussian Inc., Gaussian,
Inc., Wallingford CT, USA, 2004.

6. G. Hinton and D. Sager and M. Upton and D. Boggs and D. Carmean and A.
Kyker and P. Roussel. The microarchitecture of the Pentium 4 processor. Intel
Technical Journal, 2001.

7. Martin Head-Gordon and John A. Pople. A method for two-electron gaussian
integral and integral derivative evaluation using recurrence relations. J. Chem.
Phys., 89(9):5777–5786, 1988.

8. Trygve Helgaker, Poul Jorgensen, and Jeppe Olsen. Molecular Electronic-
Structure Theory. John Wiley & Sons, 2001.

9. Iilya Gluhovsky and Brian O’Krafka. Comprehensive Multiprocessor Cache Miss
Rate Generation Using Multivariate Models. ACM Transactions on Computer
Systems, May 2005.

10. Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache per-
formance and optimizations of blocked algorithms. SIGOPS Oper. Syst. Rev.,
25:63–74, 1991.

11. Larry W. McVoy and Carl Staelin. lmbench: Portable tools for performance
analysis. In USENIX Annual Technical Conference, pages 279–294, 1996.

12. P. M. W. Gill. Molecular Integrals over Gaussian Basis Functions. Advances in
Quantum Chemistry, 25:141–205, 1994.

13. P. M. W. Gill, Benny G. Johnson, John A. Pople. A simple yet powerful upper
bound for Coulomb integrals. Chemical Physics Letters, 217:65–68, 1994.

14. Roland Lindh. Integrals of Electron Repulsion. In P. v. R. Schleyer et. al, editor,
Encyclopaedia of Computational Chemistry, volume 2, page 1337. Wiley, 1998.

15. X. Vera, N. Bermudo, and A. González J. Llosa. A Fast and Accurate Frame-
work to Analyze and Optimize Cache Memory Behavior. ACM Transactions on
Programming Languages and Systems, March 2004.

