Skip to main content

Physicochemical Correlation between Amino Acid Sites in Short Sequences under Selective Pressure

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4983))

Included in the following conference series:

Abstract

The activities and properties of proteins are the result of interactions among their constitutive amino acids. In the course of natural selection, substitutions which tend to destabilize a particular structure may be compensated by other substitutions which confer stability to that structure. Patterns of coordinated substitutions were studied in two sets of selected peptides. The first is a set of 181 amino acid sequences that were selected in vitro to bind a MHC class I molecule (Kb). The second is a set of 114 sequences of the Hypervariable Region 1 of Hepatitis C virus, which, originating from infected patients, result from natural selection in vivo. The patterns of coordinated substitutions in both datasets showed many significant structural and functional links between pairs of positions and conservation of specific selected physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pollock, D., Taylor, W.: Effectiveness of correlation analysis in identifying protein residues. Protein Eng. 10(6), 647–657 (1997)

    Article  Google Scholar 

  2. Chothia, C., Lesk, A.: Evolution of proteins formed by beta-sheets. I. Plastocyanin and azurin. J. Mol. Biol. 160(2), 309–323 (1982)

    Article  Google Scholar 

  3. Lesk, A., C., C.: Evolution of proteins formed by beta-sheets. II. The core of the immunoglobulin domains. J. Mol. Biol. 160(2), 325–342 (1982)

    Article  Google Scholar 

  4. Oosawa, K., Simon, M.: Analysis of mutations in the transmembrane region of the aspartate chemoreceptor in Escherichia coli. Proc. Natl. Acad. Sci. USA 83(18), 6930–6934 (1986)

    Article  Google Scholar 

  5. Altschuh, D., et al.: Coordinated amino acid changes in homologous protein families. Protein Eng. 2(3), 193–199 (1988)

    Article  Google Scholar 

  6. Bordo, D., Argos, P.: Evolution of protein cores. Constraints in point mutations as observed in globin tertiary structure. J. Mol. Biol. 211(4), 975–988 (1990)

    Article  Google Scholar 

  7. Mateu, M., Fersht, A.: Mutually compensatory mutations during evolution of the tetramerization domain of tumor supressor p53 lead to impaired hetero-oligomerization. Proc. Natl. Acad. Sci. USA 96, 3595–3599 (1999)

    Article  Google Scholar 

  8. Lim, W., Sauer, R.: Alternative packing arrangements in the hydrophobic core of lambda repressor. Nature 339(6219), 31–36 (1989)

    Article  Google Scholar 

  9. Lim, W., Farruggio, D., Sauer, R.: Structural and energetic consequences of disruptive mutations in a protein core. Biochemistry 31(17), 4324–4333 (1992)

    Article  Google Scholar 

  10. Baldwin, E., et al.: The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme. Science 262(5140), 1715–1718 (1993)

    Article  Google Scholar 

  11. Govindarajan, S., et al.: Systematic variation of Amino acid substitutions for stringent assesment of pairwise covariation. J. Mol. Biol. 328, 1061–1069 (2003)

    Article  Google Scholar 

  12. Clarke, N.: Covariation of residues in the homeodomain sequence family. Protein Sci. 4(11), 2269–2278 (1995)

    Article  Google Scholar 

  13. Voigt, C., et al.: Computational method to reduce the search space for directed protein evolution. In: Proc. Natl. Acad. Sci. USA, vol. 98, pp. 3778–3783 (2001)

    Google Scholar 

  14. Atchley, W., et al.: Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis. Mol. Biol. Evol. 17(1), 164–178 (2000)

    Google Scholar 

  15. Fukami-Kobayashi, K., Schreiber, D., Benner, S.: Detecting compensatory covariation signals in protein evolution using reconstructed ancestral sequences. J. Mol. Biol. 319, 729–743 (2002)

    Article  Google Scholar 

  16. Göbel, U., et al.: Correlated mutations and residue contacts in proteins. Proteins 18(4), 309–317 (1994)

    Article  Google Scholar 

  17. Neher, E.: How frequent are correlated changes in families of protein sequences? Proc Natl Acad Sci USA 91(1), 98–102 (1994)

    Article  MathSciNet  Google Scholar 

  18. Shindyalov, I., Kolchanov, N., Sander, C.: Can three dimensional contacts in protein structures be predicted by analysis of correlated mutations? Protein Eng. 7, 349–358 (1994)

    Article  Google Scholar 

  19. Taylor, W., Hatrick, K.: Compensating changes in protein multiple sequence alignments. Protein Eng. 7(3), 341–348 (1994)

    Article  Google Scholar 

  20. Benner, S., et al.: Bona fide predictions of protein secondary structure using transparent analyses of multiple sequence alignments. Chem. Rev. 97, 2725–2844 (1997)

    Article  Google Scholar 

  21. Nagl, S., Freeman, J., Smith, T.: Evolutionary constraint networks in ligand-binding domains: an information-theoretic approach. Pac. Symp. Biocomput, 90–101 (1999)

    Google Scholar 

  22. Larson, S., Di Nardo, A., Davidson, A.: Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. J. Mol. Biol. 303(3), 433–446 (2000)

    Article  Google Scholar 

  23. Afonnikov, D., Oshchepkov, D., Kolchanov, N.: Detection of conserved physico-chemical characteristics of proteins by analyzing clusters of positions with co-ordinated substitutions. Bioinformatics 17(11), 1035–1046 (2001)

    Article  Google Scholar 

  24. Nemoto, W., et al.: Detection of pairwise residue proximity by covariation analysis for 3D-structure prediction of G-protein-coupled receptors. Protein. J. 23(6), 427–435 (2004)

    Article  Google Scholar 

  25. Wang, L.: Covariation analysis of local amino acid sequences in recurrent protein local structures. J. Bioinform. Comput. Biol. 3(6), 1391–1409 (2005)

    Article  Google Scholar 

  26. Shackelford, G., Karplus, K.: Contact prediction using mutual information and neural nets. Proteins 69(suppl. 8), 159–164 (2007)

    Article  Google Scholar 

  27. Altschuh, D., et al.: Correlation of co-ordinated amino acid substitutions with function in viruses related to tobacco mosaic virus. J. Mol. Biol. 193(4), 693–707 (1987)

    Article  Google Scholar 

  28. Korber, B., et al.: Covariation of mutations in the V3 loop of human immunodeficiency virus type 1 envelope protein: an information theoretic analysis. Proc. Natl. Acad. Sci. USA 90(15), 7176–7180 (1993)

    Article  Google Scholar 

  29. Gilbert, P., Novitsky, V., Essex, M.: Covariability of selected amino acid positions for HIV type 1 subtypes C and B. AIDS Res. Hum. Retroviruses 21(12), 1016–1030 (2005)

    Article  Google Scholar 

  30. Kolli, M., Lastere, S., Schiffer, C.: Co-evolution of nelfinavir-resistant HIV-1 protease and the p1-p6 substrate. Virology 347(2), 405–409 (2006)

    Article  Google Scholar 

  31. Chelvanayagam, G., et al.: An analysis of simultaneous variation in protein structures. Protein Eng. 10(4), 307–316 (1997)

    Article  Google Scholar 

  32. Martin, L., et al.: Using information theory to search for co-evolving residues in proteins. Bioinformatics 21(22), 4116–4124 (2005)

    Article  Google Scholar 

  33. Gloor, G., et al.: Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions. Biochemistry 44(19), 156–165 (2005)

    Article  Google Scholar 

  34. Poon, A., Chao, L.: The rate of compensatory mutation in the DNA bacteriophage phiX174. Genetics 170(3), 989–999 (2005)

    Article  Google Scholar 

  35. Yeang, C., Haussler, D.: Detecting coevolution in and among protein domains. PLoS Comput Biol. 3(11), e211 (2007)

    Article  MathSciNet  Google Scholar 

  36. Milik, M.S., Brunmark, D., Yuan, A., Vitiello, L., Jackson, A., Peterson, M., Skolnick, P., Glass, J.: Application of an artificial neural network to predict specific class I MHC binding peptide sequences. Nat. Biotechnol. 16(8), 753–756 (1998)

    Article  Google Scholar 

  37. Segal, M., Cummings, M., Hubbard, A.: Relating amino acid sequence to phenotype: analysis of peptide-binding data. Biometrics 57(2), 632–642 (2001)

    Article  MathSciNet  Google Scholar 

  38. Alter, M.: Epidemiology of hepatitis C virus infection. World J. Gastroenterol. 13(17), 2436–2441 (2007)

    Google Scholar 

  39. Alberti, A., Chemello, L., Benvegnu, L.: Natural History Of Hepatitis C. J. Hepatol. 31(supp. 1), 17–24 (1999)

    Article  Google Scholar 

  40. Bowen, D., Walker, C.: Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 436, 946–952 (2005)

    Article  Google Scholar 

  41. Choo, Q., et al.: Isolation Of A Cdna Clone Derived From A Bloodborne Non-A, Non-B Viral Hepatitis Genome. Science 244, 359–362 (1989)

    Article  Google Scholar 

  42. Smith, D.: Evolution of the hypervariable region of hepatitis C virus. J. Viral Hepat 6(suppl. 1), 41–46 (1999)

    Article  Google Scholar 

  43. Mondelli, M., et al.: Hypervariable region 1 of hepatitis C virus: immunological decoy or biologically relevant domain? Antiviral Res. 52(2), 153–159 (2001)

    Article  Google Scholar 

  44. Kuiken, C., et al.: The Los Alamos hepatitis C sequence database. Bioinformatics 21(3), 379–384 (2005)

    Article  Google Scholar 

  45. Thompson, J., Higgins, D., Gibson, T.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids. Res. 22(22), 4673–4680 (1994)

    Article  Google Scholar 

  46. Atchley, W., et al.: Solving the protein sequence metric problem. Proc. Natl. Acad. Sci. USA 102(18), 6395–6400 (2005)

    Article  Google Scholar 

  47. Kawashima, S., Kanehisa, M.: AAindex: amino acid index database. Nucleic. Acids. Res. 28, 374 (2000)

    Article  Google Scholar 

  48. Atchley, W., Zhao, J.: Molecular architecture of the DNA-binding region and its relationship to classification of basic helix-loop-helix proteins. Mol. Biol. Evol. 24(1), 192–202 (2007)

    Article  Google Scholar 

  49. McCune, B., Grace, J.: Analysis of ecological communities, MjM Software Design, Gleneden Beach (2002)

    Google Scholar 

  50. Cai, L.: Multi-response Permutation Procedure as An Alternative to the Analysis of Variance: An SPSS Implementation. Department of Psychology, University of North Carolina (2004)

    Google Scholar 

  51. Cade, B., Richards, J.: User Manual For BLOSSOM Statistical Software. Midcontinent Ecological Science Center US Geological Survey Fort Collins, Colorado (2001)

    Google Scholar 

  52. Johnson, R., Wichern, D.: Applied multivariate statistical analysis. Prentice Hall, Upper Saddle River, NJ (2002)

    Google Scholar 

  53. SPSS 15.0 for windows, SPSS Inc, Chicago IL (2006)

    Google Scholar 

  54. Noivirt, O., Eisenstein, M., Horovitz, A.: Detection and reduction of evolutionary noise in correlated mutation analysis. Protein Eng. 18(5), 247–253 (2005)

    Article  Google Scholar 

  55. Afonnikov, D., Kolchanov, N.: CRASP: a program for analysis of coordinated substitutions in multiple alignments of protein sequences. Nucleic. Acids. Res. 32, W64–W68 (2004)

    Article  Google Scholar 

  56. MathWorks, T.: MATLAB, Natick, MA (2007)

    Google Scholar 

  57. Wollenberg, K., Atchley, W.: Separation of phylogenetic and functional associations in biological sequences by using the parametric bootstrap. Proc. Natl. Acad. Sci. USA 97(7), 3288–3291 (2000)

    Article  Google Scholar 

  58. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical Society, Series B 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  59. Felsenstein, J.: Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985)

    Article  Google Scholar 

  60. McAllister, J., et al.: Long-term evolution of the hypervariable region of hepatitis C virus in a common-source-infected cohort. J. Virol. 72(6), 4893–4905 (1998)

    Google Scholar 

  61. Sheridan, I., et al.: High-resolution phylogenetic analysis of hepatitis C virus adaptation and its relationship to disease progression. J. Virol 78(7), 3447–3454 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Raj Sunderraman Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Campo, D., Dimitrova, Z., Khudyakov, Y. (2008). Physicochemical Correlation between Amino Acid Sites in Short Sequences under Selective Pressure. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2008. Lecture Notes in Computer Science(), vol 4983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79450-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79450-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79449-3

  • Online ISBN: 978-3-540-79450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics