Skip to main content

Pattern Matching in RNA Structures

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4983))

Abstract

RNA plays key roles in many biological processes, and its function depends largely on its three-dimensional structure. We describe a comparative approach to learning biologically important RNA structures, including those that are not the predicted minimum free energy (MFE) structure. Our approach identifies the greatest conserved structure(s) in a set of RNA sequences, even in the presence of sequences that have no conserved features. We convert RNA structures to a graph representation (XIOS RNA graph) that includes pseudoknots, and mutually exclusive structures, thereby simultaneously representing ensembles of RNA structures. By modifying existing algorithms for maximal subgraph isomorphism, we can identify the similar portions of the graphs and integrate this with MFE structure prediction tools to identify biologically relevant near-MFE conserved structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birney, E., Stamatoyannopoulos, J.A., Dutta, A., Guigo, R., Gingeras, T.R., Margulies, E.H., Weng, Z., Snyder, M., Dermitzakis, E.T., Thurman, R.E., et al.: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146), 799–816 (2007)

    Article  Google Scholar 

  2. Zarrinkar, P.P., Williamson, J.R.: The kinetic folding pathway of the Tetrahymena ribozyme reveals possible similarities between RNA and protein folding. Nature structural biology 3(5), 432–438 (1996)

    Article  Google Scholar 

  3. Doherty, E.A., Doudna, J.A.: The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core. Biochemistry 36(11), 3159–3169 (1997)

    Article  Google Scholar 

  4. Zuker, M.: On finding all suboptimal foldings of an RNA molecule. Science 244(4900), 48–52 (1989)

    Article  MathSciNet  Google Scholar 

  5. Wuchty, S., Fontana, W., Hofacker, I.L., Schuster, P.: Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49(2), 145–165 (1999)

    Article  Google Scholar 

  6. Staple, D.W., Butcher, S.E.: Pseudoknots: RNA structures with diverse functions. PLoS biology 3(6), 213 (2005)

    Article  Google Scholar 

  7. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC bioinformatics 5, 104 (2004)

    Article  Google Scholar 

  8. Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M., Turner, D.H.: Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences 101(19), 7287–7292 (2004)

    Article  Google Scholar 

  9. Gan, H.H., Pasquali, S., Schlick, T.: Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design. Nucl. Acids Res. 31(11), 2926–2943 (2003)

    Article  Google Scholar 

  10. Kim, N., Shiffeldrim, N., Gan, H.H., Schlick, T.: Candidates for Novel RNA Topologies. Journal of molecular biology 341(5), 1129–1144 (2004)

    Article  Google Scholar 

  11. Ivo, L.F.H., Peter, F.S., Sebastian, B.L., Manfred, T., Peter, S.: Sebastian, Tacker Manfred, and Schuster Peter: Fast Folding and Comparison of RNA Secondary Structures. MonatshChem 125, 167–188 (1994)

    Google Scholar 

  12. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic acids research 9(1), 133–148 (1981)

    Article  Google Scholar 

  13. Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM 2002), p. 721. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  14. Yan, X., Han, J.: CloseGraph: Mining closed frequent graph patterns. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, Washington, D.C. ACM, New York (2003)

    Google Scholar 

  15. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, Edmonton, Alberta, Canada, ACM Press, New York (2002)

    Google Scholar 

  16. Jaeger, J.A., Turner, D.H., Zuker, M.: Improved predictions of secondary structures for RNA. Proceedings of the National Academy of Sciences of the United States of America 86(20), 7706–7710 (1989)

    Article  Google Scholar 

  17. Wang, Z., Zhang, K.: Alignment between Two RNA Structures. In: Mathematical Foundations of Computer Science 2001, p. 690 (2001)

    Google Scholar 

  18. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nature genetics 25(1), 25–29 (2000)

    Article  Google Scholar 

  19. Grate, L., Herbster, M., Hughey, R., Haussler, D., Mian, I.S., Noller, H.: RNA modeling using Gibbs sampling and stochastic context free grammars. In: Proceedings / International Conference on Intelligent Systems for Molecular Biology; ISMB, vol. 2, pp. 138–146 (1994)

    Google Scholar 

  20. Lowe, T.M., Eddy, S.R.: tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucl. Acids Res. 25(5), 955–964 (1997)

    Article  Google Scholar 

  21. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of molecular biology 215(3), 403–410 (1990)

    Google Scholar 

  22. Pudlák, P., Rödl, V., Savický, P.: Graph complexity. Acta Informatica 25(5), 515–535 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Raj Sunderraman Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, K., Rahman, R., Gupta, A., Siddavatam, P., Gribskov, M. (2008). Pattern Matching in RNA Structures. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2008. Lecture Notes in Computer Science(), vol 4983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79450-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79450-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79449-3

  • Online ISBN: 978-3-540-79450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics