Predicting the Sieving Effort for the Number
Field Sieve

Willemien Ekkelkamp!-?

1 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
2 Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
W.H.Ekkelkamp@cwi.nl

Abstract. We present a new method for predicting the sieving effort
for the number field sieve (NFS) in practice. This method takes relations
from a short sieving test as input and simulates relations according to
this test. After removing singletons, we decide how many relations we
need for the factorization according to the simulation and this gives a
good estimate for the real sieving. Experiments show that our estimate
is within 2% of the real data.

1 Introduction

One of the most popular methods for factoring large numbers is the number field
sieve [4], as this is the fastest algorithm known so far. In order to estimate the
most time-consuming step of this method, namely the sieving step in which the
so-called relations are generated, one looks at actual sieving times for numbers
of comparable size. If these are not available, one could try to extrapolate actual
sieving times for smaller numbers, using the formula for the running time L(N)
of this method, where N is the number to be factored. We have

L(N) = exp(((64/9)*/% + 0(1))(log N)'/3(loglog N)*/?), as N — oo ,

where the logarithms are natural. These estimates can be 10-30 % off.

In this paper we present a method for predicting the number of relations
needed for factoring a given number in practice within 2 % of the actual number
of relations needed. With ‘in practice’ we mean: on a given computer, for a given
implementation, and for a given choice of the parameters in the NFS. This allows
us to predict the actually required sieving time within 2 %. Our method is based
on a short sieving test and a very cheap simulation of the relations needed for the
factorization. By applying this method for various choices of the parameters of
the number field sieve, it is possible to find an optimal choice of the parameters,
e.g., in terms of minimal sieving time or in terms of minimizing the size of the
resulting matrix. Before going into details we give a short overview of the NFS
in order to show where our method fits in.

The NFS consists of the following four steps. First we select two irreducible
polynomials fi(z) and fa(z), f1, f2 € Z|z], and an integer m < N, such that

fi(m) = fo(m) =0 (mod N) .

2 Willemien Ekkelkamp

Polynomials with ‘small’ integer coefficients are preferred, because the values of
these polynomials are smaller on average and smoother (i.e. having smaller prime
factors on average) than the values of polynomials with large integer coefficients.
Usually f1(z) is a linear polynomial and f2(z) a higher degree polynomial, re-
ferred to as rational side and algebraic side, respectively. If IV is of a special form
(e.g., ¢ =+ 1) then we can use this to get a polynomial fy(z) with very small
coefficients. In that case we talk about the special number field sieve (SNFS),
else we talk about the general number field sieve (GNFS). By a; and as we
denote roots of fi(z) and fa(z), respectively.

The second step is the relation collection. We choose a factorbase F'B of
primes below the bound F and a large primes bound L; for ease of exposi-
tion we take the same bounds on both the rational side and the algebraic side.
Then we search for pairs (a,b) such that ged(a,b) = 1, and such that both
Fi(a,b) = b8 £ (a/b) and Fy(a,b) = b38(f2) f,(a/b) have all their prime fac-
tors below F' and at most two prime factors between F' and L, the so-called large
primes. These pairs (a,b) are referred to below as relations (a;, b;).

There are many possibilities for the relation collection, the fastest of which
are based on sieving. Two sieving methods in particular are widely used, namely
line sieving and lattice sieving. For line sieving we select a rectangular sieve area
of points (a, b) and the sieving is done per horizontal line. For lattice sieving we
select an interval of so-called special primes and for each special prime we only
sieve those pairs (a,b) for which this special prime divides 53¢(/2) f,(a/b); for
each special prime these pairs form a lattice in the sieving area. In case of SNFS
the special prime is chosen on the rational side.

The third step consists of linear algebra to construct a set S of indices ¢ such
that the two products Hies(ai —b;a1) and Hies(ai — b;az) are both squares of
products of prime ideals. This product comes from the fact that 5381 £, (a/b) is
the norm of the algebraic number a — ba;y, multiplied with the leading coefficient
of f1(z). The principal ideal (a — ba1) factors into the product of prime ideals
in the number field Q(«;). The situation is similar for fs.

The last step is the square root step. We determine algebraic numbers o} €
Q(o1) and af € Q(az) such that (of)? = [],cg(a;i—bion) and (0)? = [],cg(ai—
bias). Then we use the homomorphisms ¢,, : Q(a;) = Z/NZ and ¢, :
Q(a2) = ZZ/NZ with ¢a, (1) = Ga,(a2) = m to get ¢a, (a])® = da, ((a})?) =
bar (ILics(ai — bia1)) = [Lies((ai — bim) = ¢a,(ah)?*(mod N). Now compute
ged(Pa, (@) — @a,(ah), N) to obtain a factor of N. If this gives the trivial fac-
torization, continue with the next set of indices, otherwise we have found a
nontrivial factorization of N. For more details of the NFS, see e.g., [3], [4], or
[5].

Our method works as follows. After choosing polynomials, bounds F' and L,
and a sieve area, we perform a sieve test for a relatively short period of time.
For a 120-digit IV one could sieve for ten minutes or so, but for larger numbers
one may spend considerably more time on the sieve test. Based on the relations
in this sieve test we simulate as many relations as are necessary for factoring
the number. The simulation uses a random number generator and functions that

Predicting the Sieving Effort 3

describe the underlying distribution of the large primes, and this can be done
fast. During the simulation of the relations, we regularly remove the singletons
from all the relations simulated so far. As soon as the number of relations left
after singleton removal exceeds the number of primes in the relations we stop
and it turns out that the total number of relations simulated so far gives us
a good estimate of the actual number of relations that we need to factor our
number.

The number of useful relations after singleton removal grows in a hard-to-
predict fashion as a function of the number of relations found. This growth
behaviour differs from number to number, which makes it hard to predict the
overall sieving time: for instance, even estimates based on factoring times of
numbers of comparable size can easily be 10 % off. Our method, however, which
is purely based on the individual behavior of the relations found for the number
to be factored, allows us to predict how the number of useful relations will be-
have as a function of the number of relations found, thereby giving us a tool to
accurately predict the overall sieving time.

The simulations in this paper were carried out on a Intel® Core™?2 Duo
with 2 GB of memory. The line sieving data sets were generated with the NFS
software package of CWI. The lattice sieving data sets were given by Bruce Dod-
son and Thorsten Kleinjung.

In Section 2 we describe how we simulate the relations. Section 3 is about the
singleton removal and about how to decide when we have enough relations to
factor the given number. In Section 4 we compare results of the simulation with
real factorizations and Section 5 contains the conclusions and our intentions for
future work.

2 Simulating Relations

Before we start with the simulation, we run a short sieving test. In order to get
a representative selection of the actual relations, we ensure that the points we
are sieving in this test are spread over the entire sieving area. The parameters
for the sieving are set in such a way that we have at most two large primes both
on the rational side and on the algebraic side. In the case of lattice sieving we
have one additional special prime on one of the sides. In this section we describe
the process of simulating relations both for line sieving and for lattice sieving.
Note that we only simulate the large primes; for the primes in the factorbase we
use a correction as will be explained in Section 3.

The first step after the sieving test consists of splitting the relations according
to the number of large primes. The set of relations with ¢ large primes on the
rational side and j large primes on the algebraic side is denoted by r;a; for
i,j € {0,1,2}. This leads to nine different sets and the mutual ratios of their
cardinalities determine the ratios by which we will simulate the relations. In the
case of lattice sieving we split the relations in the same way, ignoring the special
prime.

Next we take a closer look at the relations in each set and specify a model

4 Willemien Ekkelkamp

that fits the distribution of the large primes in these sets as closely as we can
accomplish. To clarify this, we explain for each set how to simulate the relations
in that set, for the case of line sieving.

roag: We count the number of relations in this set.

riag: We started with sorting all the large primes and put them in an array. Our
first experiments with simulating the large primes (and removing singletons)
concentrated on the large primes at hand. We tried linear interpolation between
two consecutive large primes, Lagrange polynomials, and splines, but all these
local approaches did not give a satisfying result; the result after singleton removal
was too far from the real data. We then tried a more global approach, looking
at all the large primes and see if we could find a distribution for them. We
found that an exponential distribution simulates best the distribution of these
large primes over the interval [F, L] (cf. [2], Ch. 6) and the result after singleton
removal was satisfactory. The inverse of this distribution function is given by

G(x):Ffalog<lfx<lfe¥>>,OSxSl, (1)

where a is the average of the large primes in the set r1ag. Note that G(0) = F
and G(1) = L. In order to generate primes according to the actual distribution
of the large primes, we generate a random number between 0 and 1, substitute
this number in G(z), round the number G(z) to the nearest prime, and repeat
this for each prime that we want to generate.

To avoid expensive prime tests, we work with the index of the primes p,
defined as i, = m(p), rather than with the prime itself. This index can be found
by using a look-up table or the approximation i, = @ + ﬁ + loz’g’ - [6].
Experiments showed that this third order approximation gives almost the same
results as looking up indices in a table. It is especially more efficient to use this
approximation when L is large. For working with indices, we have to adjust (1);
we write i for the index of the first prime above F', and iy, for the index of the
prime just below L, and a’ for the average of the indices of the large primes in
the set r;ag. Then the formula becomes

G(m):ipfa'10g<17m<lfeiF;’iL>> . (2)

To illustrate that the distribution of the large primes is approximated well
by (2) we have generated the following graph, which consists of two sorted sets.
One set consists of the indices of the primes of the original sieving data and
the other set consists of the indices simulated with help of (2). The line of the
simulated data is the one which lies below the other line (of the original data)
around position 7000.

Predicting the Sieving Effort 5

108
20—
15:
index .
10—
57
TTTTTTTTTITTTTITTTTT]Td
0 4,000 8,000
position

Fig. 1. Comparing original and simulated data

The necessary number of relations in the set riay, depends on how many
relations we have to generate in total.
roa1: We would like to use the same idea as we used for r1ag, but now we have to
deal with algebraic primes. This means that not all primes can occur, and that
each prime that does occur can have up to d different roots, where d is the degree
of the polynomial fo(z). This yields pairs of a prime and a root which we denote
by (prime,root). Luckily, (heuristically) the amount of pairs (prime, root) with
F < prime < L is about equal to the amount of primes between F' and L. This
implies that we do not have to simulate pairs with a certain subset of indices,
as we may assume that all indices can occur in the simulation. We found that
an exponential distribution fits here as well, so here we use the same approach
as we did for rjap.
riay: We know now how to simulate r1ag and rga;, and we assume that the
value of the index on the rational side is independent of the value of the index
on the algebraic side. We combine both approaches: using (2), generate a random
number and compute the corresponding rational index, generate a new random
number (do not use the first random number as input for the random number
generator) and compute the algebraic index.
roao: Here we have to deal with two large primes on the rational side, denoted
by ¢1 and g2 with g1 > go. We started with sorting the list with ¢; and (to
our surprise) we found that a linear distribution fits these data well. So the
distribution function of the index 44, of ¢; is given by

Hl(l‘) =i+ x(iL — ip) R

6 Willemien Ekkelkamp

where z is a number between 0 and 1.

We continued with ¢» and sorted them. Here, an exponential distribution fits
the data, but now we have to take into account that ¢o < ¢;. Remember that
we need an average value for the exponential distribution, but we cannot use all
gz-values. Instead of using one average value, we make a list of averages a4, of
the sorted go-indices, where ag4,[j] contains the average of the first j g-indices.

Now we describe how to simulate elements of roag. We begin with a random
number between 0 and 1 and compute Hq(z), which gives us an index iy, of ¢1.
We look up this index in the sorted list of ¢o-indices and the corresponding
position j tells us which average we should use for computing the index i4, of ga.
We generate a new random number between 0 and 1 and substitute it for z in
the following formula Hj(x), which is an adjusted form of G(x):

ip—ig
Hy(z) =ir — ag,[j]log (1 —x (1 _e e il >>

This gives us an index i4, of g2 that is smaller than the index we generated
for ¢;.

Our observation of a linear distribution of the largest prime and an expo-
nential distribution of the second prime may not be as one would expect theo-
retically, but this might very well be a consequence of sieving in practice. For
example, products of size approximately L? factor most of the time as one prime
below L and one prime above L and are discarded. Thus most sievers do not
spend much time on factors of this size. It may turn out to be the case that a
siever with different implementation choices gives rise to different distributions,
which needs to be investigated further.

To illustrate the distribution of the products of the two large primes for the
dataset of 13,220+ (cf. Section 4) found by our implementation of the siever,
we added for each relation in reag the indices of the two large primes and split
the interval [2ip, 2] in ten equal subintervals (labeled s = 1,...,10). For each
subinterval we counted the number of relations for which the sum of the two
indices of the two large primes lies in this subinterval: see Table 1.

Table 1. Distribution of the sum of the indices (13,220+)

s 1 2 3 4 5 6 7 8 9 |10
relations|120780(|161735|148757|133845(121967|78725|39253|20710({8107| 0

The zero in the last column is due to one of the bounds in the siever, which was
set at FO1L1? instead of L2.
roaz: We know how to deal with r2aq and we apply the same approach to roaz,
as we can make the same transition as we made from riaq¢ to rga;.

Sorting the list with ¢; showed that we could indeed use a linear distribution
and the sorted list with ¢o showed that an exponential distribution fitted here.

Predicting the Sieving Effort 7

Now we simulate elements of reag in the same way as elements of ryas.
rias: As with ria;, we assume that the rational side and the algebraic side
are independent. Here we combine the approaches of r1ap and rgas to get the
elements of rias.
roa1: Combine the approaches of rqag and rga; to get the elements of r2a4.
raaz: As in the previous two sets, we combine two approaches, this time rqag
and rgas.

Summarizing, our simulation model consists of four assumptions:

the rational side and the algebraic side are independent,
— the rational side and the algebraic side are equivalent,

a model for one large prime (described in rjay),

— a model for two large primes (described in rpag).

In case of lattice sieving, we simulate the relations in the same way and
add a special prime to all the relations in the following way. We compute the
average number of relations per pair (special prime,root) in the sieving test.
Then we divide the number of relations we want to simulate by this average and
this gives the total number of special primes in our simulation. Then we select
an appropriate interval from which the special primes are chosen. Divide this
interval in a (small) number of sections: per section select randomly the special
primes and add each of these special primes to a relation. By dividing in sections
(and simulating the same amount of relations per section) we make sure that
the entire interval of special primes is covered, but by choosing randomly in each
section, we get enough variation in the amount of relations per special prime.
If the interval of the special primes is very large, it might become necessary to
decrease the number of relations per section. In our example this was not the
case, but a well-chosen sieve test will give this information.

It is possible to use different factorbase bounds for the rational primes and
the algebraic primes, bound the product of the two large primes on the same
side, etc. All these details in the sieving influence the relations, but once the
general model is known, it is relatively easy to adjust it to match the details.

3 The Stop Criterion

We now know how to simulate relations, but how many should we simulate?

In order to factor the number N we have to find dependencies in a matrix,
which is determined by the relations, as mentioned in the introduction in the
third step of the NFS. Every column is identified with a prime < L (rational and
algebraic primes). Suppose each row represents a relation. If a prime occurs an
odd number of times in that relation, we put a one in the column of that prime
and a zero otherwise. After representing all relations in this matrix, we remove
those relations with a 1 that is the only 1 in the entire column, the so-called
singletons. This may generate new singletons, so this singleton removal step is
repeated until all primes occur at least twice. In practice, this is done before

8 Willemien Ekkelkamp

actually building a matrix.

For our stop criterion it is enough to know when we have enough relations,
i.e. when the number of relations after singleton removal exceeds the number of
different primes that occur in the remaining relations.

After the singleton removal, we count how many relations are left and how
many different large primes occur in these relations. We define the percentage
oversquareness O, after singleton removal (s.r.) as

Ny

Op = ——— %100 ,
ny+ng —ny

where n, is the number of relations after singleton removal, n; is the number of
different large primes after singleton removal, np is the number of primes in the

factorbase, approximated by m(Fpat) + W(Falg), and ny is the number of free

relations from factorbase elements. We have ([3], Ch. 3):

1
ng = gﬂ-(min(FI‘at’ Fa]g)))

where g is the order of the Galois group of fi(z)f2(z). If O, > 100 % we may
expect to find a dependency in the matrix, and we may stop with simulating
relations. To make practically sure to find a dependency, we may stop at 102 %.
Even a larger percentage is allowed if one would like to have more choice in the
relations that can form a dependency and subsequently form a smaller matrix
in the linear algebra step.

One final point concerns lattice sieving. It is well known that lattice sieving
produces lots of duplicates, especially when it involves many special primes. We
treat our relations as if there are no duplicates, but that implies that in the case
of lattice sieving we have to add a certain number of relations to the relations
that we should collect in the sieving stage. This number can be computed as
in [1]. The basic idea in [1] is to run a small sieve test and find out which
relations have more than one prime in the special primes interval. If such a
relation would be found by more than one lattice in the sieving area (remember
that each special prime gives rise to a lattice in the sieving area), than this gives
a duplicate relation.

4 Experiments

We have applied our method to several real data sets (coming from factored
numbers) and show that this gives good results. We have carried out two types
of experiments.

First we assumed that the complete data set is given and we wanted to know
if the simulation gave the same oversquareness when simulating the same number
of relations as is contained in the original data set. For the simulation we used
0.1 % of the original data.

Secondly we assumed that only a small percentage (0.1%) of the original

Predicting the Sieving Effort 9

data is known. Based on this data we simulated relations until O, > 100 %.
Then we compared this with the oversquareness of the same number of original
relations.

This 0.1 % is somewhat arbitrary. We came to it in the following way: we
started a simulation based on 100 % real data and lowered this percentage in the
next experiment until results after singleton removal were too far from the real
data. We went down as far as 0.01 %, but this percentage did not always give
good results, unless we would have been satisfied with an estimate within 5%
of the real data (although some experiments with 0.01 % of the real data were
even as good as the ones based on 0.1 % of the real data).

4.1 Line Sieving

Some relevant parameters for all the real data sets in this section are given in
Table 2, where M stands for million. Numbers are written in the format a, b+ or
a,b—, meaning a® + 1 or a® — 1. In the case of GNFS, some prime factors were
already known and for the remaining factors it was more efficient to use GNFS
instead of SNFS.

Table 2. Sieving parameters (line sieving)

number |# dec. digits| F L | g |nF—ny
13,2204 117 30M|400M|{120{3700941
26,142+ 124 30M|250M{120{3700941

19,183 131 30M|250M| 18 |3613192
66,129+ 136 35M|300M| 18 (4175312
80,123 — 150 55M|450M| 18 (6383294

The experiments for the first two GNFS data sets 13,220+ and 26,142+ are
in Table 3. Here, O stands for the original data and S for the simulated data.
Table 3 shows that the numbers were oversieved, but the simulated data show
about the same oversquareness. In Table 4, we computed the relative difference
(S—0)/0 x 100 % of the entries in the S- and O-column of Table 3. We see that
our predictions of the number of relations after s.r., the number of large primes
after s.r., and the oversquareness are close to the real data to about 1 %.

10 Willemien Ekkelkamp

Table 3. Experiments line sieving

GNFS 13,220+ O]13,220+ S[[26,142+ O[26,142+ S
relations before s.r. 35496 483 | 35496 483 | 23 580 294 |23 580 294
relations after s.r. 21320864 {21394 640 15150790 | 15253 825
large primes after s.r.|| 13781518 |13950420| 9448082 | 9397751

oversquareness (%) 121.96 121.21 115.22 116.45

Table 4. Relative differences of Table 3 results

GNFS 13,220+|26,142+
relations after s.r. (%) 0.35 0.68
large primes after s.r. (%)|| 1.22 | —0.53
oversquareness (%) —0.61 | 1.07

We give the following timings for these experiments: simulation of the rela-
tions, singleton removal, and real sieving time (Table 5). For the actual sieving
we used multiple machines and added the sieving times of each machine. As we
used 0.1 % data, we have to keep in mind that we need to add 0.1 % of the sieving
time to a complete experiment, which consists of generating a small data set,
simulate a big data set, and remove singletons. When we change parameters in
the NFS we have to generate a new data set.

Roughly speaking, we can say that one prediction of the total sieving time
(for a given choice of the NFS parameters) with our method costs less than one
CPU hour, whereas the actual sieving costs several hundreds of CPU hours.

Table 5. Timings

GNFS 13,220+|26,142+
simulation (sec.) 224 156
singleton removal (sec.)|| 927 573
actual sieving (hrs.) 316 709

Now for our second type of experiments, we assume that we only have a small
sieve test of the number to be factored. When are we in the neighbourhood of
100 % oversquareness according to our simulation and will the real data agree
with our simulation? We started to simulate 5M, 10M, ... relations (with incre-
ment 5M) and for these numbers we computed the oversquareness O,.; when O,
approached the 100 % bound we decreased the increment to 1M. Table 6 gives

Predicting the Sieving Effort 11

the number of relations for which O, is closest to 100 % and the next O,. (for 1M
more relations), both for the simulated data and the original data. This may of
course be refined.

Table 6. Around 100 % oversquareness (GNFS)

rel. before s.r.|O, S (%)|Or O (%)|rel. diff. (%)
28M (13,220+) 99.66 99.87 —-0.21
20M (13,2204) | 103.15 | 103.29 | —0.14
20M (26,142+) || 100.57 | 99.24 1.34
21M (26,142+) 105.38 104.03 1.30

For SNFS the higher degree polynomial has small coefficients. Tables 7-10
show the same kind of data as Tables 3-6, but now for SNFS. We start in Table
7 with the complete data set and simulate the same number of relations. Table
8 gives the relative differences of the results of the experiments in Table 7. The
timings are given in Table 9.

Table 7. Experiments line sieving

SNFS |# rel. before s.r.|# rel. after s.r.|# l.p. after s.r.|oversquareness (%)
19,183— O 21259 569 11887312 7849531 103.70
19,183— S 21259569 12156 537 7936 726 105.25
66,129+ O 26 226 688 15377495 10036 942 108.20
66,129+ S 26 226 688 15656 253 10123695 109.49
80,123— O 36 552655 20288292 12810641 105.70
80,123— S 36 552655 20 648 909 12973952 106.67

Table 8. Relative differences of Table 7 results

SNFS 19,183—-|66,1294-80,123—
relations after s.r. (%) 2.26 1.81 1.78
large primes after s.r. (%)| 1.11 0.86 1.27
oversquareness (%) 1.49 1.19 0.92

12 Willemien Ekkelkamp

Table 9. Timings

SNFS 10,183—[66,129+80,123—
simulation (sec.) 128 166 223
singleton removal (sec.)|| 487 603 771
sieving (hrs.) 154 197 200

In Table 10 we simulate the number of relations that leads to an oversquare-
ness around 100 %. We compare this number with the real data and give the
differences in oversquareness.

Table 10. Around 100 % oversquareness (SNFS)

rel. before s.r.|Or S (%)|0r O (%) |rel. diff. (%)
20M (19,183—) || 99.22 | 97.71 1.55
21M (19,183-) 104.06 102.51 1.51
23M (66,129+) 96.44 95.35 1.14
24M (66,129+) 100.72 99.60 1.12
34M (80,123-) 99.93 98.66 1.29
35M (80,123—) 102.82 101.50 1.30

All these data sets were generated with the NFS software package of CWI,
and the models for describing the underlying distributions were the same for
SNFS and GNFS, as described in Section 2.

4.2 Lattice Sieving

For lattice sieving we used a data set from Bruce Dodson (7,333—, SNFS). Be-
sides the factorbase bound and the large primes bound, we have two intervals
for the special primes. These are given in Table 11.

Table 11. Sieving parameters (lattice sieving)

7,333—
dec. digits 177
F 16 777 215
L 250000 000

special primes| [16 777 333, 29120617]

[60000013, 73747 441]
g 6

ng —nys 1976740

Predicting the Sieving Effort 13

As we are now dealing with lattice sieving, we have an extra (special) prime
to simulate, in the way described in Section 2. Fortunately, the distribution of
the other large primes did not change. The results of our experiments are given
in Table 12, based on 0.023 % original data. The last line in this table is the
total number of relations without duplicates. In total 26 024 921 relations were
sieved.

Table 12. Oversquareness 7,333—

rel. before s.r. ||Or S (%)|0r O (%)|rel. diff. (%)
17M (7,333-) 9834 | 9745 0.01
18M (7,333—) 103.96 103.08 0.85
25112543 (7,333—)|| 135.39 136.64 —-0.91

Apart from receiving a lattice sieving data set from Bruce Dodson, we also
received lattice sieving data sets from Thorsten Kleinjung. Unfortunately the
model described in this paper for the large primes does not yield satisfactory
results for the latter data sets.

5 Conclusions and Future Work

Our experiments show that our simulation of the relations works well. Based on
a small fraction of the sieving data, we obtain a good model of the distribution
of the large primes in the relations. Combined with singleton removal, our es-
timation of the oversquareness is within 2% of the real data. Thus we cheaply
obtain a good estimate of the number of necessary relations for factoring a given
number on a given computer, and hence of the actual computing time. There-
fore, this method is a useful tool for optimizing parameters in the number field
sieve, and we actually are using it in our practical factorization work.

Future work will include finding the correct model for the lattice sieve data
sets of Kleinjung and check to which extent this model depends on the imple-
mentation of the siever. A second objective is to find a theoretical explanation
for the occurrence of the various distributions (linear, exponential, ...) of the
large primes. Another objective will be to find the optimal oversquareness for
minimizing the resulting matrix. Once these issues are properly understood we
intend to develop a tool to determine bounds F' and L that optimize the overall
effort for relation collection and matrix processing with respect to the available
resources.

Acknowledgements

The author thanks Arjen Lenstra for suggesting the idea to predict the sieving
effort by simulating relations on the basis of a short sieving test. She thanks

14 Willemien Ekkelkamp

Marie-Colette van Lieshout for suggesting several statistical models including
the model which is used in Section 2, r1a9, and Dag Arne Osvik for providing
the singleton removal code for relations written in a special format.

The author thanks Arjen Lenstra, Herman te Riele, and Rob Tijdeman for
reading the paper and giving constructive criticism and comments, Bruce Dodson
and Thorsten Kleinjung for sharing data sets, and the anonymous referees for
carefully reading the paper and suggesting clarifications.

Part of this research was carried out while the author was visiting Ecole
Polytechnique Fédérale de Lausanne in August 2006. She thanks Arjen Lenstra
and EPFL for the hospitality during this visit.

References

1. K. Aoki, J. Franke, T. Kleinjung, A.K. Lenstra, D.A. Osvik: A kilobit special number
field sieve factorization. Adv. Crypt. - ASTACRYPT 2007, LNCS 4833 (2007) 1-12

2. Breiman, L.: Statistics: With a View Toward Applications. Houghton Mifflin Com-
pany Boston, 1973

3. Elkenbracht-Huizing, M.: The Number Field Sieve. Ph.D. thesis, University of Lei-
den, 1997

4. Lenstra, A.K., Lenstra, HW., Jr. (Eds.): The Development of the Number Field
Sieve. Lecture Notes in Math., vol. 1554, Springer-Verlag, Berlin, 1993

5. Montgomery, P.L.: A survey of modern integer factorization algorithms. CWI Quar-
terly, 7/4 (1994) 337-366

6. Panaitopel, L.: A formula for 7(z) applied to a result of Koninck-Ivié. Nieuw Arch.
Wiskunde, 5/1 (2000) 55-56

