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Abstra
t. We present a new method for predi
ting the sieving e�ortfor the number �eld sieve (NFS) in pra
ti
e. This method takes relationsfrom a short sieving test as input and simulates relations a

ording tothis test. After removing singletons, we de
ide how many relations weneed for the fa
torization a

ording to the simulation and this gives agood estimate for the real sieving. Experiments show that our estimateis within 2% of the real data.
1 Introdu
tionOne of the most popular methods for fa
toring large numbers is the number �eldsieve [4℄, as this is the fastest algorithm known so far. In order to estimate themost time-
onsuming step of this method, namely the sieving step in whi
h theso-
alled relations are generated, one looks at a
tual sieving times for numbersof 
omparable size. If these are not available, one 
ould try to extrapolate a
tualsieving times for smaller numbers, using the formula for the running time L(N)of this method, where N is the number to be fa
tored. We haveL(N) = exp(((64=9)1=3 + o(1))(logN)1=3(log logN)2=3); as N !1 ;where the logarithms are natural. These estimates 
an be 10{30% o�.In this paper we present a method for predi
ting the number of relationsneeded for fa
toring a given number in pra
ti
e within 2% of the a
tual numberof relations needed. With `in pra
ti
e' we mean: on a given 
omputer, for a givenimplementation, and for a given 
hoi
e of the parameters in the NFS. This allowsus to predi
t the a
tually required sieving time within 2%. Our method is basedon a short sieving test and a very 
heap simulation of the relations needed for thefa
torization. By applying this method for various 
hoi
es of the parameters ofthe number �eld sieve, it is possible to �nd an optimal 
hoi
e of the parameters,e.g., in terms of minimal sieving time or in terms of minimizing the size of theresulting matrix. Before going into details we give a short overview of the NFSin order to show where our method �ts in.The NFS 
onsists of the following four steps. First we sele
t two irredu
iblepolynomials f1(x) and f2(x), f1; f2 2 ZZ[x℄, and an integer m < N , su
h thatf1(m) � f2(m) � 0 (mod N) :



2 Willemien EkkelkampPolynomials with `small' integer 
oeÆ
ients are preferred, be
ause the values ofthese polynomials are smaller on average and smoother (i.e. having smaller primefa
tors on average) than the values of polynomials with large integer 
oeÆ
ients.Usually f1(x) is a linear polynomial and f2(x) a higher degree polynomial, re-ferred to as rational side and algebrai
 side, respe
tively. If N is of a spe
ial form(e.g., 
n � 1) then we 
an use this to get a polynomial f2(x) with very small
oeÆ
ients. In that 
ase we talk about the spe
ial number �eld sieve (SNFS),else we talk about the general number �eld sieve (GNFS). By �1 and �2 wedenote roots of f1(x) and f2(x), respe
tively.The se
ond step is the relation 
olle
tion. We 
hoose a fa
torbase FB ofprimes below the bound F and a large primes bound L; for ease of exposi-tion we take the same bounds on both the rational side and the algebrai
 side.Then we sear
h for pairs (a; b) su
h that g
d(a; b) = 1, and su
h that bothF1(a; b) = bdeg(f1)f1(a=b) and F2(a; b) = bdeg(f2)f2(a=b) have all their prime fa
-tors below F and at most two prime fa
tors between F and L, the so-
alled largeprimes. These pairs (a; b) are referred to below as relations (ai; bi).There are many possibilities for the relation 
olle
tion, the fastest of whi
hare based on sieving. Two sieving methods in parti
ular are widely used, namelyline sieving and latti
e sieving. For line sieving we sele
t a re
tangular sieve areaof points (a; b) and the sieving is done per horizontal line. For latti
e sieving wesele
t an interval of so-
alled spe
ial primes and for ea
h spe
ial prime we onlysieve those pairs (a; b) for whi
h this spe
ial prime divides bdeg(f2)f2(a=b); forea
h spe
ial prime these pairs form a latti
e in the sieving area. In 
ase of SNFSthe spe
ial prime is 
hosen on the rational side.The third step 
onsists of linear algebra to 
onstru
t a set S of indi
es i su
hthat the two produ
ts Qi2S(ai � bi�1) and Qi2S(ai � bi�2) are both squares ofprodu
ts of prime ideals. This produ
t 
omes from the fa
t that bdeg(f1)f1(a=b) isthe norm of the algebrai
 number a�b�1, multiplied with the leading 
oeÆ
ientof f1(x). The prin
ipal ideal (a � b�1) fa
tors into the produ
t of prime idealsin the number �eld Q(�1). The situation is similar for f2.The last step is the square root step. We determine algebrai
 numbers �01 2Q(�1) and �02 2 Q(�2) su
h that (�01)2 =Qi2S(ai�bi�1) and (�02)2 =Qi2S(ai�bi�2). Then we use the homomorphisms ��1 : Q(�1) ! ZZ=NZZ and ��2 :Q(�2)! ZZ=NZZ with ��1(�1) = ��2(�2) = m to get ��1(�01)2 = ��1 �(�01)2� =��1 �Qi2S(ai � bi�1)� � Qi2S((ai � bim) � ��2(�02)2(mod N): Now 
omputeg
d(��1(�01) � ��2(�02); N) to obtain a fa
tor of N. If this gives the trivial fa
-torization, 
ontinue with the next set of indi
es, otherwise we have found anontrivial fa
torization of N . For more details of the NFS, see e.g., [3℄, [4℄, or[5℄. Our method works as follows. After 
hoosing polynomials, bounds F and L,and a sieve area, we perform a sieve test for a relatively short period of time.For a 120-digit N one 
ould sieve for ten minutes or so, but for larger numbersone may spend 
onsiderably more time on the sieve test. Based on the relationsin this sieve test we simulate as many relations as are ne
essary for fa
toringthe number. The simulation uses a random number generator and fun
tions that
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ribe the underlying distribution of the large primes, and this 
an be donefast. During the simulation of the relations, we regularly remove the singletonsfrom all the relations simulated so far. As soon as the number of relations leftafter singleton removal ex
eeds the number of primes in the relations we stopand it turns out that the total number of relations simulated so far gives usa good estimate of the a
tual number of relations that we need to fa
tor ournumber.The number of useful relations after singleton removal grows in a hard-to-predi
t fashion as a fun
tion of the number of relations found. This growthbehaviour di�ers from number to number, whi
h makes it hard to predi
t theoverall sieving time: for instan
e, even estimates based on fa
toring times ofnumbers of 
omparable size 
an easily be 10% o�. Our method, however, whi
his purely based on the individual behavior of the relations found for the numberto be fa
tored, allows us to predi
t how the number of useful relations will be-have as a fun
tion of the number of relations found, thereby giving us a tool toa

urately predi
t the overall sieving time.The simulations in this paper were 
arried out on a Intel r
 CoreTM2 Duowith 2 GB of memory. The line sieving data sets were generated with the NFSsoftware pa
kage of CWI. The latti
e sieving data sets were given by Bru
e Dod-son and Thorsten Kleinjung.In Se
tion 2 we des
ribe how we simulate the relations. Se
tion 3 is about thesingleton removal and about how to de
ide when we have enough relations tofa
tor the given number. In Se
tion 4 we 
ompare results of the simulation withreal fa
torizations and Se
tion 5 
ontains the 
on
lusions and our intentions forfuture work.
2 Simulating RelationsBefore we start with the simulation, we run a short sieving test. In order to geta representative sele
tion of the a
tual relations, we ensure that the points weare sieving in this test are spread over the entire sieving area. The parametersfor the sieving are set in su
h a way that we have at most two large primes bothon the rational side and on the algebrai
 side. In the 
ase of latti
e sieving wehave one additional spe
ial prime on one of the sides. In this se
tion we des
ribethe pro
ess of simulating relations both for line sieving and for latti
e sieving.Note that we only simulate the large primes; for the primes in the fa
torbase weuse a 
orre
tion as will be explained in Se
tion 3.The �rst step after the sieving test 
onsists of splitting the relations a

ordingto the number of large primes. The set of relations with i large primes on therational side and j large primes on the algebrai
 side is denoted by riaj fori; j 2 f0; 1; 2g. This leads to nine di�erent sets and the mutual ratios of their
ardinalities determine the ratios by whi
h we will simulate the relations. In the
ase of latti
e sieving we split the relations in the same way, ignoring the spe
ialprime.Next we take a 
loser look at the relations in ea
h set and spe
ify a model



4 Willemien Ekkelkampthat �ts the distribution of the large primes in these sets as 
losely as we 
ana

omplish. To 
larify this, we explain for ea
h set how to simulate the relationsin that set, for the 
ase of line sieving.r0a0: We 
ount the number of relations in this set.r1a0: We started with sorting all the large primes and put them in an array. Our�rst experiments with simulating the large primes (and removing singletons)
on
entrated on the large primes at hand. We tried linear interpolation betweentwo 
onse
utive large primes, Lagrange polynomials, and splines, but all theselo
al approa
hes did not give a satisfying result; the result after singleton removalwas too far from the real data. We then tried a more global approa
h, lookingat all the large primes and see if we 
ould �nd a distribution for them. Wefound that an exponential distribution simulates best the distribution of theselarge primes over the interval [F;L℄ (
f. [2℄, Ch. 6) and the result after singletonremoval was satisfa
tory. The inverse of this distribution fun
tion is given by
G(x) = F � a log �1� x�1� eF�La �� ; 0 � x � 1 ; (1)

where a is the average of the large primes in the set r1a0. Note that G(0) = Fand G(1) = L. In order to generate primes a

ording to the a
tual distributionof the large primes, we generate a random number between 0 and 1, substitutethis number in G(x), round the number G(x) to the nearest prime, and repeatthis for ea
h prime that we want to generate.To avoid expensive prime tests, we work with the index of the primes p,de�ned as ip = �(p), rather than with the prime itself. This index 
an be foundby using a look-up table or the approximation ip � plog p + plog2 p + 2plog3 p [6℄.Experiments showed that this third order approximation gives almost the sameresults as looking up indi
es in a table. It is espe
ially more eÆ
ient to use thisapproximation when L is large. For working with indi
es, we have to adjust (1);we write iF for the index of the �rst prime above F , and iL for the index of theprime just below L, and a0 for the average of the indi
es of the large primes inthe set r1a0. Then the formula be
omes
G(x) = iF � a0 log �1� x�1� e iF�iLa0 �� : (2)

To illustrate that the distribution of the large primes is approximated wellby (2) we have generated the following graph, whi
h 
onsists of two sorted sets.One set 
onsists of the indi
es of the primes of the original sieving data andthe other set 
onsists of the indi
es simulated with help of (2). The line of thesimulated data is the one whi
h lies below the other line (of the original data)around position 7000.



Predi
ting the Sieving E�ort 5

4,000

position

10

15

5

8,0000

index

10 6

20

Fig. 1. Comparing original and simulated data
The ne
essary number of relations in the set r1a0 depends on how manyrelations we have to generate in total.r0a1: We would like to use the same idea as we used for r1a0, but now we have todeal with algebrai
 primes. This means that not all primes 
an o

ur, and thatea
h prime that does o

ur 
an have up to d di�erent roots, where d is the degreeof the polynomial f2(x). This yields pairs of a prime and a root whi
h we denoteby (prime; root). Lu
kily, (heuristi
ally) the amount of pairs (prime; root) withF < prime < L is about equal to the amount of primes between F and L. Thisimplies that we do not have to simulate pairs with a 
ertain subset of indi
es,as we may assume that all indi
es 
an o

ur in the simulation. We found thatan exponential distribution �ts here as well, so here we use the same approa
has we did for r1a0.r1a1: We know now how to simulate r1a0 and r0a1, and we assume that thevalue of the index on the rational side is independent of the value of the indexon the algebrai
 side. We 
ombine both approa
hes: using (2), generate a randomnumber and 
ompute the 
orresponding rational index, generate a new randomnumber (do not use the �rst random number as input for the random numbergenerator) and 
ompute the algebrai
 index.r2a0: Here we have to deal with two large primes on the rational side, denotedby q1 and q2 with q1 > q2. We started with sorting the list with q1 and (toour surprise) we found that a linear distribution �ts these data well. So thedistribution fun
tion of the index iq1 of q1 is given byH1(x) = iF + x(iL � iF ) ;



6 Willemien Ekkelkampwhere x is a number between 0 and 1.We 
ontinued with q2 and sorted them. Here, an exponential distribution �tsthe data, but now we have to take into a

ount that q2 < q1. Remember thatwe need an average value for the exponential distribution, but we 
annot use allq2-values. Instead of using one average value, we make a list of averages aq2 ofthe sorted q2-indi
es, where aq2 [j℄ 
ontains the average of the �rst j q2-indi
es.Now we des
ribe how to simulate elements of r2a0. We begin with a randomnumber between 0 and 1 and 
ompute H1(x), whi
h gives us an index iq1 of q1.We look up this index in the sorted list of q2-indi
es and the 
orrespondingposition j tells us whi
h average we should use for 
omputing the index iq2 of q2.We generate a new random number between 0 and 1 and substitute it for x inthe following formula H2(x), whi
h is an adjusted form of G(x):H2(x) = iF � aq2 [j℄ log�1� x�1� e iF�iq1aq2 [j℄ �� :This gives us an index iq2 of q2 that is smaller than the index we generatedfor q1.Our observation of a linear distribution of the largest prime and an expo-nential distribution of the se
ond prime may not be as one would expe
t theo-reti
ally, but this might very well be a 
onsequen
e of sieving in pra
ti
e. Forexample, produ
ts of size approximately L2 fa
tor most of the time as one primebelow L and one prime above L and are dis
arded. Thus most sievers do notspend mu
h time on fa
tors of this size. It may turn out to be the 
ase that asiever with di�erent implementation 
hoi
es gives rise to di�erent distributions,whi
h needs to be investigated further.To illustrate the distribution of the produ
ts of the two large primes for thedataset of 13; 220+ (
f. Se
tion 4) found by our implementation of the siever,we added for ea
h relation in r2a0 the indi
es of the two large primes and splitthe interval [2iF ; 2iL℄ in ten equal subintervals (labeled s = 1; : : : ; 10). For ea
hsubinterval we 
ounted the number of relations for whi
h the sum of the twoindi
es of the two large primes lies in this subinterval: see Table 1.
Table 1. Distribution of the sum of the indi
es (13; 220+)s 1 2 3 4 5 6 7 8 9 10# relations 120780 161735 148757 133845 121967 78725 39253 20710 8107 0

The zero in the last 
olumn is due to one of the bounds in the siever, whi
h wasset at F 0:1L1:9 instead of L2.r0a2: We know how to deal with r2a0 and we apply the same approa
h to r0a2,as we 
an make the same transition as we made from r1a0 to r0a1.Sorting the list with q1 showed that we 
ould indeed use a linear distributionand the sorted list with q2 showed that an exponential distribution �tted here.
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ting the Sieving E�ort 7Now we simulate elements of r2a0 in the same way as elements of r0a2.r1a2: As with r1a1, we assume that the rational side and the algebrai
 sideare independent. Here we 
ombine the approa
hes of r1a0 and r0a2 to get theelements of r1a2.r2a1: Combine the approa
hes of r2a0 and r0a1 to get the elements of r2a1.r2a2: As in the previous two sets, we 
ombine two approa
hes, this time r2a0and r0a2.Summarizing, our simulation model 
onsists of four assumptions:{ the rational side and the algebrai
 side are independent,{ the rational side and the algebrai
 side are equivalent,{ a model for one large prime (des
ribed in r1a0),{ a model for two large primes (des
ribed in r2a0).In 
ase of latti
e sieving, we simulate the relations in the same way andadd a spe
ial prime to all the relations in the following way. We 
ompute theaverage number of relations per pair (spe
ial prime; root) in the sieving test.Then we divide the number of relations we want to simulate by this average andthis gives the total number of spe
ial primes in our simulation. Then we sele
tan appropriate interval from whi
h the spe
ial primes are 
hosen. Divide thisinterval in a (small) number of se
tions: per se
tion sele
t randomly the spe
ialprimes and add ea
h of these spe
ial primes to a relation. By dividing in se
tions(and simulating the same amount of relations per se
tion) we make sure thatthe entire interval of spe
ial primes is 
overed, but by 
hoosing randomly in ea
hse
tion, we get enough variation in the amount of relations per spe
ial prime.If the interval of the spe
ial primes is very large, it might be
ome ne
essary tode
rease the number of relations per se
tion. In our example this was not the
ase, but a well-
hosen sieve test will give this information.It is possible to use di�erent fa
torbase bounds for the rational primes andthe algebrai
 primes, bound the produ
t of the two large primes on the sameside, et
. All these details in the sieving in
uen
e the relations, but on
e thegeneral model is known, it is relatively easy to adjust it to mat
h the details.
3 The Stop CriterionWe now know how to simulate relations, but how many should we simulate?In order to fa
tor the number N we have to �nd dependen
ies in a matrix,whi
h is determined by the relations, as mentioned in the introdu
tion in thethird step of the NFS. Every 
olumn is identi�ed with a prime � L (rational andalgebrai
 primes). Suppose ea
h row represents a relation. If a prime o

urs anodd number of times in that relation, we put a one in the 
olumn of that primeand a zero otherwise. After representing all relations in this matrix, we removethose relations with a 1 that is the only 1 in the entire 
olumn, the so-
alledsingletons. This may generate new singletons, so this singleton removal step isrepeated until all primes o

ur at least twi
e. In pra
ti
e, this is done before
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tually building a matrix.For our stop 
riterion it is enough to know when we have enough relations,i.e. when the number of relations after singleton removal ex
eeds the number ofdi�erent primes that o

ur in the remaining relations.After the singleton removal, we 
ount how many relations are left and howmany di�erent large primes o

ur in these relations. We de�ne the per
entageoversquareness Or after singleton removal (s.r.) asOr := nrnl + nF � nf � 100 ;where nr is the number of relations after singleton removal, nl is the number ofdi�erent large primes after singleton removal, nF is the number of primes in thefa
torbase, approximated by �(Frat) + �(Falg), and nf is the number of freerelations from fa
torbase elements. We have ([3℄, Ch. 3):nf = 1g�(min(Frat; Falg)) ;where g is the order of the Galois group of f1(x)f2(x). If Or � 100% we mayexpe
t to �nd a dependen
y in the matrix, and we may stop with simulatingrelations. To make pra
ti
ally sure to �nd a dependen
y, we may stop at 102%.Even a larger per
entage is allowed if one would like to have more 
hoi
e in therelations that 
an form a dependen
y and subsequently form a smaller matrixin the linear algebra step.One �nal point 
on
erns latti
e sieving. It is well known that latti
e sievingprodu
es lots of dupli
ates, espe
ially when it involves many spe
ial primes. Wetreat our relations as if there are no dupli
ates, but that implies that in the 
aseof latti
e sieving we have to add a 
ertain number of relations to the relationsthat we should 
olle
t in the sieving stage. This number 
an be 
omputed asin [1℄. The basi
 idea in [1℄ is to run a small sieve test and �nd out whi
hrelations have more than one prime in the spe
ial primes interval. If su
h arelation would be found by more than one latti
e in the sieving area (rememberthat ea
h spe
ial prime gives rise to a latti
e in the sieving area), than this givesa dupli
ate relation.
4 ExperimentsWe have applied our method to several real data sets (
oming from fa
torednumbers) and show that this gives good results. We have 
arried out two typesof experiments.First we assumed that the 
omplete data set is given and we wanted to knowif the simulation gave the same oversquareness when simulating the same numberof relations as is 
ontained in the original data set. For the simulation we used0:1% of the original data.Se
ondly we assumed that only a small per
entage (0:1%) of the original
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ting the Sieving E�ort 9data is known. Based on this data we simulated relations until Or � 100%.Then we 
ompared this with the oversquareness of the same number of originalrelations.This 0:1% is somewhat arbitrary. We 
ame to it in the following way: westarted a simulation based on 100% real data and lowered this per
entage in thenext experiment until results after singleton removal were too far from the realdata. We went down as far as 0:01%, but this per
entage did not always givegood results, unless we would have been satis�ed with an estimate within 5%of the real data (although some experiments with 0:01% of the real data wereeven as good as the ones based on 0:1% of the real data).
4.1 Line Sieving
Some relevant parameters for all the real data sets in this se
tion are given inTable 2, where M stands for million. Numbers are written in the format a; b+ ora; b�, meaning ab + 1 or ab � 1. In the 
ase of GNFS, some prime fa
tors werealready known and for the remaining fa
tors it was more eÆ
ient to use GNFSinstead of SNFS.

Table 2. Sieving parameters (line sieving)number # de
. digits F L g nF � nf13,220+ 117 30M 400M 120 370094126,142+ 124 30M 250M 120 370094119,183� 131 30M 250M 18 361319266,129+ 136 35M 300M 18 417531280,123� 150 55M 450M 18 6383294
The experiments for the �rst two GNFS data sets 13; 220+ and 26; 142+ arein Table 3. Here, O stands for the original data and S for the simulated data.Table 3 shows that the numbers were oversieved, but the simulated data showabout the same oversquareness. In Table 4, we 
omputed the relative di�eren
e(S�O)/O � 100% of the entries in the S- and O-
olumn of Table 3. We see thatour predi
tions of the number of relations after s.r., the number of large primesafter s.r., and the oversquareness are 
lose to the real data to about 1%.



10 Willemien EkkelkampTable 3. Experiments line sievingGNFS 13,220+ O 13,220+ S 26,142+ O 26,142+ S# relations before s.r. 35 496 483 35 496 483 23 580 294 23 580 294# relations after s.r. 21 320 864 21 394 640 15 150 790 15 253 825# large primes after s.r. 13 781 518 13 950 420 9 448 082 9 397 751oversquareness (%) 121.96 121.21 115.22 116.45
Table 4. Relative di�eren
es of Table 3 resultsGNFS 13,220+ 26,142+relations after s.r. (%) 0.35 0.68large primes after s.r. (%) 1.22 �0.53oversquareness (%) �0.61 1.07

We give the following timings for these experiments: simulation of the rela-tions, singleton removal, and real sieving time (Table 5). For the a
tual sievingwe used multiple ma
hines and added the sieving times of ea
h ma
hine. As weused 0:1% data, we have to keep in mind that we need to add 0:1% of the sievingtime to a 
omplete experiment, whi
h 
onsists of generating a small data set,simulate a big data set, and remove singletons. When we 
hange parameters inthe NFS we have to generate a new data set.Roughly speaking, we 
an say that one predi
tion of the total sieving time(for a given 
hoi
e of the NFS parameters) with our method 
osts less than oneCPU hour, whereas the a
tual sieving 
osts several hundreds of CPU hours.
Table 5. TimingsGNFS 13,220+ 26,142+simulation (se
.) 224 156singleton removal (se
.) 927 573a
tual sieving (hrs.) 316 709

Now for our se
ond type of experiments, we assume that we only have a smallsieve test of the number to be fa
tored. When are we in the neighbourhood of100% oversquareness a

ording to our simulation and will the real data agreewith our simulation? We started to simulate 5M, 10M, : : : relations (with in
re-ment 5M) and for these numbers we 
omputed the oversquareness Or; when Orapproa
hed the 100% bound we de
reased the in
rement to 1M. Table 6 gives
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ting the Sieving E�ort 11the number of relations for whi
h Or is 
losest to 100% and the next Or (for 1Mmore relations), both for the simulated data and the original data. This may of
ourse be re�ned.
Table 6. Around 100% oversquareness (GNFS)# rel. before s.r. Or S (%) Or O (%) rel. di�. (%)28M (13,220+) 99.66 99.87 �0.2129M (13,220+) 103.15 103.29 �0.1420M (26,142+) 100.57 99.24 1.3421M (26,142+) 105.38 104.03 1.30

For SNFS the higher degree polynomial has small 
oeÆ
ients. Tables 7{10show the same kind of data as Tables 3{6, but now for SNFS. We start in Table7 with the 
omplete data set and simulate the same number of relations. Table8 gives the relative di�eren
es of the results of the experiments in Table 7. Thetimings are given in Table 9.
Table 7. Experiments line sievingSNFS # rel. before s.r. # rel. after s.r. # l.p. after s.r. oversquareness (%)19,183� O 21 259 569 11 887 312 7 849 531 103.7019,183� S 21 259 569 12 156 537 7 936 726 105.2566,129+ O 26 226 688 15 377 495 10 036 942 108.2066,129+ S 26 226 688 15 656 253 10 123 695 109.4980,123� O 36 552 655 20 288 292 12 810 641 105.7080,123� S 36 552 655 20 648 909 12 973 952 106.67

Table 8. Relative di�eren
es of Table 7 resultsSNFS 19,183� 66,129+ 80,123�relations after s.r. (%) 2.26 1.81 1.78large primes after s.r. (%) 1.11 0.86 1.27oversquareness (%) 1.49 1.19 0.92



12 Willemien Ekkelkamp Table 9. TimingsSNFS 19,183� 66,129+ 80,123�simulation (se
.) 128 166 223singleton removal (se
.) 487 603 771sieving (hrs.) 154 197 200
In Table 10 we simulate the number of relations that leads to an oversquare-ness around 100%. We 
ompare this number with the real data and give thedi�eren
es in oversquareness.

Table 10. Around 100% oversquareness (SNFS)# rel. before s.r. Or S (%) Or O (%) rel. di�. (%)20M (19,183�) 99.22 97.71 1.5521M (19,183�) 104.06 102.51 1.5123M (66,129+) 96.44 95.35 1.1424M (66,129+) 100.72 99.60 1.1234M (80,123�) 99.93 98.66 1.2935M (80,123�) 102.82 101.50 1.30
All these data sets were generated with the NFS software pa
kage of CWI,and the models for des
ribing the underlying distributions were the same forSNFS and GNFS, as des
ribed in Se
tion 2.

4.2 Latti
e SievingFor latti
e sieving we used a data set from Bru
e Dodson (7,333�, SNFS). Be-sides the fa
torbase bound and the large primes bound, we have two intervalsfor the spe
ial primes. These are given in Table 11.
Table 11. Sieving parameters (latti
e sieving)7,333�# de
. digits 177F 16 777 215L 250 000 000spe
ial primes [16 777 333, 29120617℄[60 000 013, 73 747 441℄g 6nF � nf 1 976 740



Predi
ting the Sieving E�ort 13As we are now dealing with latti
e sieving, we have an extra (spe
ial) primeto simulate, in the way des
ribed in Se
tion 2. Fortunately, the distribution ofthe other large primes did not 
hange. The results of our experiments are givenin Table 12, based on 0.023% original data. The last line in this table is thetotal number of relations without dupli
ates. In total 26 024 921 relations weresieved. Table 12. Oversquareness 7,333�# rel. before s.r. Or S (%) Or O (%) rel. di�. (%)17M (7,333�) 98.34 97.45 0.9118M (7,333�) 103.96 103.08 0.8525 112 543 (7,333�) 135.39 136.64 �0.91
Apart from re
eiving a latti
e sieving data set from Bru
e Dodson, we alsore
eived latti
e sieving data sets from Thorsten Kleinjung. Unfortunately themodel des
ribed in this paper for the large primes does not yield satisfa
toryresults for the latter data sets.

5 Con
lusions and Future WorkOur experiments show that our simulation of the relations works well. Based ona small fra
tion of the sieving data, we obtain a good model of the distributionof the large primes in the relations. Combined with singleton removal, our es-timation of the oversquareness is within 2% of the real data. Thus we 
heaplyobtain a good estimate of the number of ne
essary relations for fa
toring a givennumber on a given 
omputer, and hen
e of the a
tual 
omputing time. There-fore, this method is a useful tool for optimizing parameters in the number �eldsieve, and we a
tually are using it in our pra
ti
al fa
torization work.Future work will in
lude �nding the 
orre
t model for the latti
e sieve datasets of Kleinjung and 
he
k to whi
h extent this model depends on the imple-mentation of the siever. A se
ond obje
tive is to �nd a theoreti
al explanationfor the o

urren
e of the various distributions (linear, exponential, : : :) of thelarge primes. Another obje
tive will be to �nd the optimal oversquareness forminimizing the resulting matrix. On
e these issues are properly understood weintend to develop a tool to determine bounds F and L that optimize the overalle�ort for relation 
olle
tion and matrix pro
essing with respe
t to the availableresour
es.
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