
Efficient Hyperelliptic Arithmetic using
Balanced Representation for Divisors

Steven D. Galbraith1, Michael Harrison2, and David J. Mireles Morales1

1Mathematics Department
Royal Holloway, University of London

{steven.galbraith, d.mireles-morales}@rhul.ac.uk
2School of Mathematics and Statistics

University of Sydney
mch@maths.usyd.edu.au

Abstract. We discuss arithmetic in the Jacobian of a hyperelliptic curve
C of genus g. The traditional approach is to fix a point P∞ ∈ C and rep-
resent divisor classes in the form E − d(P∞) where E is effective and
0 ≤ d ≤ g. We propose a different representation which is balanced
at infinity. The resulting arithmetic is more efficient than previous ap-
proaches when there are 2 points at infinity.

1 Introduction

The study of efficient addition algorithms for divisors on genus 2 curves has come
to a point where cryptography based on these curves provides an alternative to
its well-established elliptic curve counterpart. The most commonly used case is
when the curve has 1 point at infinity and addition corresponds to Cantor’s ideal
composition and reduction algorithm in [3]. Explicit formulae have been given by
Lange in [13] and a comprehensive account of the different addition algorithms
can be found in [4].

It is then only natural to extend this work to hyperelliptic curves with 2
points at infinity since curves with a rational Weierstrass point are rare among
all hyperelliptic curves. Further motivation is given by pairing based cryptog-
raphy, since Galbraith, Pujolas, Ritzenthaler and Smith gave in [8] an explicit
construction of a pairing-friendly genus 2 curve C which typically cannot be
given a model with 1 point at infinity. It is an interesting question to determine
how efficiently pairings can be implemented for these curves.

Scheidler, Stein and Williams [16] gave algorithms to compute in the so-
called infrastructure of a function field (also see [10]). Their approach included
composition and reduction algorithms used by Cantor, as well as an algorithm
that had no analogue in his theory, known as a “baby-step”. The relationship
between the infrastructure and divisor class groups was studied by Paulus and
Rück [14]. It is well-known that arithmetic on curves with two points at infinity
is slower than the simpler case of one point at infinity (our methods do not
change this).

In this article we view the Cantor and infrastructure algorithms as operations
on the Mumford representation of affine effective semi-reduced divisors, rather
than as operations on the Jacobian of a curve. This simple change of perspec-
tive suggests a representation of elements in the Jacobian of C which is more
“balanced” at infinity. We therefore show that arithmetic in the Jacobian may
be performed more efficiently than done by [5, 9, 14, 15]. In the case of genus 2
curves, all explicit addition formulae presented so far [5] can be used with our
representation, giving improved results (see Table 1).

We interpret the algorithms developed for the infrastructure, in particular
the baby-step, from our new perspective. This gives, in our opinion, a simpler
explanation of them. In particular, we do not need to discuss continued fraction
expansions. Note however that we only discuss the application of these ideas
to arithmetic in the Jacobian, rather than computation in the infrastructure
itself. We observe that computing inverses of elements using an unbalanced rep-
resentation is non-trivial, whereas with our representation it is easy. Previous
literature (e.g., [5]) has suggested that the baby step has no analogue for curves
with one point at infinity; however we explain that one can develop a fast baby
step operation in all settings.

We would like to point out that the group law for hyperelliptic curves with
2 rational points at infinity for the computer algebra system Magma [2], imple-
mented by the second author, follows the approach described in this article. It
was first released in Magma V2.12, in July 2005.

2 Divisor class groups of hyperelliptic curves

In this paper we consider a genus g hyperelliptic curve C defined over a field K
given by a non-singular planar model

y2 + h(x)y = F (x) =
2g+2∑
i=0

Fix
i,

where h(x), F (x) ∈ K[x] satisfy deg(F) ≤ 2g+2 and deg(h) ≤ g+1. If P = (x, y)
is a point on C, the point (x,−h(x) − y) also lies on C, we will call this point
the hyperelliptic conjugate of P and we will denote it by P .

If F2g+2 = 0 and deg(h) ≤ g, then C will have one K-rational point at infinity,
in this case we say that this is an imaginary model for C. If F2g+2 6= 0 then C
will have two points at infinity, possibly defined over a quadratic extension of K,
in this case we say that C is represented by a real model. If the curve C has a
K-rational point we can always move it to the line at infinity so that the points
at infinity of the curve are K-rational.

Let C be an algebraic curve defined over a field K. All divisors considered
in this article will be K-rational unless otherwise stated. Denote by Div0(C)
the group of degree zero K-rational divisors on C. Two divisors D0 and D1 are
linearly equivalent, denoted D0 ≡ D1, if there is a function f such that

div(f) = D1 −D0,

2

where div(f) is the divisor of f .

Definition 1. The divisor class group of C is the group of K-rational divisor
classes modulo linear equivalence. We will denote it as Cl(C). The class of a
divisor D in Cl(C) will be denoted by [D]. We define Cl0(C) as the degree zero
subgroup of Cl(C).

Definition 2. We say that an effective divisor D =
∑

i Pi is semi-reduced if
i 6= j implies Pi 6= P j. We say that a divisor D on a curve of genus g is reduced
if it is semi-reduced, and has degree d ≤ g. Throughout this article we will denote
the degree of a divisor Di as di.

There is a standard way to represent an effective affine semi-reduced divisor
D0 on a hyperelliptic curve C: Mumford’s representation. In this case we will
represent our divisor using a pair of polynomials u(x), v(x) ∈ K[x], where u(x)
is a polynomial of degree d0 whose roots are the X-coordinates of the points
in D0 (with the appropriate multiplicity) and u divides F − hv − v2. This last
condition implies that if xi is a root of u, the linear polynomial v(xi) gives the
Y -coordinate of the corresponding point in D0. Because of this last condition, D0

must be a semi-reduced divisor. We will denote the divisor associated to the pair
of polynomials u(x) and v(x) as div[u, v]. Notice that Mumford’s representation
can be used to describe any effective affine semi-reduced divisor. Describing
elements of Cl0(C) is a more delicate matter.

To describe elements of Cl0(C) we will need a degree g effective divisor D∞.
Throughout this article, unless otherwise stated, this divisor will be as below.

Definition 3. – If C has a unique point at infinity ∞, then D∞ = g∞.
– If g is even and C has two points at infinity ∞+ and ∞− then D∞ =

g
2 (∞+ +∞−).

– If g is odd and C has two points at infinity, then D∞ = g+1
2 ∞

+ + g−1
2 ∞

−.
In this case we will further assume that ∞+ and ∞− are K-rational points.

Proposition 1. Let D∞ be a K-rational degree g divisor, and let D ∈ Div0(C)
be a K-rational divisor on the curve C. Then [D] has a unique representative in
Cl0(C) of the form [D0 − D∞], where D0 is an effective K-rational divisor of
degree g whose affine part is reduced.

Proof. The case D∞ = g∞+ is Proposition 4.1 of [14]. Now let D∞ be any
degree g divisor. If D is a representative of a class in Cl0(C), using Proposition
4.1 in [14] we know that D+(D∞−g∞+) ≡ D1−g∞+, where D1 is an effective
degree g divisor with affine reduced part. This implies that D ≡ D1 −D∞ and
proves existence.

To prove uniqueness, suppose that D1 and D2 are two effective degree g
divisors with affine reduced support, and D1 −D∞ ≡ D2 −D∞. Adding D∞ −
g∞+ to both sides gives D1 − g∞+ ≡ D2 − g∞+. Proposition 4.1 from [14]
implies that D1 = D2. ut

3

A small problem from a computational point of view is that this proposition
does not guarantee that the supports of D0 and D∞ are disjoint, and indeed, in
some cases they will have points in common which should be “cancelled out”.
However, divisors of the form D0−D∞ with D0 and D∞ having disjoint support
are generic, so it is enough to describe their arithmetic for many applications. In
this article we will give a complete addition algorithm for hyperelliptic curves,
that becomes very efficient in the generic case.

If the curve C has two different points at infinity ∞+ and ∞−, it is possible
to prove that the function y/xg+1 is well defined and not zero at each of ∞+

and ∞−. One can further prove that

y

xg+1
(∞+) 6= y

xg+1
(∞−),

so if we define

a+ = (y/xg+1)(∞+), a− = (y/xg+1)(∞−),

it follows that a+ 6= a−. Hence, for p(x) a polynomial of the form p(x) =
(a+xg+1 +

∑
0≤i≤g bix

i), the function y− p(x) will have valuation strictly larger
than −(g + 1) at ∞+ and valuation −(g + 1) at ∞−.

Definition 4. In the notation of the previous paragraph, among all degree g + 1
polynomials with leading coefficient a+, there is a unique polynomial in K[x]
for which the valuation of the function at ∞+ is maximal; we will denote this
polynomial by H+. Define the polynomial H− analogously.

If C(x, y) is the equation of the curve, then H+(x) and H−(x) are the polynomi-
als with leading coefficient a+ and a− such that C(x, H±(x)) has minimal degree.
Their coefficients can thus be found recursively. The polynomials H±(x) are just
a technical tool to specify a point at infinity, similar to the choice of sign when
computing the square root of a complex number. Note that the polynomials H±

are defined over K if and only if the points ∞+ and ∞− are K-rational.

Definition 5. Given two divisors D1 and D2, we will denote the set of pairs of
integers ω+, ω− such that

D1 ≡ D2 + ω+∞+ + ω−∞−,

as ω(D1, D2). We say that the numbers ω+ and ω− are counterweights for D1

and D2 if (ω+, ω−) ∈ ω(D1, D2).

The set ω(D1, D2) may be empty. If [∞+−∞−] is a torsion point on Cl0(C),
and the set ω(D1, D2) is not empty, then it is infinite; however this will not
affect our algorithms. Given two divisors D1 and D2, calculating the values of
the counterweights relating them is a difficult problem. When these values are
needed in our algorithms, there will be a simple way to calculate them.

4

3 Operations on the Mumford Representation

In this section we recall some well-known algorithms due to Cantor [3] for com-
puting with divisor classes of hyperelliptic curves. We will analyse them as op-
erations on the Mumford representation of an affine semi-reduced divisor. Our
main contribution is to give a geometric interpretation of these algorithms.

Algorithm 1 Composition
Input: Semi-reduced affine divisors D1 = div[u1, v1] and D2 = div[u2, v2].
Output: A semi-reduced affine divisor D3 = div[u3, v3] and a pair (ω+, ω−), such that

(ω+, ω−) ∈ ω(D1 +D2, D3).
1: Compute s (monic), f1, f2, f3 ∈ K[x] such that

s = gcd(u1, u2, v1 + v2 + h) = f1u1 + f2u2 + f3(v1 + v2 + h).

2: Set u3 := u1u2/s
2 and v3 := (f1u1v2 + f2u2v1 + f3(v1v2 + F)) /s mod u3

3: return div[u3, v3] and (deg(s), deg(s)).

The result D3 of Algorithm 1 will be denoted D3, (ω+, ω−) = comp(D1, D2).
The divisor of the function s from Algorithm 1 is

div(s) = D1 + D2 −D3 −
d1 + d2 − d3

2
(∞+ +∞−), (1)

which proves that
(ω+, ω−) ∈ ω(D1 + D2, D3).

Algorithm 1 is also known as divisor composition.
Given an affine semi-reduced divisor D0, of degree d0 ≥ g + 2, Algorithm 2

finds another affine semi-reduced divisor D1 with smaller degree d1, and a pair
of integers (ω+, ω−) such that

(ω+, ω−) ∈ ω(D0, D1) (2)

Algorithm 2 is known as divisor reduction.
The result D1 of Algorithm 2 will be denoted as D1, (ω+, ω−) = red(D0). The

geometric interpretation of Algorithm 2 is very simple: given the effective affine
divisor D0 = div[u0, v0], we know (by definition of the Mumford representation)
that the divisor of zeros Dz of the function y − v0(x) has (in the notation of
Algorithm 2) Dz = D0 + D1, and if deg(u0) ≥ g + 2, then the degree of Dz

satisfies deg(Dz) < 2 deg(D0), hence deg(D1) < deg(D0), and if the leading
term of v0 is different to that of H± we have

div
(

y − v0(x)
u0

)
= D0 −D1 −

d0 − d1

2
(∞+ +∞−). (3)

It follows that
D0 −D1 ≡

d0 − d1

2
(∞+ +∞−).

5

Algorithm 2 Reduction
Input: A semi-reduced affine divisor D0 = div[u0, v0], with d0 ≥ g + 2.
Output: A semi-reduced affine divisor D1 = div[u1, v1] and a pair (ω+, ω−), such that

d1 < d0 and Equation (2) holds.
1: Set u1 := (v2

0 + hv0 − F)/u0 made monic.
2: Let v1 := (−v0 − h) mod u1.
3: if the leading term of v0 is a+x

g+1 (in the notation of Definition 4) then
4: Let (ω+, ω−) := (d0 − g − 1, g + 1− d1).
5: else if the leading term of v0 is a−x

g+1 then
6: Let (ω+, ω−) := (g + 1− d1, d0 − g − 1).
7: else
8: Let (ω+, ω−) := (d0−d1

2
, d0−d1

2
).

9: end if
10: return div[u1, v1], (ω+, ω−).

A similar analysis when the leading coefficient of v0 coincides with that of
H± shows that if D1, (ω+, ω−) = red(D0), then we always have (ω+, ω−) ∈
ω(D0, D1).

If C is an imaginary model of a curve with point at infinity ∞, this relation
degenerates into

D0 −D1 ≡ (d0 − d1)∞. (4)

In this case, if D0 is a divisor of degree d0 = g + 1, Algorithm 2 will produce a
divisor of degree d1 < d0, satisfying Equation (4).

Algorithm 3 Composition at Infinity and Reduction
Input: A semi-reduced affine divisor D0 = div[u0, v0] of degree d0 ≤ g + 1.
Output: A reduced affine divisor D1 = div[u1, v1] and a pair of integers (ω+, ω−)

such that (ω+, ω−) ∈ ω(D0, D1).
1: v′1 := H± + (v0 −H± mod u0),
2: u1 := (v′21 + hv′1 − F)/u0 made monic.
3: v1 := −h− v′1 mod u1.
4: if H+ was used then
5: Let (ω+, ω−) := (d0 − g − 1, g + 1− d1).
6: else if H− was used then
7: Let (ω+, ω−) := (g + 1− d1, d0 − g − 1).
8: end if
9: return div[u1, v1], (ω+, ω−).

Algorithm 3 is only defined for affine semi-reduced divisors on curves given
by a real model. If it were applied on a divisor of degree at least g + 2, Algo-
rithm 3 would coincide with Algorithm 2. When applied on a divisor D0 degree
at most g + 1, Algorithm 3 can be interpreted as composing the divisor D0 with
some divisor at infinity, followed by Algorithm 2. The polynomial v′1 in this al-
gorithm is the equivalent to polynomial v3 in Algorithm 1. The result D1 of this

6

algorithm will be denoted as D1, (ω+, ω−) = red∞(D0). Formally, the action of
this algorithm is given by the following.

Proposition 2. Given an effective semi-reduced divisor with affine support D0,
with Mumford representation div[u0, v0] and degree d0 ≤ g+1. If D1, (ω+, ω−) =
red∞(D0), then

(ω+, ω−) ∈ ω(D0, D1).

Proof. We will only prove this when the algorithm is applied using H+. Notice
that the polynomial v′1(x) has the property that the function f = y − v′1(x) has
all the points in D0 in its divisor of zeros.

The (g + 1) − d0 highest degree coefficients of v′1(x) coincide with those of
H+(x), so the function

(v′1(x))2 + hv′1(x)− F (x),

which finds the affine support of f , has degree at most g +d0, and it follows that
the affine support of f has at most g + d0 points.

We know that the function y − v′1(x) will have valuation −(g + 1) at ∞−.
The divisor of f is then:

div(f) = D0 + D2 − (d0 + d2 − (g + 1))∞+ − (g + 1)∞− (5)

If we denote by D1 the hyperelliptic conjugate of D2, we know that

div(u1) = D2 + D1 − d2(∞+ +∞−)

which together with Equation (5) implies

y − v′1(x)
u1

= D0 −D1 − (d0 − (g + 1))∞+ − (g + 1− d2)∞− (6)

which trivially becomes

D0 ≡ D1 + (d0 − (g + 1))∞+ + (g + 1− d1)∞−. (7)

The proposition follows at once. ut

Remark 1. When dealing with explicit computations, the divisors D0 and D1

will very often have degree g, in which case we can re-write Equation (7) as

D0 + (∞+ −∞−) ≡ D1.

Choosing any degree g base divisor D∞ to represent the points on the class
group of C, this equation tells us that

(D0 −D∞) + (∞+ −∞−) ≡ (D1 −D∞),

in other words, Algorithm 3 is nothing but addition of∞+−∞−; this turns out
to be such a simple operation because the divisor composition is elementary and

7

can easily be incorporated in the divisor reduction process, which is itself very
simple.

We would like to emphasize that Algorithm 3 is independent of the choice
of base divisor, so one has the freedom to choose a divisor D∞ optimal in each
specific case.

Remark 2. We have just seen that Algorithm 3 generically corresponds to addi-
tion of ∞+ −∞−, however, it has long been claimed that this operation1 has
no analogue in the imaginary curve case. Using the previous remark, we propose
the following.

Let C : y2 = G(x), where deg(G(x)) = 2g + 1, be a non-singular imaginary
model for a hyperelliptic curve of genus g. Take a point P = (xP , yP) on C.
Given an effective affine divisor D = div[u0, v0] on C, where deg(v0) < deg(u0),
define a P -baby step on D as follows:

a = (yP − v0(xP))/u0(xP)
ṽ1(x) = au0(x) + v0(x)

u1(x) =
(ṽ1)2 −G(x)

(x− xP)u0(x)
v1(x) = −ṽ1 mod u1(x)

The result of applying a P -baby step on the divisor D0 is, generically, a
divisor D1 such that D0 + ([P] −∞) = D1. This algorithm will fail when P is
in the support of D0. Doing some precomputations and using an appropriate
implementation, this operation should be as efficient as a baby step. A good
choice of P (for instance, having a very small xP , or even xP = 0) could have a
big impact on the efficiency of this algorithm.

In the Appendix, Algorithm 6 gives explicit formulae to calculate a P -baby
step in genus 2 curves, where the point P has the form P = (0, y). The operation
count of Algorithm 6 is (1I,1S,5M), which is very competitive compared with
the (1I,2S,4M) required by its analogue in curves given by a real model [5].

The following technical lemma will be used in the next section to prove that
our proposed addition algorithm finishes. It can be safely ignored by readers
interested only in the computational aspects of the paper.

Lemma 1. Let D0 be an effective divisor of degree d0 = 2g and D1 be an
effective affine divisor of degree d1 ≤ g . If (ω+

1 , ω−1) ∈ ω(D0, D1),

D2, (ω+
r , ω−r) = red∞(D1) (using H+),

and we denote (ω+
2 , ω−2) = (ω+

1 + ω+
r , ω−1 + ω−r), then (ω+

2 , ω−2) ∈ ω(D0, D2) and

ω+
1 − ω−1 > ω+

2 − ω−2 .

If ω−1 < (g − 1)/2 then ω+
2 ≤ g/2.

1 Some authors call it a “baby step”, see Section 4.1

8

Proof. From the hypotheses we know that ω+
1 + ω−1 = 2g − d1. Proposition 2

says that
(ω+

r , ω−r) = (d1 − (g + 1), g + 1− d2), (8)

this implies that

ω+
1 − ω−1 = ω+

2 − ω−2 + (2g + 2− d0 − d1),

which proves the first assertion. Equation (8) together with ω+
1 = 2g − d1 − ω−1

implies

ω+
2 = ω+

1 + d1 − g − 1

= (2g − d1 − ω−1) + d1 − g − 1

= g − 1− ω−1

by hypothesis ω−1 < (g−1)/2, so that ω+
2 > (g−1)/2, and since ω+

2 is an integer,
the result follows. ut

Remark 3. Previous authors have used the notation “baby steps” and “giant
steps”. We explain these using our notation. Given two divisors D1 = div[u1, v1]
and D2 = div[u2, v2] on C, a “giant step” on D1 and D2 is the result of computing
D3 = comp(D1, D2) and succesively applying reduction steps (using a red∞
reduction) on the result until the degree of redi

∞(D3) is at most g. “Baby steps”
are only defined on reduced affine effective divisors, and the result of a “baby
step” on a reduced divisor D is the divisor red∞(D).

In [9], an algorithm is given to efficiently compute a giant step. It can then
be used in any arithmetic application that requires such an operation, regardless
of the representation of divisors in Cl0(C) being used.

4 Addition on Real Models

Throughout this section C will denote a genus g hyperelliptic curve defined over
a field K, given by the equation

C : y2 + h(x)y = F (x),

where F (x) is a degree 2g + 2 polynomial. If char(K) 6= 2, then we will further
assume that h = 0. If char(K) = 2, then h will be monic and deg(h) = g + 1.

We will also assume that the divisor D∞ from Definition 3 is K-rational.
This condition holds automatically for even g. For odd values of g one needs to
further assume that the leading coefficient of F is a square in K if char(K) 6= 2
or that the leading coefficient of F is of the form ω2 + ω if char(K) = 2.

Every element [a0] of Cl0(C) has a unique representative of the form a0 =
D0−D∞, where D0 is a degree g effective divisor with reduced affine part. Any
effective, degree g divisor D0 can be uniquely written as D0 = D′0 + n0∞+ +
m0∞−, where D′0 is the affine support of D0, and n0, m0 ∈ Z≤0; in this case we

9

will denote the divisor D0 − D∞ as div([u0, v0], n0), where div[u0, v0] = D′0 is
the Mumford representation of D′0. This representation of a divisor is unique.

We would like to remark that in the notation we have just described for
divisors, we always have deg v0 < deg u0 and n0 is an integer such that 0 ≤ n0 ≤
g−deg(u0). The implementation used in Magma represents elements of the class
group as 〈u, v′, d〉, where div[u, v′ mod u] is the Mumford representation of an
affine reduced divisor and d is an even integer such that deg(u) ≤ d ≤ g + 1. We
do not have enough space to describe this notation, for which we refer the reader
to the Magma documentation. The element represented in Magma as 〈u, v′, d〉
corresponds in our notation to the divisor div([u, v′ mod u], n), where n is an
integer given by:

n = d g−d
2 e, if d = deg(u) or deg(v′ −H− ≤ g).

n = d g−(−1)gd
2 e − deg(u), otherwise.

The representation used in Magma is sub-optimal for cryptographic applica-
tions since it can have deg(v′) ≥ deg(u).

Given two divisors a1 = div([u1, v1], n1) and a2 = div([u2, v2], n2) of Cl0(C),
we want to find a3 = div([u3, v3], n3) such that

[a1] + [a2] = [a3].

To fix notation, let

ai = div[ui, vi] + ni∞+ + mi∞− −D∞,

D̃i = div[ui, vi] + ni∞+ + mi∞−,

Di = div[ui, vi]

for i ∈ 1, 2.

Algorithm 4 Divisor Addition
Input: Divisors ai = div([ui, vi], ni) for i ∈ {1, 2}.
Output: a3 = div([u3, v3], n3), [a3] = [a1] + [a2].
1: Set (ω+, ω−) := (n1 + n2,m1 +m2).
2: Let D, (a, b) := comp(D1, D2). Update (ω+, ω−) := (ω+ + a, ω− + b).
3: while deg(D) > g + 1 do
4: D, (a, b) := red(D). Update (ω+, ω−) := (ω+ + a, ω− + b).
5: end while
6: while ω+ < g/2 or ω− < (g − 1)/2 do
7: D, (a, b) := red∞(D). Update (ω+, ω−) := (ω+ + a, ω− + b).
8: Use H+ in red∞ if ω+ > ω−, else use H−.
9: end while

10: Let E := D + ω+∞+ + ω−∞− −D∞.
11: Now E is an effective degree g divisor. Write E = D + n3∞+ + m3∞−, where D

is an effective affine divisor.
12: return div(D,n3).

10

Some comments are in order. Throughout the algorithm we always have that
(ω+, ω−) ∈ ω(D̃1 + D̃2, D). We have mentioned that if deg(D) ≥ g + 2 then
deg(red(D)) < deg(D), so step 3 always finishes. Lemma 1 proves that step 4,
and hence the algorithm, always finish.

Cantor’s addition algorithm for curves given by an imaginary model (see [3])
can be seen as a degenerate case of our algorithm. We can think of Algorithm 4
as: 1. Divisor composition; 2. Reduction steps until the degree is at most g + 1;
3. Use red∞ to balance the divisor at infinity. Since imaginary models have a
unique point at infinity, to perform divisor addition it suffices to compute the
composition and reduction steps, making the balancing step redundant. In the
following section we will argue that our divisor D∞ is the correct choice to have
an algorithm analogous to that of Cantor.

If C has even genus, the points ∞+ and ∞− are not K-rational and the
divisors a1 and a2 are K-rational, by a simple rationality argument the coun-
terweights will always be equal, hence the addition algorithm will get a divisor
D with equal counterweights such that deg(D) ≤ g in step 3. Algorithm 4 will
then finish and step 4 will not be necesary. In this case the (non K-rational)
polynomials H± will not be used and no red∞ step will be computed.

This last observation suggests that, given a hyperelliptic curve C with even
genus, one should move two non K-rational points to infinity and get an addition
law completely analogous to Cantor’s algorithm. This trivial trick could greatly
simplify the arithmetic on C.

One key operation in an efficiently computable group is element inversion.
Algorithm 5 describes this operation in Cl0(C).

Algorithm 5 Divisor Inversion
Input: A divisor a1 = div([u1, v1], n1).
Output: A divisor a2 = div([u2, v2], n2) such that [a1] = −[a2].
1: if g is even then
2: return div([u1, (−h− v1 mod u1)], g − deg(u1)− n1).
3: else if g is odd and n1 > 0 then
4: return div([u1, (−h− v1 mod u1)], g −m1 − deg(u1) + 1).
5: else
6: Let D1 = red∞(div[u1,−h− v1]).
7: return div(D1, 0).
8: end if

Given the geometric analysis that we have made of the addition algorithm,
computing pairings on the class group of an arbitrary hyperelliptic curve can
be done following Miller’s algorithm. There is not enough space in this paper
to give a complete description of an algorithm to compute pairings, but Miller’s
functions can be calculated from Equations (1),(3) and (6).

11

4.1 Other proposals

Previous proposals for addition algorithms on hyperelliptic curves given by a
real model use D∞ = g∞+ instead of the divisor D∞ we used in the previous
section [14, 15]. In particular, this implies that the points ∞+ and ∞− need to
be K-rational.

A simple modification of Algorithm 4 can be used to add divisors in Cl0(C)
using D∞ = g∞+ as base divisor. All one needs to do is change the finishing
condition in step 4 from ((ω+ < g/2) or (ω− < (g− 1)/2)) to (ω+ < g). Indeed,
one can verify that using Algorithm 4 with a modified terminating condition
coincides with the addition algorithms presented in [14, 15].

We will now compare the two proposals for addition algorithms on Cl0(C).
Since the performance of the algorithms, specially for cryptographic applications,
will depend exclusively on its behaviour when adding generic divisors, we will
restrict our analysis to this case.

Assume for a moment that the curve C has even genus g, and that D1 and
D2 are two effective affine divisors of degree g. Generically, the result D3 of
applying succesive reductions to comp(D1, D2) until the degree is at most g + 1
is a divisor D3 of degree g. If this is the case, we have

D1 + D2 ≡ D3 + (g/2)(∞+ +∞−), (9)

Notice that the counterweights between D1 + D2 and D3 are equal, this is a
consequence of Equation (4). Using Equation (9) with D∞ = (g/2)(∞+ +∞−),
we get

D1 −D∞ + D2 −D∞ ≡ D3 −D∞,

which means that we have found the result of adding D1 −D∞ and D2 −D∞,
and no “composition at infinity and reduction” steps were necessary.

If instead we work with a divisor at infinity D′∞ = g∞+, Equation (9) be-
comes

D1 −D′∞ + D2 −D′∞ = D3 −D′∞ − (g/2)(∞+ −∞−),

so typically one will need g/2 extra red∞ steps to find D4 such that

D4 −D′∞ = (D1 −D′∞) + (D2 −D′∞),

it is not difficult to see that the need for the red∞ steps is related to the fact
that the valuations of D′∞ at the two points at infinity are so different.

Now consider a curve C of odd genus g, and let again D1 and D2 be degree
g affine divisors. Typically, the result after step 2 in Algorithm 4 on the divisors
D1 and D2 will be a divisor D3 of degree g + 1 such that

D1 + D2 ≡ D3 +
g − 1

2
(∞+ +∞−). (10)

Again, the counterweights between D1 + D2 and D3 are equal as a consequence
of Equation (4), and if we now compute D4 = red∞(D3), then generically

D3 ≡ D4 +∞−,

12

which together with Equation (10) gives us

D1 + D2 ≡ D4 +
g + 1

2
∞+ +

g − 1
2
∞−. (11)

Using our base divisor D∞ = (g + 1)/2∞+ + (g − 1)/2∞−, we get

D1 −D∞ + D2 −D∞ ≡ D4 −D∞,

and only one red∞ step was needed. Notice that in this case the addition algo-
rithm consists of composition, a series of standard reduction steps, and the last
step is a single application of red∞.

Using the base divisor D′∞ = g∞+, Equation (10) becomes

D1 −D′∞ + D2 −D′∞ ≡ D3 −D′∞ − (g − 1)/2(∞+ −∞−),

so one will typically need (g − 1)/2 extra steps to find D4 such that

D4 −D′∞ = (D1 −D′∞) + (D2 −D′∞).

Again, the need for the red∞ steps stems from the difference in the valuations
of D∞ at both points at infinity.

Remark 4. If the curve C has odd genus g, one could try to recover a balanced
representation of its elements by representing them as D0−(g+1)/2(∞++∞−),
where D0 is a degree g + 1 effective divisor with reduced affine part. This rep-
resentation could be useful in the intermediate steps of a given implementation,
since the use of the red∞ algorithm would be limited to the final step of the
calculation. When divisors are represented using this approach, the number of
coefficients needed to describe them increases, and the composition formulae get
more complicated. A detailed comparison of the performance of these methods
would be interesting.

We have seen that using a “balanced” divisor at infinity, generically the
number of red∞ steps needed to compute the addition of two divisor classes in
Cl0(C) is 0 when g is even and 1 when g is odd; whereas when using a non-
balanced divisor, the number of red∞ steps needed to compute the addition of
two divisors is generically g/2 for even g and (g − 1)/2 for odd g.

In order to compare the two proposals for arithmetic in Cl0(C), we must also
consider the computation of inverses, a fundamental operation in a computable
group which has, surprisingly, been ignored in the literature. Besides its triv-
ial use to invert divisors, this operation is fundamental to achieve fast divisor
multiplication through signed representations.

We will just analyse inversion in the generic case. To do this let D be a degree
g affine effective divisor on C. Assume for a moment that g is even. The inverse
of the divisor P = D − (g/2)(∞+ +∞−) is the divisor D − (g/2)(∞+ +∞−),
whereas if we now assume that g is odd, the divisor

(D − g + 1
2
∞+ − g − 1

2
∞−) + (D − g − 1

2
∞+ − g + 1

2
∞−)

13

is principal, which means that D − (g − 1)/2∞+ − (g + 1)/2∞− is the inverse
of P , and in order to fix the divisor at infinity, using Proposition 2 it is easy
to see that generically only one application of Algorithm 3 will suffice. In other
words, using the “balanced” representation at infinity, 0 or 1 applications of
Algorithm 3 will be needed, depending on the parity of g.

We now analyze the computation of inverses using D′∞ = g∞+ as base
divisor. Clearly, the divisor

(D − g∞+) + (D − g∞−)

is principal, so we need to find an appropriate representative of the divisor class
[D − g∞−]. Again, this can be done through g applications of Algorithm 3, as
can be easily seen using Proposition 2.

It is now clear that computing the inverse of a divisor class is easier when
the divisor at infinity is as balanced as possible, supporting our claim that a
“balanced” representation is a closer analogue to that of Cantor for imaginary
models, where the inverse of a divisor is its hyperelliptic conjugate, just as in
our case when the genus of C is even.

Table 1 gives the cost of addition and doubling in a genus 2 curve using the
explicit formulae for Algorithms 1, 2 and 3 presented in [5]. If S = M and I = 4M
then balanced representations give a saving of around 15% for addition and 13%
for doubling (if I = 30M the savings become 62% and 58% respectively). The
extra operations in the non-balanced case come from an additional application
of Algorithm 3 in each case.

Imaginary Balanced Non-balanced

Addition 1I, 2S, 22M [13] 1I, 2S, 26M 2I, 4S, 30M

Doubling 1I, 5S, 22M [13] 1I, 4S, 28M 2I, 6S, 32M

Inversion 0 0 2I, 4S, 8M

Table 1. Operation counts for genus 2 arithmetic using formulae of [5] .

5 Conclusion

We have given an explicit geometric interpretation of Algorithm 3, which made
it clear that all the composition and reduction algorithms presented in this paper
(all of which have been known for a long time) really act on semi-reduced affine
divisors rather than on elements of Cl0(C); that is to say, they can be seen as
acting on the Mumford representation of a divisor. Having made this simple
observation, a number of interesting consequences follow. One such observation
is that in order to get simple arithmetic operations one needs to find an optimal
base divisor D∞, and we have argued that in cryptography-related applications
the optimal choice is a balanced divisor D∞. When the genus of the curve is even,

14

if the points at infinity are non-rational (which can always be achieved), using a
balanced base divisor yields an algorithm identical to that of Cantor, where the
rationality takes care of the counterweights; this is impossible to achieve with
non-balanced divisors.

The question of finding explicit addition formulae for curves in real represen-
tation using our proposed divisor already has an answer: since generic addition
formulas have been given for Algorithms 1, 2 and 3 in a genus 2 real curve [5], we
can use these formulas to calculate an addition law on Cl0(C) by just changing
the divisor at infinity one is working with. All the explicit addition formulae
presented so far (specially for g = 2) that we have knowledge of (including those
of [5, 9]) first compute the composition of the two affine divisors in the sum-
mands, then find the divisor with degree at most g + 1 which is the result of
successively applying reduction steps, and finally give an explicit form of Algo-
rithm 3. Hence, it is possible to use these formulae to compute divisor addition
using our proposal with no alterations.

Appendix

In Remark 2 we mentioned that the analogue of a baby step for curves given
by an imaginary model would be the addition of a point of the form P − ∞,
where P has a special form. In Algorithm 6, we present an optimized algorithm
to compute these ”imaginary baby steps” in a genus 2 curve C defined over the
field k by

C : y2 = x5 +
4∑

i=0

fix
i,

where we further assume that f0 is a square in k, so that the point P = (0, yb)
on C is k-rational. Divisors will be represented by their Mumford representation
(x2 + u1x + u0, v1x + v0).

Algorithm 6 Imaginary Baby Step
Input: D = div(x2 + u1x+ u0, v1x+ v0) .
Output: D2 = div(u2, v2) such that [D2] = [D] + [(0, yb)−∞].
1: µ := (yb − v0)/u0 (1I,1M).
2: b1 := f4 − µ2 − u1 (1S).
3: b0 := f3 − u0 − 2µv1 + u1(u1 − µ2 − f4) (2M).
4: c1 := v1 + µ(u1 − b1) (1M).
5: c0 := v0 + µ(u0 − b0) (1M).
6: return div(x2 + b1x+ b0,−c1x− c0).

The cost of a “real baby step” in genus 2 is (1I,2S,4M) [5] and Algorithm 6
needs (1I,1S,5M), it is therefore a very efficient analogue of Algorithm 3 for
curves given by an imaginary model.

15

We would like to point out that the idea of using degenerate divisors (a divisor
is degenerate if it has less than g affine points in its support) has been considered
before. Katagi et.al. [11, 12] analysed the advantages of using degenerate divisors
in cryptographyc applications, and the use of degenerate divisors to optimise
pairing computations has also been discussed in [1, 6, 7]. However, the use of
a point P with a special form in the degenerate divisor seems to have been
overlooked.

Acknowledgments

We would like to thank Mike Jacobson and the anonymous referees for their help-
ful comments. The first author is supported by EPSRC Grant EP/D069904/1.
The third author thanks CONACyT for its financial support.

References

1. Barreto, P. S. L. M., Galbraith, S. D., O’Eigeartaigh, C., and Scott,
M. Efficient pairing computation on supersingular abelian varieties. Des. Codes
Cryptography 42, 3 (2007), 239–271.

2. Bosma, W., Cannon, J., and Playoust, C. The Magma algebra system. I.
The user language. J. Symbolic Comput. 24, 3-4 (1997), 235–265. Computational
algebra and number theory (London, 1993).

3. Cantor, D. G. Computing in the Jacobian of a hyperelliptic curve. Math. Comp.
48, 177 (1987), 95–101.

4. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., and
Vercauteren, F., Eds. Handbook of elliptic and hyperelliptic curve cryptography.
Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC,
Boca Raton, FL, 2006.

5. Erickson, S., Jacobson, M. J., Shang, N., Shen, S., and Stein, A. Explicit
formulas for real hyperelliptic curves of genus 2 in affine representation. In WAIFI
(2007), C. Carlet and B. Sunar, Eds., vol. 4547 of Lecture Notes in Computer
Science, Springer, pp. 202–218.

6. Frey, G., and Lange, T. Fast bilinear maps from the tate-lichtenbaum pairing
on hyperelliptic curves. In ANTS (2006), F. Hess, S. Pauli, and M. E. Pohst, Eds.,
vol. 4076 of Lecture Notes in Computer Science, Springer, pp. 466–479.

7. Galbraith, S. D., Hess, F., and Vercauteren, F. Hyperelliptic pairings.
In Pairing (2007), T. Takagi, T. Okamoto, E. Okamoto, and T. Okamoto, Eds.,
vol. 4575 of Lecture Notes in Computer Science, Springer, pp. 108–131.

8. Galbraith, S. D., Pujolas, J., Ritzenthaler, C., and Smith, B. Distortion
maps for genus two curves.

9. Jacobson, M., Scheidler, R., and Stein, A. Fast arithmetic on hyperellip-
tic curves via continued fraction expansions. In Advances in Coding Theory and
Cryptography (2007), T. Shaska, W. Huffman, D. Joyner, and V. Ustimenko, Eds.,
vol. 3 of Series on Coding Theory and Cryptology, World Scientific Publishing,
pp. 201–244.

10. Jacobson, M. J., Scheidler, R., and Stein, A. Cryptographic protocols on
real hyperelliptic curves. Adv. Math. Commun. 1, 2 (2007), 197–221.

16

11. Katagi, M., Akishita, T., Kitamura, I., and Takagi, T. Some improved algo-
rithms for hyperelliptic curve cryptosystems using degenerate divisors. In ICISC
(2004), C. Park and S. Chee, Eds., vol. 3506 of Lecture Notes in Computer Science,
Springer, pp. 296–312.

12. Katagi, M., Kitamura, I., Akishita, T., and Takagi, T. Novel efficient im-
plementations of hyperelliptic curve cryptosystems using degenerate divisors. In
WISA (2004), C. H. Lim and M. Yung, Eds., vol. 3325 of Lecture Notes in Com-
puter Science, Springer, pp. 345–359.

13. Lange, T. Formulae for arithmetic on genus 2 hyperelliptic curves. Appl. Algebra
Engrg. Comm. Comput. 15, 5 (2005), 295–328.

14. Paulus, S., and Rück, H.-G. Real and imaginary quadratic representations of
hyperelliptic function fields. Math. Comp. 68, 227 (1999), 1233–1241.

15. Paulus, S., and Stein, A. Comparing real and imaginary arithmetics for divisor
class groups of hyperelliptic curves. In Algorithmic number theory (Portland, OR,
1998), vol. 1423 of Lecture Notes in Comput. Sci. Springer, Berlin, 1998, pp. 576–
591.

16. Scheidler, R., Stein, A., and Williams, H. C. Key exchange in real quadratic
congruence function fields. Designs, Codes and Cryptography 7 (1996), 153–174.

17

