Skip to main content

Transferring Whole Blood Time Activity Curve to Plasma in Rodents Using Blood-Cell-Two-Compartment Model

  • Conference paper
  • 1261 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4987))

Abstract

The term input function usually refers to the tracer plasma time activity curve (pTAC), which is necessary for quantitative positron emission tomography (PET) studies. The purpose of this study was to acquire the pTAC from the independent component analysis (ICA) estimated whole blood time activity curve (wTAC) using our proposed method: FDG blood-cell-two-compartment model (BCM). We also compared published models, which are linear haematocrit (HCT) correction, nonlinear HCT correction, and two-exponential correction. According to the results, the normalized root mean square error (NRMSE) and error of area under curve (EAUC) of BCM estimated pTAC were the smallest. Compartmental and graphic analyses were used to estimate metabolic rate of FDG (MRFDG). The percentage error of MRFDG(PEMRFDG) estimated from BCM corrected pTAC was also the smallest. The BCM is a better choice to transfer wTAC to pTAC for quantification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lammertsma, A.A., Bench, C.J., Price, G.W., Cremer, J.E., Luthra, S.K., Turton, D., Wood, N.D., Frackowiak, R.S.: Measurement of cerebral monoamine oxidase B activity using L-[11C]deprenyl and dynamic positron emission tomography. J. Cereb. Blood Flow Metab. (4), 545–556 (1991)

    Google Scholar 

  2. Sharp, T.L., Dence, C.S., Engelbach, J.A., Herrero, P., Gropler, R.J., Welch, M.J.: Techniques necessary for multiple tracer quantitative small-animal imaging studies. Nucl. Med. Biol. 32, 875 (2005)

    Article  Google Scholar 

  3. Phelps, M.E., Huang, S.C., Hoffman, E.J., Selin, C., Sokoloff, L., Kuhl, D.E.: Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann. Neurol. (5), 371–388 (1979)

    Google Scholar 

  4. Chen, K., Bandy, D., Reiman, E., Huang, S.C., Lawson, M., Feng, D., Yun, L.S., Palant, A.: Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J. Cereb. Blood Flow Metab. 18(7), 716–723 (1998)

    Article  Google Scholar 

  5. Eberl, S., Anayat, A.R., Fulton, R.R., Hooper, P.K., Fulham, M.J.: Evaluation of two population-based input functions for quantitative neurological FDG PET studies. Eur. J. Nucl. Med. 24(3), 299–304 (1997)

    Google Scholar 

  6. Pain, F., Laniece, P., Mastrippolito, R., Gervais, P., Hantraye, P., Besret, L.: Arterial input function measurement without blood sampling using a beta-microprobe in rats. J. Nucl. Med. 45(9), 1577–1582 (2004)

    Google Scholar 

  7. Laforest, R., Sharp, T.L., Engelbach, J.A., Fettig, N.M., Herrero, P., Kim, J., Lewis, J.S., Rowland, D.J., Tai, Y.-C., Welch, M.J.: Measurement of input functions in rodents challenges and solutions. Nucl. Med. Biol. 32(7), 679–685 (2005)

    Article  Google Scholar 

  8. Weber, B., Burger, C., Biro, P., Buck, A.: A femoral arteriovenous shunt facilitates arterial whole blood sampling in animals. Eur. J. Nucl. Med. Mol. Imaging (3), 319–323 (2002)

    Google Scholar 

  9. Wahl, L.M., Asselin, M.C., Nahmias, C.: Regions of interest in the venous sinuses as input functions for quantitative PET. J. Nucl. Med. 40(10), 1666–1675 (1999)

    Google Scholar 

  10. Lee, J.S., Lee, D.S., Ahn, J.Y., Cheon, G.J., Kim, S.K., Yeo, J.S., Seo, K., Park, K.S., Chung, J.K., Lee, M.C.: Blind separation of cardiac components and extraction of input function from H(2)(15)O dynamic myocardial PET using independent component analysis. J. Nucl. Med. 42(6), 938–943 (2001)

    Google Scholar 

  11. Ahn, J.Y., Lee, D.S., Lee, J.S., Kim, S.-K., Cheon, G.J., Yeo, J.S., Shin, S.-A., Chung, J.-K., Lee, M.C.: Quantification of regional myocardial blood flow using dynamic H 2 15 O PET and factor analysis. J. Nucl. Med. 42(5), 782–787 (2001)

    Google Scholar 

  12. Su, K.-H., Wu, L.-C., Liu, R.-S., Wang, S.-J., Chen, J.-C.: Quantification method in [F-18]fluorodeoxyglucose brain positron emission tomography using independent component analysis. Nuclear Medicine Communications 26, 995–1004 (2005)

    Article  Google Scholar 

  13. Ashworth, S., Ranciar, A., Bloomfield, P.M.: Development of an on-line blood detector system for PET studies in small animals. In: Quantification of brain function using PET, pp. 62–66 (1996)

    Google Scholar 

  14. Takikawa, S., Dhawan, V., Spetsieris, P., Robeson, W., Chaly, T., Dahl, R., Margouleff, D., Eidelberg, D.: Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology 188(1), 131–136 (1993)

    Google Scholar 

  15. Patlak, C.S., Blasberg, R.G.: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow Metab. 5(4), 584–590 (1985)

    Google Scholar 

  16. Patlak, C.S., Blasberg, R.G., Fenstermacher, J.D.: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. 3(1), 1–7 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xiaohong Gao Henning Müller Martin J. Loomes Richard Comley Shuqian Luo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, JS. et al. (2008). Transferring Whole Blood Time Activity Curve to Plasma in Rodents Using Blood-Cell-Two-Compartment Model. In: Gao, X., Müller, H., Loomes, M.J., Comley, R., Luo, S. (eds) Medical Imaging and Informatics. MIMI 2007. Lecture Notes in Computer Science, vol 4987. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79490-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79490-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79489-9

  • Online ISBN: 978-3-540-79490-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics