Skip to main content

3D Action Recognition and Long-Term Prediction of Human Motion

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5008))

Abstract

In this contribution we introduce a novel method for 3D trajectory based recognition and discrimination between different working actions and long-term motion prediction. The 3D pose of the human hand-forearm limb is tracked over time with a multi-hypothesis Kalman Filter framework using the Multiocular Contracting Curve Density algorithm (MOCCD) as a 3D pose estimation method. A novel trajectory classification approach is introduced which relies on the Levenshtein Distance on Trajectories (LDT) as a measure for the similarity between trajectories. Experimental investigations are performed on 10 real-world test sequences acquired from different viewpoints in a working environment. The system performs the simultaneous recognition of a working action and a cognitive long-term motion prediction. Trajectory recognition rates around 90% are achieved, requiring only a small number of training sequences. The proposed prediction approach yields significantly more reliable results than a Kalman Filter based reference approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. Journal of the Association for Computing Machinery 17(4), 589–602 (1970)

    MATH  Google Scholar 

  2. Black, M.J., Jepson, A.D.: A probabilistic framework for matching temporal trajectories: Condensation-based recognition of gestures and expressions. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 909–924. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)

    Article  Google Scholar 

  4. Campbell, L.W., Becker, D.A., Azarbayejani, A., Bobick, A.F., Pentland, A.: Invariant features for 3-d gesture recognition. In: FG 1996: Proceedings of the 2nd International Conference on Automatic Face and Gesture Recognition (FG 1996), Washington, DC, USA, p. 157. IEEE Computer Society Press, Los Alamitos (1996)

    Chapter  Google Scholar 

  5. Croitoru, A., Agouris, P., Stefanidis, A.: 3d trajectory matching by pose normalization. In: GIS 2005: Proceedings of the 13th annual ACM international workshop on Geographic information systems, Bremen, Germany, pp. 153–162. ACM Press, New York (2005)

    Chapter  Google Scholar 

  6. Fritsch, J., Hofemann, N., Sagerer, G.: Combining sensory and symbolic data for manipulative gesture recognition. In: Proc. Int. Conf. on Pattern Recognition, vol. 3, pp. 930–933. IEEE, Cambridge (2004)

    Google Scholar 

  7. Hahn, M., Krüger, L., Wöhler, C., Gross, H.-M.: Tracking of human body parts using the multiocular contracting curve density algorithm. In: 3DIM 2007: Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling, Washington, DC, USA, pp. 257–264. IEEE Computer Society Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  8. Hofemann, N.: Videobasierte Handlungserkennung für die natürliche Mensch-Maschine-Interaktion. Dissertation, Universität Bielefeld, Technische Fakultät (2007)

    Google Scholar 

  9. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  10. Li, Z., Fritsch, J., Wachsmuth, S., Sagerer, G.: An object-oriented approach using a top-down and bottom-up process for manipulative action recognition. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 212–221. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2), 90–126 (2006)

    Article  Google Scholar 

  12. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment - a modern synthesis. In: ICCV 1999: Proceedings of the International Workshop on Vision Algorithms, pp. 298–372. Springer, London (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antonios Gasteratos Markus Vincze John K. Tsotsos

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hahn, M., Krüger, L., Wöhler, C. (2008). 3D Action Recognition and Long-Term Prediction of Human Motion. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds) Computer Vision Systems. ICVS 2008. Lecture Notes in Computer Science, vol 5008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79547-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79547-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79546-9

  • Online ISBN: 978-3-540-79547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics