
First Experiences with Intel Cluster OpenMP

Christian Terboven Dieter an Mey Dirk Schmidl
Marcus Wagner

RWTH Aachen University, Center for Computing and Communication
Seffenter Weg 23, 52074 Aachen, Germany

{terboven, anmey, schmidl, wagner}@rz.rwth-aachen.de

Abstract

MPI and OpenMP are the de-facto standards for
distributed-memory and shared-memory parallelization, re-
spectively. By employing a hybrid approach, that is comb-
ing OpenMP and MPI parallelization in one program, a
cluster of SMP systems can be exploited. Nevertheless, mix-
ing programming paradigms and writing explicit message
passing code might increase the parallel program develop-
ment time significantly. Intel Cluster OpenMP is the first
commercially available OpenMP implementation for a clus-
ter, combining the ease of use of the OpenMP paralleliza-
tion paradigm with the cost efficiency of a commodity clus-
ter. In this paper we present our first experiences with Intel
Cluster OpenMP.

1 Introduction

The main advantage of shared-memory parallelization
with OpenMP [2] over MPI [1] is that data can be accessed
by all instruction streams without reasoning whether it must
be transferred beforehand. This allows for an incremental
parallelization approach and leads to shorter parallel pro-
gram development time. Complicated dynamic data struc-
tures and irregular and possibly changing data access pat-
terns make programming in MPI more difficult, whereas
the level of complexity introduced by shared-memory paral-
lelization is lower in many cases. As OpenMP is a directive-
based language, the original serial program can stay in-
tact, which is an advantage over other shared-memory par-
allelization paradigms.

The downside of OpenMP and other shared-memory
paradigms as well is that the resulting parallel programs
are normally restricted to execute in a single address space.
Bus-based multi-processor machines typically do not scale
well beyond four processors for memory-intense applica-
tions. Larger SMP and ccNUMA systems require to em-
ploy scalable and thus expensive interconnects. Because

of that, several attempts to bring OpenMP to clusters have
been made in the past.

In [8] an OpenMP implementation for the TreadMarks
software has been presented, which supports only a subset
of the OpenMP standard. In [10] an OpenMP implemen-
tation on top of the page-based distributed shared-memory
(DSM) system SCASH has been presented for the Omni
source-to-source translator. In this approach, all accesses
to global variables are replaced by accesses into the DSM
and all shared data is controlled by the DSM. Although the
full OpenMP specification is implemented, support for the
C++ programming language is missing. In 2006, Intel made
the first commercial implementation of OpenMP for clus-
ters available, named Intel Cluster OpenMP [6], sometimes
referred to as ClOMP in this paper. The full OpenMP 2.5
standard for Fortran, C and C++ is implemented, although
nested parallel regions are not yet supported.

This paper is organized as follows: In section 2 we give
an overview of OpenMP and Intel Cluster OpenMP. In sec-
tion 3 we present micro-benchmark [3, 9] measurements of
OpenMP and ClOMP constructs and discuss which types of
applications we expect to profit from running on a cluster.
In section 4 we present results of four applications with In-
tel Cluster OpenMP. The current tool support for ClOMP is
discussed briefly in section 5. We draw our conclusions and
touch on future plans in section 6.

2 OpenMP

This section will present an overview of OpenMP and In-
tel Cluster OpenMP and discuss some aspects of the mem-
ory model of both.

2.1 Overview

OpenMP consists of a collection of compiler directives,
library functions and a few environment variables. It ap-
plies the so-called fork/join programming model, thus an
OpenMP program starts as a single thread. At the entrance

59

of a parallel region, additional worker threads are created,
thus forming a team of threads together with the initial
thread, which becomes the master of that team. The worker
threads are suspended at the end of the parallel region and
are ready to be reused at the next opportunity.

Unless specified otherwise, all threads execute the whole
code within the parallel region redundantly. If, for example,
a loop inside a parallel region is enclosed by an OpenMP
work-sharing loop construct, the loop iterations are dis-
tributed across the threads of the current team. The way in
which the loop iterations are distributed among the threads
can be controlled elegantly via the schedule clause. Other
work-sharing constructs are available as well as are reduc-
tion type operations and synchronization constructs.

As OpenMP is a shared-memory parallelization
paradigm, all threads share a single address space, but still
can have thread local storage to hold private data. It is the
programmer’s responsibility to control the scoping, that is
the classification of variables into shared and private, of all
variables that are used within a parallel region.

At the beginning and the end of any parallel region, all
threads of a team are implicitly synchronized. At barrier
synchronization points all threads have to wait until every
team member has arrived, before any thread may continue.
One thread modifying a shared variable and other threads
reading or writing the same variable without careful syn-
chronization may lead to so-called data races. A data race
causes the program’s output to depend on the actual inter-
leaving of threads, which cannot be predicted. It is the
programmer’s responsibility to use the synchronization con-
struct provided by OpenMP in order to make sure that mod-
ifications of shared data are properly reflected to all threads.

2.2 Memory Model

OpenMP provides a relaxed memory consistency model
similar to the weak ordering memory model [5]. Each
thread has a temporary view of the memory that is not re-
quired to be consistent with the memory at all times. Writes
to memory are allowed to overlap other computation and
reads from memory are allowed to be satisfied from a local
copy of memory, under some circumstances. For example,
if within one synchronization period the same memory lo-
cation is read again, this can be done from fast local stor-
age (the temporary view, e.g. a cache). Thus, it is possible
to hide the memory latency within an OpenMP program to
some extent. This also allows Intel Cluster OpenMP to ful-
fill reads from local memory under certain circumstances,
instead of accessing remote memory in all cases, as will be
explained in the following subsection 2.3.

The flush construct of OpenMP serves as a memory syn-
chronization operation, as it enforces consistency between
the temporary view and the memory, by writing back a set

of variables or even all thread’s variables to the memory.
All reads and writes from and to the memory are unordered
with respect to each other (except for those being ordered
by the semantics of the base language), but ordered with re-
spect to an OpenMP flush operation. All OpenMP barriers
also contain an implicit flush operation.

2.3 Intel Cluster OpenMP

Beginning with version 9.1, the Intel C/C++ and Fortran
compilers for Linux are available with Cluster OpenMP.
The distributed shared-memory (DSM) system of Intel
Cluster OpenMP is based on a licensed derivative of the
TreadMarks software.

Intel has extended OpenMP with one additional direc-
tive: The sharable directive. It identifies variables that are
referenced by more than one thread and thus have to be
managed by the DSM system. While certain variables are
automatically made sharable by the compiler, some vari-
ables have to be declared sharable explicitly by the pro-
grammer, e.g. file-scope variables in C and C++. Thus,
the programmer’s responsibility for variable scoping has
been extended to finding all variables that have to be made
sharable, in the cases where the compiler was unable to de-
tect it. As will be shown in section 4, this can sometimes be
a tedious task for application codes.

For the Fortran programming language several compiler
options exist to make different kinds of variables sharable
automatically, e.g. all module or common block variables.
In addition to finding all variables that have to be declared
sharable, dynamic memory management in an application
deserves some attention. For all variable allocations from
the heap (e.g. by malloc), it has to be determined whether
the memory should be taken from the regular heap, thus be-
ing only accessible by the thread calling malloc, or from
the DSM heap, thus being accessible by all threads. Intel
Cluster OpenMP provides several routines to easily replace
native heap memory management routines by DSM heap
routines.

The task of keeping shared variables consistent across
multiple nodes is handled by the Cluster OpenMP runtime
library. Intel provides detailed information on how this pro-
cess works in the product documentation and in a white
paper [6]. In principle the mechanism relies on protect-
ing memory pages via the mprotect system call; pages
that are not fully up-to-date are protected against reading
and writing. When a program reads from such a protected
page, a segmentation fault occurs and after intercepting the
corresponding signal the runtime library requests updates
from all nodes, applies them to the page and then removes
the protection. At the next access, the instruction finds the
memory accessible and then the read will complete success-
fully. Still the page is protected against writing. In case of a

60

write operation, a so-called twin page is created for further
reads and writes on the accessing node, after the protection
has been removed. The twin page then becomes the thread’s
temporary view.

The higher the ratio of cheap memory accesses, that
means to thread private memory or to twin pages, versus
expensive memory accesses, the better the program will per-
form. At each synchronization construct, e.g. a barrier,
nodes receive information about pages modified by other
nodes and invalidate those. As a consequence, the next ac-
cess will be expensive.

3 Micro-Benchmarks

In order to better understand the behavior of Intel Clus-
ter OpenMP’s DSM mechanism and to get an estimate of
how expensive the DSM overhead is, we created a set of
micro-benchmarks. In addition, we compared the well-
known OpenMP micro-benchmarks [3, 9] with Intel Cluster
OpenMP on two different network fabrics.

All measurements presented in this and the following
sections were carried out on a cluster of eight Dell Pow-
erEdge 1950 servers equipped with two Intel Xeon 5160
(dual-core, 3.0 GHz) CPUs. All nodes are running Scien-
tific Linux 5.0 and are connected via Gigabit Ethernet (re-
ferred to as Eth) and 4x SDR InfiniBand (referred to as IB).
The InfiniBand adapters are attached to the PCI-Express
bus. We used the Intel 10.0.025 compiler suite for 64-bit
systems.

Table 1 shows selected results of the OpenMP micro-
benchmarks for traditional OpenMP and Intel Cluster
OpenMP. The EPCC OpenMP micro-benchmarks measure
the overhead of OpenMP constructs by comparing the time
taken for a section of code executed sequentially, to the time
taken for the same code executed in parallel enclosed in a
given directive. We ported the EPCC micro-benchmarks to
Intel Cluster OpenMP by adding sharable directives, where
necessary.

It it obvious that there is a severe difference in overhead
between OpenMP and Intel Cluster OpenMP, independent
of the network fabric. Thus, the granularity of parallelism
to be efficiently exploitable with Cluster OpenMP has to be
much coarser. While for a run with a single thread only
a small difference between the two network fabrics can be
observed, the overhead increase with two and four threads
is significantly lower on InfiniBand than on Ethernet. As
will be seen in section 4, application codes resemble this
behavior. We found that using a fast network like InfiniBand
is crucial in order to exploit application scalability with Intel
Cluster OpenMP.

We implemented a couple of own micro-benchmarks
especially to test the DSM performance by employing

OpenMP ClOMP ClOMP
Eth IB

PARALLEL FOR
1 thread 0.31 478.82 482.84
2 threads 1.00 1159.53 720.62
4 threads 1.12 1540.97 962.52
BARRIER
1 thread 0.01 478.24 481.37
2 threads 0.43 738.38 589.95
4 threads 0.60 751.61 634.64
REDUCTION
1 thread 0.35 479.44 481.34
2 threads 1.54 1888.25 1302.87
4 threads 2.32 3315.19 2660.42

Table 1. Selected results (overhead in mi-
croseconds [us]) of the EPCC OpenMP
micro-benchmarks for OpenMP and Intel
Cluster OpenMP, with one thread per node.

the same measurement approach as the EPCC micro-
benchmarks, of which the following are of interest here:

• testheap: A number of pages is allocated via
kmp aligned sharable malloc (OpenMP:
valloc), then they are written and then freed again.
This process is repeated a couple of times and the
average runtime is calculated.

• read f other: The time required to read a page allo-
cated via the DSM by a different thread is measured.
For the Cluster OpenMP runtime that requires trans-
ferring the page.

• write t other: Similar to read f other, but now the
page allocated by a different thread is written. For the
Cluster OpenMP runtime that requires creating a twin
page.

The performance results for traditional OpenMP and In-
tel Cluster OpenMP are shown in table 2. The OpenMP
measurements were run with two threads. Both ClOMP
measurements were run with two Cluster OpenMP pro-
cesses on one and two nodes, respectively.

We experienced noteworthy variations in the results on
InfiniBand. This is due to thread creation by the Intel Clus-
ter OpenMP runtime for communication handling.

It becomes obvious that allocating dynamic memory gets
more expensive. It is considered good parallel program-
ming practice to allocate as large chunks of memory as pos-
sible (thus as seldom as possible) in order to not stress the
operating system’s memory management. With Intel Clus-
ter OpenMP, special care has to be taken in case of dynamic

61

testheap read f other write t other
OpenMP 0.85 1.8 2.32
ClOMP, Eth
1 node 3.81 2.74 2.44
2 nodes 10.75 255.56 251.82
ClOMP, IB
1 node 3.80 1.76 4.26
2 nodes 26.33 101.34 104.54

Table 2. Selected results (two threads, over-
head in microseconds [us]) of our Cluster
OpenMP micro-benchmarks.

data structures which involve many allocations, maybe even
hidden from the user via an abstract interface.

Although Cluster OpenMP allows the programmer to ac-
cess memory on other nodes transparently, from a perfor-
mance perspective this is not for free. Intel Cluster OpenMP
can be started to use more than one thread per node, instead
of multiple processes on one node. In that case, accessing
memory from a different thread on the same node is signif-
icantly cheaper.

With Intel Cluster OpenMP it is even more important to
respect and stick to the following OpenMP tuning advices:

• Enlarge the parallel region: Creating a team of threads
at the entrance to a parallel region and putting it aside
at the exit involves some overhead, although most cur-
rent compilers do a good job in keeping it minimal.
Fewer and shorter serial parts contribute to better scal-
ability, thus parallel regions should be as large as possi-
ble in most cases. With Cluster OpenMP the overhead
of creating or activating a team of threads is higher
than for OpenMP, as all involved nodes have to com-
municate.

• Work on data locally: Keeping data local is very im-
portant on ccNUMA architectures. We found that tun-
ing measures for ccNUMA also improve performance
on Cluster OpenMP, for example respecting the first
touch initialization strategy of the Linux operating sys-
tem. If threads are accessing local memory, no page
transportation or twin page has to be created.

• Prevent false sharing: Normally, false sharing occurs
when threads write to different parts of the same cache
line. Thus, false sharing does not result in a data race.
Because of that, e.g. in the case of two threads run-
ning on two different cores that do not share a cache,
only one core can hold the valid cache line, thus the
other core has to wait and update later. This can affect
the performance significantly. In the case of Cluster
OpenMP, false sharing becomes an issue on a per page

basis. If two or more threads write to different loca-
tions on the same page, the update process has to occur
at the next synchronization point. This kind of prob-
lem can be resolved by inserting appropriate padding
in many cases, although it is pretty hard to detect in
complex applications.

4 Applications

In this section, we present our experiences of porting
four different applications to Intel Cluster OpenMP. We
used the same experiment setup as in the previous section.

4.1 Jacobi

We tried Intel Cluster OpenMP on the Jacobian solver
available on the OpenMP website [2]. We measured the
scalability using a matrix size of 6000 × 6000. We com-
pared the Cluster OpenMP version on Ethernet and Infini-
Band to traditional OpenMP and two MPI implementations,
one with synchronous communication and one with asyn-
chronous communication.

In all versions the domain decomposition approach for
the parallelization is exactly the same. The main differ-
ence is that with MPI the data on the boundary has to be
transferred explicitly, while the programmer does not have
to reason about that in OpenMP. As the DSM system of Intel
Cluster OpenMP works on a per page basis, in some cases
depending on the total number of threads and the number of
threads per node, some threads will have to access pages on
other nodes for reading data at or near the boundaries.

The comparison between OpenMP and Cluster OpenMP
is shown in figure 1. We found that by binding
Cluster OpenMP threads to scattered cores with the
KMP AFFINITY environment variable the performance
can be improved. Binding lead to speedup improvements
of up to 10% and was especially effective for the runs with
two threads.

It can be noticed that the scalability on one node is lim-
ited to two threads, as the Jacobi solver stresses the mem-
ory bandwidth. Thus, running with two Cluster OpenMP
threads on two nodes shows a better scalability (1.95 over
1.67) than the traditional OpenMP version on a single node,
as the memory bandwidth available to the application is vir-
tually doubled by running on two nodes. Of course, using
more than two threads per node does not improve scalability
with Cluster OpenMP for the same reason as with the tradi-
tional OpenMP version. The maximum speedup is obtained
with eight nodes: 9.92 with InfiniBand and two threads per
node and 7.50 with Ethernet and four threads per node.

The scaling of the MPI version with synchronous com-
munication is shown in figure 2, the version with asyn-
chronous communication is shown in figure 3.

62

 2

 4

 6

 8

 10

 1 2 4 8

S
pe

ed
up

nodes

best effort OpenMP
1 thread/node, Eth
4 threads/node,Eth

1 thread/node, IB
2 threads/node, IB
4 threads/node, IB

Figure 1. Speedup of the Cluster OpenMP
version of Jacobi.

Overlapping communication and computation with
asynchronous MPI is particularly beneficial when employ-
ing the slower Gigabit Ethernet network fabric, whereas
for InfiniBand it does not make a big difference. Like-
wise the Cluster OpenMP version profits from the faster
network, because communication and computation cannot
be overlapped. In all cases MPI clearly outperforms Cluster
OpenMP.

Both MPI versions deliver a speedup of slightly more
than 13 with eight nodes and four processes when using
the fast InfiniBand network fabric, whereas the speedup of
Cluster OpenMP is limited to 9.92 employing 2 threads per
node at best.

There are two places in the program where communi-
cation is involved: In updating data on the boundaries of
the subdomains and in the reduction operation to calcu-
late the error estimation. In order to improve the Cluster
OpenMP version, we implemented prefetching with an ad-
ditional Posix-thread, that would be similar to overlapping
computation and communication.

Unfortunately, we were unable to achieve any signifi-
cant performance improvement by prefetching the bound-
ary data (we used the segvprof.pl tool provided by In-
tel to make sure the prefetching worked as expected). To un-
derstand this disappointing result, we extrapolated the run-
time for eight threads on eight nodes from the serial run-
time assuming perfect scalability. On the other hand, we
predicted the runtime on the basis of our previous micro-
benchmark measurements for page transfers and reduction
operations on eight nodes. As both estimations only differ
within 1.5 percent, we concluded that with prefetching there
is only little to gain. This result corresponds to the obser-

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8

S
pe

ed
up

nodes

best effort OpenMP
1 process/node, Eth

4 processes/node, Eth
1 process/node, IB

2 processes/node, IB
4 processes/node, IB

Figure 2. Speedup of the synchronous MPI
version of Jacobi.

vation that the asynchronous and synchronous MPI versions
perform similarly on the fast InfiniBand network. When ap-
plying the prefetch strategy in combination with the slower
GE network, we observed a slight speedup improvement of
about four percent.

We took a closer look at the MPI version as well. Us-
ing the Intel Trace Analyzer tool, we observed a commu-
nication overhead of 3.3 percent of the total runtime in
MPI Recv and about 22.4 percent in MPI Allreduce for a
run of 32 processes. That approves that the collective re-
duction operation is much more expensive than the point-
to-point sends and receives and this gap will further grow
with increasing the number of processes.

As our micro-benchmark experiments revealed that an
MPI reduction operation performs significantly better than
a reduction operation in Cluster OpenMP, we linked the
Intel Cluster OpenMP program with the Intel MPI library
and called the MPI reduction operation from within the
Cluster OpenMP program; this combination is probably not
officially supported by Intel. Unluckily, the current Intel
MPI version does not support full multi-threading, so we
had to implement expensive locking. By replacing Cluster
OpenMP’s reduction operation with the MPI reductions, we
got an increase in speedup of 1.5% on the presented dataset.
On a different dataset where more iterations are required
and thus more reduction operations are called, we achieved
a speedup of up to 12% with the MPI reduction operation.
We concluded that there is still room for improvement in the
Intel Cluster OpenMP implementation, as the reduction can
be implemented with less locking than in our experiments.

63

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8

S
pe

ed
up

nodes

best effort OpenMP
1 process/node, Eth

4 processes/node, Eth
1 process/node, IB

2 processes/node, IB
4 processes/node, IB

Figure 3. Speedup of the asynchronous MPI
version of Jacobi.

4.2 Sparse Matrix-Vector-Multiplication

A sparse matrix-vector-multiplication (SMXV) typically
is the most time consuming part in iterative solvers. In or-
der to estimate whether Intel Cluster OpenMP is suited for
this class of applications, we examined the SMXV bench-
mark kernel of DROPS, a 3D CFD package for simulating
two-phase flows with a matrix of some 300 MB and about
19,600,000 nonzeros.

The performance of the SMXV benchmark is shown in
table 3. In addition to the Woodcrest-based systems (UMA),
we evaluated the performance on a Sun Fire V40z server
system, equipped with four AMD Opteron 848 single-core
2.2 GHz CPUs (ccNUMA), which provides a ccNUMA ar-
chitecture. We compared two parallelization strategies: In
the rows-strategy the parallel loop runs over the number of
rows and a dynamic loop schedule is used for load balanc-
ing, while in the nonzeros-strategy the number of nonzeros
is statically partitioned into blocks of approximately equal
size, one block for each thread.

The nonzeros-strategy outperforms the rows-strategy on
the ccNUMA architecture and on Intel Cluster OpenMP
as well, when carefully initializing all data respecting the
operating system’s first touch policy. While the dynamic
loop scheduling in the rows-strategy successfully provides
good load balance, the memory locality is not optimal.
The nonzeros-strategy shows a neglectible load imbalance
for the given dataset, but its advantage is that each thread
works on local data. Employing the locality of the nonze-
ros-strategy, we observed a nearly linear speedup for the
case of one thread per node. There is only little difference
between Gigabit Ethernet and InfiniBand, as there is only
little communication involved. In short, Cluster OpenMP

rows nonzeros
1 thread 4 threads 1 thread 4 threads
p. node p. node p. node p. node

OpenMP 561.9 960 561.5 978.1
UMA
OpenMP 326.3 793.9 324.5 1147.6
ccNUMA
ClOMP 548.0 887.2 551.8 939.4
Eth, 1 node
ClOMP 113.0 540.1 1058.7 1382.4
Eth, 2 nodes
ClOMP 14.5 136.8 2037.9 2435.6
Eth, 4 nodes
ClOMP 547.9 817.9 551.9 940.4
IB, 1 node
ClOMP 904.4 1208.4 1072.0 1415.3
IB, 2 nodes
ClOMP 1328.3 1845.4 2075.0 2536.6
IB, 4 nodes

Table 3. Performance [MFLOP/s] of SMXV.

behaves like a distinct ccNUMA architecture.

4.3 Fire

The Flexible Image Retrieval Engine (FIRE) [4] has been
developed at the Human Language Technology and Pattern
Recognition Group of the RWTH Aachen University. The
benchmark version which we examined consists of more
than 35,000 lines of C++ code. The current version of FIRE
is available for download in the Internet.

Given a query image and the goal to find k images from
a database that are similar to the query image, a score is cal-
culated for each image from the database and the k database
images with the highest score are returned. In [11] two
layers have been parallelized with OpenMP and displayed
nearly linear scalability. Shared-memory parallelization
is obviously more suitable than distributed-memory paral-
lelization for the image retrieval task, as the image database
can then be accessed by all threads and does not need to
be distributed. Because of that, we expected FIRE to be
a perfect candidate for Intel Cluster OpenMP as search-
ing through the database involves very little synchronization
and only neglectible writing to shared memory.

To make variables of the C++ STL sharable, instances of
such variables have to use the kmp sharable allocator.
In order to achieve this, that allocator has to be specified at
the variable declaration. On one hand this solution is ele-
gant and does not require much code changes at the decla-
ration point, but on the other hand the type signature of the
variable is changed. This implies that if such a variable is

64

passed as a parameter to a function, the function declaration
has to be changed to reflect the type change.

The FIRE code makes extensive usage of the STL, many
of FIRE’s object data types use STL data types as mem-
bers or even are derived from STL data types. Variables are
passed down the call stack to all functions requiring access
to them. In order to make FIRE work with Intel Cluster
OpenMP, virtually the whole code base would have to be
touched and nearly every class would have to be changed.
This is not feasible in a limited amount of time and in con-
trast to the findings in [11] that with OpenMP only very
little code changes were necessary. Providing a STL which
allocates all STL variables as sharable might be a solution
for this and similar codes.

4.4 PANTA

PANTA is a 3D solver that is used in the modeling of
turbomachinery [12]. The package used in our experiments
consists of about 50,000 lines of Fortran 90 code. Several
approaches to parallelize this code have been described, e.g.
[7]. In order to achieve the best possible speedup with Clus-
ter OpenMP, we have chosen the highest level paralleliza-
tion currently exploited with OpenMP, that is a loop over 80
inversion zones.

We had to manually compute the distribution of loop iter-
ations onto threads, as the OpenMP DO work-sharing con-
struct was not applicable in this case because of the code
structure. As the number of loop iterations is relatively
small and as at the end of each loop iteration there is a crit-
ical region in which some global arrays are updated in a
reduction-type manner, we cannot expect good scaling from
this code.

Creating a Cluster OpenMP version of the PANTA
code parallelized with OpenMP was straight forward: We
enabled the compiler’s autodetection and propagation of
sharable variables and asked the compiler to make all ar-
gument expressions, all common block variables, all mod-
ule variables and all save variables sharable by default. The
performance of the resulting program is shown in figure 4.

We are aware of the fact that making all these variable
types sharable by default puts more variables under the con-
trol of the DSM than necessary and that this will probably
cause a performance penalty. Nevertheless, the scalability
of the Cluster OpenMP version on a single node is similar
to the OpenMP version, thus the penalty is acceptable in
the case where as many Cluster OpenMP threads (not pro-
cesses) are used per node as possible.

Better scalability with traditional OpenMP on a single
node is prohibited because the available memory band-
width is saturated. Using Intel Cluster OpenMP, we can use
more than one node and thus effectively increase the avail-
able memory bandwidth. Using two nodes, the best effort

 1

 2

 3

 4

 5

 1 2 4 8

S
pe

ed
up

nodes

best effort OpenMP
1 thread/node, Eth

4 threads/node, Eth
1 thread/node, IB

2 threads/node, IB
3 threads/node, IB
4 threads/node, IB

Figure 4. Speedup of Panta.

speedup can be increased from 2.9 with traditional OpenMP
to 3.3, using four nodes to 4.3. Adding more nodes will only
lead to slight improvements.

Using four threads per node performs worse than only
three threads per node. According to Intel, one possible ex-
planation might be that the Cluster OpenMP management
thread taking care of the DSM system infers with the com-
putational threads.

As already seen with the micro-benchmarks and the Ja-
cobian solver, using InfiniBand improves the performance
of Cluster OpenMP significantly. For PANTA, Gigabit Eth-
ernet performs worse than traditional OpenMP in all cases.
Improvements in the latency and bandwidth of recent Infini-
Band products might increase the scalability of this applica-
tion further.

Unluckily, the current version of Intel Cluster OpenMP
does not support Nested OpenMP. For the Panta code, there
is an additional OpenMP parallelization at the loop level
available, namely at the linear equation solver [7]. We sus-
pect that employing this level with two or even four threads
per node would increase the total scalability of the program.

5 Tool support

The DSM-mechanism used by Intel Cluster OpenMP
uses segmentation fault signals to activate the page move-
ment and synchronization mechanism. That makes debug-
ging a Cluster OpenMP program very hard, if not impossi-
ble, if the debugger cannot be taught to ignore the segfaults
and to not step into the Cluster OpenMP library’s handler
routine. In doing so we successfully used the Intel com-
mand line debugger and the TotalView GUI-based debugger
with Cluster OpenMP programs. Nevertheless, using tradi-
tional debuggers is not very helpful in finding errors related

65

to Intel Cluster OpenMP. The typical problem is that a vari-
able has erroneously not been made sharable. In this case
some threads will run into segmentation faults when access-
ing that memory location, but the runtime system is unable
to deliver the page and thus terminates the program in most
cases.

In order to find the places in which accesses to variables
that are not sharable occur, one can use the command line
tool addr2line on a core dump. We found it easy to use
and in most cases it was no problem to figure out which
variable has caused the problem. Intel has announced that
future versions of the Intel Thread Checker tool will also
find variables that should be made sharable.

In addition, Intel delivers a command line tool named
segvprof.pl that provides means to count the number
of segmentation faults on the function level. This can be
handy in locating parts of the program that are not perform-
ing well, as e.g. too many accesses to remote pages occur.

Again, this tool is very basic in it’s current form and for
complex codes like PANTA, the provided functionality is
too limited to find and understand performance problems
related to Cluster OpenMP. Intel has announced that future
versions of the Intel Trace Collector and Analyzer will sup-
port such an analysis.

6 Conclusions and Future Work

Intel Cluster OpenMP allows shared-memory OpenMP
programs to be executed on a cluster. It takes advantage of
the relaxed consistency memory model of OpenMP. Never-
theless, OpenMP primitives get two to four orders of mag-
nitudes more expensive.

Intel Cluster OpenMP proved to be successful for sev-
eral small applications and while preserving the easier and
more comfortable parallelization paradigm of OpenMP and
shared-memory, a cluster of SMP nodes could be exploited.
But for more complex applications like PANTA, scalability
does not come for free and further tuning has to be invested.

We ran into problems with C++ programs employing the
STL, which still have to be resolved. We suspect that there
is room for improvement concerning Intel’s current imple-
mentation of reductions and on the tool support.

Future work will be to evaluate more programs of the
scientific domain with Intel Cluster OpenMP. We will ap-
ply tuning measures to Cluster OpenMP programs: Porting
codes like PANTA was straight forward because of the com-
piler features provided, still the full performance potential
has not yet been achieved. We are interested in combining
Cluster OpenMP with other parallelization paradigms to en-
able multi-level parallelism.

Acknowledgements

We sincerely thank Jay Hoeflinger and Larry Meadows
from Intel for providing hints on potential performance im-
provements.

References

[1] MPI: A Message-Passing Interface Standard. Technical re-
port, University of Tennessee, Knoxville, TN, USA, May
1994.

[2] ARB. OpenMP Application Program Interface, May 2005.
[3] J. M. Bull. Measuring Synchronisation and Scheduling

Overheads in OpenMP. In European Workshop on OpenMP
(EWOMP), Lund, Sweden, September 1999.

[4] T. Deselaers, D. Keysers, and H. Ney. Features for Image
Retrieval - a quantitative comparison. In 26th DAGM Sym-
posium, Pattern Recognition (DAGM 2004), number 3175
in Lecture Notes in Computer Science, pages 228 – 236,
Tübingen, Germany, 2004.

[5] J. L. Hennessy and D. A. Patterson. Computer Architecture
- A Quantitative Approach. Morgan Kaufmann Publishers
Inc., 2006.

[6] J. P. Hoeflinger. Extending OpenMP to Clusters. 2006.
[7] Y. Lin, C. Terboven, D. an Mey, and N. Copty. Automatic

Scoping of Variables in Parallel Regions of an OpenMP Pro-
gram. In Workshop on OpenMP Applications and Tools
(WOMPAT 2004), Houston, USA, May 2004.

[8] H. Lu, Y. C. Hu, and W. Zwaenepoel. OpenMP on Network
of Workstations. 1998.

[9] F. J. L. Reid and J. M. Bull. OpenMP Microbenchmarks Ver-
sion 2.0. In 6th European Workshop on OpenMP (EWOMP
2004), pages 63 – 68, Stockholm, Sweden, October 2004.

[10] M. Sato, H. Harada, A. Hasegawa, and Y. Ishikawa. Cluster-
enabled OpenMP: An OpenMP compiler for the SCASH
software distributed shared memory system. Scientific Pro-
gramming, 9(2,3):123–130, 2001.

[11] C. Terboven, T. Deselaers, C. Bischof, and H. Ney. Shared-
Memory Parallelization for Content-based Image Retrieval.
In ECCV 2006 Workshop on Computation Intensive Meth-
ods for Computer Vision (CIMCV), Graz, Austria, May
2006.

[12] T. Volmar, B. Brouillet, H. E. Gallus, and H. Benetschik.
Time Accurate 3D Navier-Stokes Analysis of a 1.5 Stage
Axial Flow Turbine, 1998.

66

