Skip to main content

Methods of 2-D Image Formation in Microdisplay-based and Related Systems

  • Reference work entry
  • 669 Accesses

Abstract

The data that forms the image viewed on an electronic display device is almost always transmitted to the display in serial format. Yet in almost all cases an electronic information display (EID) displays a 2D image. In this chapter, we review, and consider the implications of, some commonly used options for implementing the serial-to-parallel conversion. We further review different methods of generating gray levels in the pixels of a monochrome display, similarly the constituent gray levels in each of the individual color components of a color display, and finally the range of colors in the pixels of a color display. Much of the above is relevant to a broad range of display systems. Microdisplay systems, however, offer additional possibilities due to the superior capabilities (in terms of integration and speed of operation) of CMOS active matrix backplane electronics and the additional dimension afforded by optical transmission and/or magnification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AM:

Active Matrix or Amplitude Modulation

AES:

All-Electronic Scanning

AMLCD:

Active Matrix LCD

AMOLED:

Active Matrix OLED

AOS:

All-Optical Scanning

BLU:

Backlight Unit

BP:

Bit Plane

BWPCM:

Binary Weighted Pulse Count Modulation

BWPWM:

Binary Weighted Pulse Width Modulated or Modulation

CP:

Color Plane

CRT:

Cathode Ray Tube

DMD:

Digital Micromirror Device

EID:

Electronic Information Display

EO:

Electro-Optic

FET:

Field Effect Transistor

FPS:

Frames Per Second

FSC:

Field Sequential Color

GLV:

Grating Light Valve

IM:

Intensity Modulated or Modulation

LCD:

Liquid Crystal Display

LSBP:

Least Significant BP

MEMS:

Micro-Electro-Mechanical Systems

MEOS:

Mixed Electronic Optical Scanning

MSBP:

Most Significant BP

NTE:

Near-To-Eye

OLED:

Organic Light Emitting Diode

PCM:

Pulse Count Modulated or Modulation

PDP:

Plasma Display Panel

PM:

Passive Matrix

PWM:

Pulse Width Modulation

RGB:

Red Green Blue

RGBG:

Red Green Blue Green

RGBW:

Red Green Blue White

TFT:

Thin Film Transistor

SLM:

Spatial Light Modulator

SP:

Sub-Pixel

SSFLC:

Surface-Stabilized Ferroelectric LC

SSP:

Sub-Sub-Pixel

TNLCD:

Twisted Nematic LCD

TV:

Television

References

  1. Armitage D, Underwood I, Wu ST (2006) Introduction to microdisplays. Wiley, Chichester, pp 28–30

    Book  Google Scholar 

  2. Luo FC (1993) Active matrix LC displays. In: Bahadur B (ed) Liquid crystals applications and uses. World Scientific, Singapore, pp 398–438

    Google Scholar 

  3. Stewar M, Howell RS, Pires L, Hatalis MK, Howard W, Prache O (1998) Polysilicon VGA active matrix OLED displays – technology and performance

    Google Scholar 

  4. Cakmakci O, Rolland JP (2006) Head-worn displays: a review. J Disp Technol 2(3):199–216

    Article  Google Scholar 

  5. Pryor HL, Furness TA, Viirre E (1998) The virtual retinal display: a new display technology using scanned laser light, human factors and ergonomics society annual meeting proceedings, visual performance, pp 1570–1574(5)

    Google Scholar 

  6. Freeman M, Champion M, Madhavan S (2009) Scanned laser pico-projectors: seeing the big picture (with a small device). Opt Photonics News 20(5):28–34

    Article  Google Scholar 

  7. Strauss U et al (2008) True blue InGaN laser for pico size projectors. Proc SPIE 6894:689417

    Article  Google Scholar 

  8. Laser Projection Module, Fraunhofer Institut Photonische Mikrosysteme (IPMS), Dresden, Germany, http://www.ipms.fraunhofer.de/content/dam/ipms/common/products/SAS/Systeme/laserprojektionsmodul-e.pdf Accessed 18 May 2011.

  9. Castellano JA (1992) Handbook of display technology. Gulf Professional, Chapter 3

    Google Scholar 

  10. MacDonald L, Lowe AC (ed) (1997) Display systems: design and applications, Chapters 12, 13. Wiley, ISBN: 978-0-471-95870-3

    Google Scholar 

  11. Amm DT, Corrigan RW (1998) Grating light valve technology: update and novel applications. Silicon Light Machines, Sunnyvale

    Google Scholar 

  12. Eguchi N (2006) The latest trend in display technology GxL laser projector –love global exhibition type 2005. O plus E 320:696–699

    Google Scholar 

  13. Yun SK (2006) Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display. In: IMID/IDMC’06 Digest, pp 551–555

    Google Scholar 

  14. Freeman M, Champion M, Madhavan S (2008) Scanned laser pico-projector: Seeing the big picture (with a Small Device). MicroVision

    Google Scholar 

  15. Monk DW, Gale RO (1995) The digital micromirror device for projection display. Microelectron Eng 27(1–4):489–493

    Article  Google Scholar 

  16. Lagerwall ST (1996) Ferroelectric liquid crystal displays with greyscale. Liq Cryst Today 6(2):5–7

    Article  Google Scholar 

  17. Birch M, Kruerke D, Yates C, Macartney A, Peden D, Coates D (2002) SXGA resolution FLC microdisplays. In: SID 02 Digest, pp 954–957

    Google Scholar 

  18. Blalock TN, Gaddis NB, Nishimura KA, Knotts TA (2001) True color 1024×768 microdisplay with analog in-pixel pulse width modulation and retinal averaging offset correction. IEEE JSSC 36:838–845

    Google Scholar 

  19. Monk DW, Gale RO (1995) The digital micromirror device for projection display. Microelectron Eng 27:489–493

    Article  Google Scholar 

  20. Handschy MA, Spenner BF (2008) The future of pico projectors. Inf Disp 24(12):16–20

    Google Scholar 

  21. Underwood I, Burns DC, Woodburn RJ (2006) Polymer OLED microdisplay technology – pixel design in context. In: Proceedings of the SPIE 6333, organic light emitting materials and devices X, 633306

    Google Scholar 

  22. Matsumoto S et al (ed) (1984) Electronic display devices, Chapter 4, Plasma Display Panels (PDPs). Wiley, New York

    Google Scholar 

  23. Clark NA, Crandall C, Handschy MA, Meadows MR, Malzbender RM, Park C, Xue JZ (2000) FLC microdisplays. Ferroelectrics 246(1–4):1003/97–1016/110

    Google Scholar 

  24. Vatne R, Johnson PA Jr., Bos PJ (1983) A LC/CRT field-sequential color display. In: SID Symposium Tech. Dig., May 1983, pp 28–29

    Google Scholar 

  25. Rankin ID, Underwood I, Vass DG, Worboys MR (1996) Full-color miniature display. Proc SPIE 2651:16

    Article  Google Scholar 

  26. Janssen P, Shimizu JA et al (2002) Design aspects of a scrolling color LCoS display. Displays 23(3):99–108

    Article  Google Scholar 

  27. Duncan JA (2002) Uniform color illumination for scrolling color LCoS projection. In: Proceedings of the SPIE vol 4657, p 46, doi:10.1117/12.463779

    Google Scholar 

Further Reading

  • Armitage D, Underwood I, Wu ST (2006) Introduction to microdisplays. Wiley, Chichester

    Book  Google Scholar 

  • Brennesholtz MS, Stupp EH (2008) Projection displays. Wiley, Chichester

    Google Scholar 

Download references

Acknowledgments

The author wishes to thank Ahmad Wafi Mahmood Zuhdi and Krzysztof Nguyen of the University of Edinburgh for assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Underwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Underwood, I. (2012). Methods of 2-D Image Formation in Microdisplay-based and Related Systems. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_131

Download citation

Publish with us

Policies and ethics