Skip to main content

Organic TFTs: Solution-Processable Small-Molecule Semiconductors

  • Reference work entry
Book cover Handbook of Visual Display Technology

Abstract

Organic semiconductor (OSC) materials are seen as a potential replacement for amorphous silicon in future display applications. State-of-the-art small-molecule OSC materials, when incorporated into a transistor, obtain performance on par or superior to transistors using amorphous silicon. Higher performance coupled with the potential for low-cost fabrication make small-molecule OSC materials extremely promising and the focus of research organizations worldwide. This chapter provides an overview of p-type and n-type materials available, then addresses the impact of processing conditions on transistor performance, and finally concludes with an overview of state-of-the-art materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DFCO-4T:

Phenacyl Quaterthiophene

DiF-TES-ADT:

Bis(triethylsilylethynyldifluoro)anthradithiophene

DT-TTF:

Dithiophene Tetrathiafulvalene

HMDS:

Hexamethyldisilazane

P3HT:

Poly(3-hexylthiophene)

PCBM:

Phenyl-C61-Butyric Acid Methyl Ester

PFBT:

Pentafluorobenzenethiol

PVP:

Poly(4-vinylphenol)

SAM:

Self-assembled Monolayer

TES-ADT:

Bis(triethylsilylethynyl)anthradithiophene

TIPS Pentacene:

Bis(triisopropylsilylethynyl)pentacene

References

  1. Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin-film transistors for large-area electronics. Adv Mater 14(2):99–117

    Article  Google Scholar 

  2. (a) Katz HE (2004) Recent advances in semiconductor performance and printing processes for organic transistor-based electronics. Chem Mater 16(23):4748–4756. (b) Sirringhaus H (2009) Materials and applications for solution-processed organic field-effect transistors. Proc IEEE 97(9):1570–1579. (c) Anthony JE (2006) Functionalized acenes and heteroacenes for organic electronics. Chem Rev 106(12):5028–5048

    Google Scholar 

  3. McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline J, McGehee MD, Toney MF (2006) Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 5(4):328–333

    Article  Google Scholar 

  4. Halik M, Klauk H, Zschieschang U, Schmid G, Ponomarenko S, Kirchmeyer S, Weber W (2003) Relationship between molecular structure and electrical performance of oligothiophene organic thin-film transistors. Adv Mater 15(11):917–922

    Article  Google Scholar 

  5. Kelley TW, Baude PF, Gerlach C, Ender DE, Muyres D, Haase MA, Vogel DE, Theiss SD (2004) Recent progress in organic electronics: materials, devices, and processes. Chem Mater 16(23):4413–4422

    Article  Google Scholar 

  6. Di C-a, Yu G, Liu Y, Guo Y, Sun X, Zheng J, Wen Y, Wu W, Zhu D (2009) Selective crystallization of organic semiconductors for high performance organic field-effect transistors. Chem Mater 21(20):4873–4879

    Article  Google Scholar 

  7. Baude PF, Ender DA, Haase MA, Kelley TW, Muyres DV, Theiss SD (2003) Pentacene-based radio-frequency identification circuitry. Appl Phys Lett 82(22):3964–3966

    Article  Google Scholar 

  8. Natsume Y, Minakata T, Aoyagi T (2009) Pentacene thin film transistors fabricated by solution process with directional crystal growth. Org Electron 10(1):107–114

    Article  Google Scholar 

  9. See Refs. 38–40 (Herwig et al., Afzali et al., Weidkamp et al.)

    Google Scholar 

  10. Cantatore E, Geuns TCT, Gelinck GH, van Veenendall E, Gruijthuijsen AFA, Schrijnemakers L, Drews S, de Leeuw DM (2007) A 13.56-MHz RFID system based on organic transponders. IEEE J Solid-State Circuits 42(1):84–92

    Article  Google Scholar 

  11. Van Lieshout, P, van Veenendall, E, Schrijnemakers, L, Gelinck, G, Touwslager, F, Huitema, F (2005) A flexible 240×320-pixel display with integrated row drivers manufactured in organic electronics. ISSCC Digest Technical Papers 578

    Google Scholar 

  12. Molesa SM, de la Fuenta Vornbrock A, Chang PC, Subramanian V (2005) Low-voltage inkjetted organic transistors for printed RFID and display applications. IEDM Technical Digest 5.4.1–5.4.4

    Google Scholar 

  13. (a) Anthony JE, Brooks JS, Eaton DL, Parkin SR (2001) Functionalized pentacene: improved electronic properties from control of solid-state order. J Am Chem Soc 123(38):9482–9483. (b) Payne MM, Odom SA, Parkin SR, Anthony JE (2004) Stable, crystalline acenedithiophenes with up to seven linearly fused rings. Org Lett 6(19):3325–3328

    Google Scholar 

  14. Park SK, Jackson TN, Anthony JE, Mourey DA (2007) High mobility solution processed 6,13-bis(triisopropyl-silylethynyl)pentacene organic thin film transistors. Appl Phys Lett 91(6):063514

    Article  Google Scholar 

  15. Park SK, Mourey DA, Subramanian S, Anthony JE, Jackson TN (2008) High-mobility spin-cast organic thin film transistors. Appl Phys Lett 93(4):043301

    Article  Google Scholar 

  16. Llorente GR, Dufourg-Madec M-B, Crouch DJ, Pritchard RG, Ogier S, Yeates SG (2009) High performance, acene-based organic thin film transistors. Chem Commun 29:3059–3061

    Article  Google Scholar 

  17. Mas-Torrent M, Masirek S, Hadley P, Criviller N, Oxtoby NS, Reuter P, Veciana J, Rovira C, Tracz A (2008) Organic field-effect transistors (OFETs) of highly oriented films of dithiophene-tetrathiafulvalene prepared by zone casting. Org Electron 9(1):143–148

    Article  Google Scholar 

  18. (a) Gao X, Wu W, Liu Y, Qiu W, Sun X, Yu G, Zhu D (2006) A facile synthesis of linear benzene-fused bis(tetrathiafulvalene) compounds and their application for organic field-effect transistors. Chem Commun 26:2750–2752. (b) Doi I, Miyazaki E, Takimiya K, Kunugi Y (2007) Chem Mater 19(22):5230–5237

    Google Scholar 

  19. Dodabalapur A (2005) Negatively successful. Nature 434(7030):151–152

    Article  Google Scholar 

  20. Chua L-L, Zaumseil J, Chang J-F, Ou EC-W, Ho PK-H, Sirringhaus H, Friend RH (2005) General observation of n-type field-effect behaviour in organic semiconductors. Nature 434(7030):194–199

    Article  Google Scholar 

  21. Katz HE, Lovinger AJ, Johnson J, Kloc C, Siegrist T, Li W, Lin Y-Y, Dodabalapur A (2000) A soluble and air-stable organic semiconductor with high electron mobility. Nature 404(6777):478–480

    Article  Google Scholar 

  22. Yoo B, Jones BA, Basu D, Fine D, Jung T, Mohapatra S, Facchetti A, Dimmler K, Wasielewski MR, Marks TJ, Dodabalapur A (2007) High-performance solution-deposited n-channel organic transistors and their complementary circuits. Adv Mater 19(22):4028–4032

    Article  Google Scholar 

  23. Yan H, Lu S, Zheng Y, Inagaki P, Facchetti A, Marks TJ (2007) High mobility solution-processed n-channel organic thin film transistors. Proc SPIE 6658:66580S-1–66580S-8

    Google Scholar 

  24. Letizia JA, Facchetti A, Stern CL, Ratner MA, Marks TJ (2005) High electron mobility in solution-cast and vapor-deposited phenacyl-quaterthiophene-based field effect transistors: toward n-type polythiophenes. J Am Chem Soc 127(39):13476–13477

    Article  Google Scholar 

  25. Ortiz RP, Facchetti A, Marks TJ, Casado J, Zgierski MZ, Kozaki M, Hernández V, Navarrete JTL (2009) Ambipolar organic field-effect transistors from cross-conjugated aromatic quaterthiophenes; comparisons with quinoidal parent materials. Adv Funct Mater 19(3):386–394

    Article  Google Scholar 

  26. Singh TB, Marjanovic N, Stadler P, Auinger M, Matt GJ, Günes S, Sariciftci NS (2005) Fabrication and characterization of solution-processed methanofullerene-based organic field-effect transistors. J Appl Phys 97(8):083714

    Article  Google Scholar 

  27. Chikamatsu M, Itakura A, Yoshida Y, Azumi R, Kikuchi K, Yase K (2006) Correlation of molecular structure, packing motif and thin-film transistor characteristics of solution-processed n-type organic semiconductors based on dodecyl-substituted C60 derivatives. J Photochem Photobiol, A 182(3):245–249

    Article  Google Scholar 

  28. (a) See Reference 12 (Molesa et al.). (b) Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126

    Google Scholar 

  29. Anthony JE, Eaton DL, Parkin SR (2002) A road map to stable, soluble, easily crystallized pentacene derivatives. Org Lett 4(1):15–18

    Article  Google Scholar 

  30. Sele CW, Kjellander BKC, Niesen B, Thornton MJ, Bas J, van der Putten PH, Myny K, Wondergem HJ, Moser A, Resel R, van Breeman AJJM, van Aerle N, Heremans P, Anthony JE, Gelinck GH (2009) Controlled deposition of highly ordered soluble acene thin films: effect of morphology and crystal orientation on transistor performance. Adv Mater 21(48):4926–4931

    Article  Google Scholar 

  31. Huang J, Xia R, Kim Y, Wang X, Dane J, Hofmann O, Mosley A, de Mello AJ, de Mello JC, Bradley DDC (2007) Patterning of organic devices by interlayer lithography. J Mater Chem 17(11):1043–1049

    Article  Google Scholar 

  32. Lee J-K, Chatzichristidi M, Zakhidov AA, Taylor PG, DeFranco JA, Hwang HS, Fong HH, Holmes AB, Malliarus GG, Ober CK (2008) Acid-sensitive semiperfluoroalkyl resorcinarene: an imaging material for organic electronics. J Am Chem Soc 130(35):11564–11565

    Article  Google Scholar 

  33. (a) Dickey KC, Subramanian S, Anthony JE, Han L-H, Chen S, Loo Y-L (2007) Large-area patterning of a solution-processable organic semiconductor to reduce parasitic leakage and off currents in thin-film transistors. Appl Phys Lett 90(24):244103. (b) Mattis BA, Pei Y, Subramanian V (2005) Nanoscale device isolation of organic transistors via electron-beam lithography. Appl Phys Lett 86(3):033113

    Google Scholar 

  34. Gundlach DJ, Jia L, Jackson TN (2001) Pentacene TFT with improved linear region characteristics using chemically modified source and drain electrodes. IEEE Electron Device Lett 22(12):571–573

    Article  Google Scholar 

  35. Gundlach DJ, Royer JE, Park SK, Subramanian S, Jurchescu OD, Hamadani BH, Moad AJ, Kline RJ, Teague LC, Kirillov O, Richter CA, Kushmerick JG, Richter LJ, Parkin SR, Jackson TN, Anthony JE (2008) Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nat Mater 7(3):216–221

    Article  Google Scholar 

  36. Gundlach DJ, Zhou L, Nichols JA, Jackson TN, Nucliudov PV, Shur MS (2006) An experimental study of contact effects in organic thin film transistors. J Appl Phys 100(2):024509

    Article  Google Scholar 

  37. Hamilton R, Smith J, Ogier S, Heeney M, Anthony J, McCulloch I, Veres J, Bradley D, Anthopoulos T (2009) High-performance polymer small molecule blend organic transistors. Adv Mater 21(10):1166–1171

    Article  Google Scholar 

  38. Herwig PT, Müllen K (1999) Solid-state conversion into pentacene and application in a field-effect transistor. Adv Mater 11(6):480–483

    Article  Google Scholar 

  39. Afzali A, Dimitrakopoulos CD, Breen TL (2002) High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. J Am Chem Soc 124(30):8812–8813

    Article  Google Scholar 

  40. Weidkamp KP, Afzali A, Tromp RM, Hamers RJ (2004) A photopatternable pentacene precursor for use in organic thin-film transistors. J Am Chem Soc 126(40):12740–12741

    Article  Google Scholar 

  41. Lee W, Lim J, Kim D, Cho J, Jang Y, Kim Y, Han J, Cho K (2008) Room-temperature self-organizing characteristics of soluble acene field-effect transistors. Adv Funct Mater 18(4):560–565

    Article  Google Scholar 

  42. Dickey K, Anthony J, Loo Y-L (2006) Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene. Adv Mater 18(13):1721–1726

    Article  Google Scholar 

  43. Dickey K, Smith T, Stevenson K, Subramanian S, Anthony J, Loo Y-L (2007) Establishing efficient electrical contact to the weak crystals of triethylsilylethynyl anthradithiophene. Chem Mater 19(22):5210–5215

    Article  Google Scholar 

  44. Subramanian S, Park S, Parkin S, Podzorov V, Jackson T, Anthony J (2008) Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. J Am Chem Soc 130(9):2706–2707

    Article  Google Scholar 

  45. Park SK, Mourey DA, Subramanian S, Anthony JE, Jackson TN (2008) Polymeric substrate spin-cast diF-TESADT OTFT circuits. IEEE Electron Device Lett 29(9):1004–1006

    Article  Google Scholar 

  46. Jurchescu OD, Subramanian S, Kline RJ, Hudson SD, Anthony JE, Jackson TN, Gundlach DJ (2008) Organic single-crystal transistors of soluble anthradithiophene. Chem Mater 20(21):6733–6737

    Article  Google Scholar 

  47. See Reference 14 (Park et al. 2007 APL)

    Google Scholar 

  48. Park SK, Anthony JE, Jackson TN (2007) Solution-processed TIPS-pentacene organic thin-film-transistor circuits. IEEE Electron Device Lett 28(10):877–879

    Article  Google Scholar 

  49. Halls J, Newsome C, Kugler T, Whiting G, Murphy C, Burroughes J (2008) OTFT development for OLED backplanes: optimisation of high mobility 10 μm channel OTFTs. Presented at Intertech Thin-Film Transistors Conference, La Jolla, CA

    Google Scholar 

Further Reading

  • Murphy AR, Fréchet JMJ (2007) Organic semiconducting oligomers for use in thin film transistors. Chem Rev 107(4):1066–1096

    Article  Google Scholar 

  • Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field-effect transistors. Chem Rev 107(4):1296–1323

    Article  Google Scholar 

  • Menard E, Meitl MA, Sun Y, Park J-U, Shir DJ-L, Nam Y-S, Jeon S, Rogers JA (2007) Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev 107(4):1117–1160

    Article  Google Scholar 

  • Mas-Torrent M, Rovia C (2007) Novel small molecules for organic field-effect transistors: towards processability and high performance. Chem Soc Rev 37(4):827–838

    Article  Google Scholar 

  • Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A (2010) Materials and applications for large area electronics: solution-based approaches. Chem Rev 110(1):3–24

    Article  Google Scholar 

  • Klauk H (ed) (2006) Organic electronics: materials, manufacturing and applications. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Payne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Redinger, D., Payne, M. (2012). Organic TFTs: Solution-Processable Small-Molecule Semiconductors. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_50

Download citation

Publish with us

Policies and ethics