Skip to main content

Carbon Nanotube TFTs

  • Reference work entry
Handbook of Visual Display Technology

Abstract

The mix of extraordinary electrical, mechanical, and optical properties makes carbon nanotubes a promising material for future applications. The room-temperature charge carrier mobility of individual carbon nanotubes was demonstrated to outperform all known semiconductors. This might enable high-performance on-panel electronic circuits like promised for poly-silicon technology. Carbon nanotubes can in contrast be processed from solution, enabling low-cost vacuum-free deposition. Since carbon nanotubes are also extremely flexible, mechanically and chemically very stable, they seem predestined for flexible electronics and flexible displays. If all mentioned aspects can be combined in a stable process, carbon nanotube transistors can become the basic building block not only for display applications. In this chapter, the basic knowledge for a better understanding of carbon nanotube based electronics is given and key techniques for their application in displays and flexible electronics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

φ m :

Metal Work Function

AM:

Active Matrix

CNN:

Carbon Nanotube Network

CNT:

Carbon Nanotube

CVD:

Chemical Vapor Deposition

d t :

Diameter of a SWNT

D :

Density of a CNN [tubes/area]

DOS:

Density of States

E f :

Fermi Energy

FET:

Field Effect Transistor

I off :

TFT Current in the Off-State

I on :

TFT Current in the On-State

L :

Length of a SWNT

L C :

TFT Channel Length

m-SWNT:

Metallic Single Walled Nanotube

MWNT:

Multi Walled Nanotube

NMP:

N-Methyl-Pyrrolidone

PANI:

Poly(Aniline)

PEI:

Poly(Ethylenimine)

PMMA:

Poly(Methyl Methacrylate)

p m :

Percolation Threshold of m-SWNTs

p s :

Percolation Threshold of s-SWNTs

S :

Subthreshold Swing

SB:

Schottky Barrier

SWNT:

Single Walled Nanotube

s-SWNT:

Semiconducting Single Walled Nanotube

TFT:

Thin Film Transistor

W C :

TFT Channel Width

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  2. Bethune DS, Kiang C, de Vries MS, Groman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  Google Scholar 

  3. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  4. Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2:605–615

    Article  Google Scholar 

  5. Jorio A, Dresselhaus G, Dresselhaus MS (2008) Carbon nanotubes – advanced topics in the synthesis, structure, properties and applications, vol 111, Topics in applied physics. Springer, Berlin

    Google Scholar 

  6. Durkop T, Getty SA, Cobas E, Fuhrer MS (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4:35–39

    Article  Google Scholar 

  7. Kim W, Javey A, Tu R, Cao J, Wang Q, Dai H (2005) Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl Phys Lett 87:173101

    Article  Google Scholar 

  8. Saito Y (2010) Yahachi saito laboratory, Nagoya University. http://www.surf.nuqe.nagoyau.ac.jp. Accessed 12 May, 2010

  9. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    Article  Google Scholar 

  10. Reich DS, Thomsen PC, Maultzsch DPJ (2003) Carbon nanotubes – basic concepts and physical properties. Wiley-VCH, Weinheim

    Google Scholar 

  11. Kane CL, Mele EJ (1997) Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett 78:1932

    Article  Google Scholar 

  12. Maruyama S (2010) Shigeo maruyama’s carbon nanotube and fullerene site. http://www.photon.t.u-tokyo.ac.jp/~maruyama/nanotube.html. Accessed 12 May, 2010

  13. Popov VN (2004) Carbon nanotubes: properties and application. Mat Sci Eng R, Reports 43:61–102

    Article  Google Scholar 

  14. Thess A et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  Google Scholar 

  15. Bronikowski MJ, Willis PA, Colbert DT, Smith K, Smalley RE (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J Vacuum Sci Technol A 19:1800–1805

    Article  Google Scholar 

  16. Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313:91–97

    Article  Google Scholar 

  17. Hersam MC (2008) Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol 3:387–394

    Article  Google Scholar 

  18. Lolli G, Zhang L, Balzano L, Sakulchaicharoen N, Tan Y, Resasco DE (2006) Tailoring (n, m) structure of Single-Walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J Phys Chem B 110:2108–2115

    Article  Google Scholar 

  19. Li Y et al (2004) Preferential growth of semiconducting Single-Walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett 4:317–321

    Article  Google Scholar 

  20. Li Y, Peng S, Mann D, Cao J, Tu R, Cho KJ, Dai H (2005) On the origin of preferential growth of semiconducting single-walled carbon nanotubes. J Phys Chem B 109:6968–6971

    Article  Google Scholar 

  21. Qu L, Du F, Dai L (2008) Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett 8:2682–2687

    Article  Google Scholar 

  22. Wang Y, Liu Y, Li X, Cao L, Wei D, Zhang H, Shi D, Yu G, Kajiura H, Li Y (2007) Direct enrichment of metallic single-walled carbon nanotubes induced by the different molecular composition of monohydroxy alcohol homologues. Small 3:1486–1490

    Article  Google Scholar 

  23. Harutyunyan AR, Chen G, Paronyan TM, Pigos EM, Kuznetsov OA, Hewa-parakrama K, Kim SM, Zakharov D, Stach EA, Sumanasekera GU (2009) Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326:116–120

    Article  Google Scholar 

  24. Wang Y, Kim MJ, Shan H, Kittrell C, Fan H, Ericson LM, Hwang W, Arepalli S, Hauge RH, Smalley RE (2005) Continued growth of single-walled carbon nanotubes. Nano Lett 5:997–1002

    Article  Google Scholar 

  25. Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR (2008) Synthesis, characterization, and theory of [9]-, [12]-, and [18] Cycloparaphenylene: carbon nanohoop structures. J Am Chem Soc 130:17646–17647

    Article  Google Scholar 

  26. Fort EH, Donovan PM, Scott LT (2009) Diels-Alder reactivity of polycyclic aromatic hydrocarbon bay regions: implications for metal-free growth of single-chirality carbon nanotubes. J Am Chem Soc 131:16006–16007

    Article  Google Scholar 

  27. Park T, Banerjee S, Hemraj-Benny T, Wong SS (2006) Purification strategies and purity visualization techniques for single-walled carbon nanotubes. J Mater Chem 16:141

    Article  Google Scholar 

  28. Hou P, Liu C, Cheng H (2008) Purification of carbon nanotubes. Carbon 46:2003–2025

    Article  Google Scholar 

  29. Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ (1999) A simple and complete purification of Single-Walled carbon nanotube materials. Adv Mater 11:1354–1358

    Article  Google Scholar 

  30. Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17:17–29

    Article  Google Scholar 

  31. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  Google Scholar 

  32. Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123:6536–6542

    Article  Google Scholar 

  33. Pénicaud A, Poulin P, Derré A, Anglaret E, Petit P (2005) Spontaneous dissolution of a single-wall carbon nanotube salt. J Am Chem Soc 127:8–9

    Article  Google Scholar 

  34. Ramesh S, Ericson LM, Davis VA, Saini RK, Kittrell C, Pasquali M, Billups WE, Adams WW, Hauge RH, Smalley RE (2004) Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J Phys Chem B 108:8794–8798

    Article  Google Scholar 

  35. Davis VA et al (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4:830–834

    Article  Google Scholar 

  36. Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104:8911–8915

    Article  Google Scholar 

  37. Bergin SD et al (2008) Towards solutions of single-walled carbon nanotubes in common solvents. Adv Mater 20:1876–1881

    Article  Google Scholar 

  38. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273

    Article  Google Scholar 

  39. Xu Z, Yang X, Yang Z (2010) A molecular simulation probing of structure and interaction for supramolecular sodium dodecyl sulfate/single-wall carbon nanotube assemblies. Nano Lett 10:985–991

    Article  Google Scholar 

  40. O’Connell MJ et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    Article  Google Scholar 

  41. Geng HZ, Kim KK, So KP, Lee YS, Chang Y, Lee YH (2007) Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc 129:7758–7759

    Article  Google Scholar 

  42. Huang X, Mclean RS, Zheng M (2005) High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal Chem 77:6225–6228

    Article  Google Scholar 

  43. Arnold K, Hennrich F, Krupke R, Lebedkin S, Kappes MM (2006) Length separation studies of single walled carbon nanotube dispersions. Physica Status Solidi (B) 243:3073–3076

    Article  Google Scholar 

  44. Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5:713–718

    Article  Google Scholar 

  45. Krupke R, Hennrich F, v Loehneysen H, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347

    Article  Google Scholar 

  46. Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709

    Article  Google Scholar 

  47. Seidel R, Graham AP, Unger E, Duesberg GS, Liebau M, Steinhoegl W, Kreupl F, Hoenlein W, Pompe W (2004) High-current nanotube transistors. Nano Lett 4:831–834

    Article  Google Scholar 

  48. Balasubramanian K, Sordan R, Burghard M, Kern K (2004) A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett 4:827–830

    Article  Google Scholar 

  49. Hassanien A, Tokumoto M, Umek P, Vrbanič D, Mozetič M, Mihailović D, Venturini P (2005) Selective etching of metallic single-wall carbon nanotubes with hydrogen plasma. Nanotechnology 16:278–281

    Article  Google Scholar 

  50. Zhang G, Qi P, Wang X, Lu Y, Li X, Tu R, Bangsaruntip S, Mann D, Zhang L, Dai H (2006) Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314:974–977

    Article  Google Scholar 

  51. Huang H, Maruyama R, Noda K, Kajiura H, Kadono K (2006) Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. J Phys Chem B 110:7316–7320

    Article  Google Scholar 

  52. Dimaki M, Boggild P (2004) Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study. Nanotechnology 15:1095–1102

    Article  Google Scholar 

  53. Krupke R, Hennrich F, Kappes MM, v Lohneysen H (2004) Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett 4:1395–1399

    Article  Google Scholar 

  54. Shin DH, Kim J, Shim HC, Song J, Yoon J, Kim J, Jeong S, Kang J, Baik S, Han C (2008) Continuous extraction of highly pure metallic single-walled carbon nanotubes in a microfluidic channel. Nano Lett 8:4380–4385

    Article  Google Scholar 

  55. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65

    Article  Google Scholar 

  56. Bachilo SM, Balzano L, Herrera JE, Pompeo F, Resasco DE, Weisman RB (2003) Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J Am Chem Soc 125:11186–11187

    Article  Google Scholar 

  57. Ghosh S, Bachilo SM, Weisman RB (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol 5:443–450

    Article  Google Scholar 

  58. Cao Q, Rogers J (2008) Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res 1:259–272

    Article  Google Scholar 

  59. Yan Y, Chan-Park MB, Zhang Q (2007) Advances in carbon-nanotube assembly. Small 3:24–42

    Article  Google Scholar 

  60. Huang L, Jia Z, O’Brien S (2007) Orientated assembly of single-walled carbon nanotubes and applications. J Mater Chem 17:3863–3874

    Article  Google Scholar 

  61. Kocabas C, Meitl MA, Gaur A, Shim M, Rogers JA (2004) Aligned arrays of single-walled carbon nanotubes generated from random networks by orientationally selective laser ablation. Nano Lett 4:2421–2426

    Article  Google Scholar 

  62. Nojeh A, Ural A, Pease RF, Dai H (2004) Electric-field-directed growth of carbon nanotubes in two dimensions. In: The 48th international conference on electron, ion, and photon beam technology and nanofabrication, San Diego, California (USA), Nov., vol 22, pp 3421–3425, AVS

    Google Scholar 

  63. Lee K, Cho J, Sigmund W (2003) Control of growth orientation for carbon nanotubes. Appl Phys Lett 82:448

    Article  Google Scholar 

  64. Huang L, Cui X, White B, O’Brien SP (2004) Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition. J Phys Chem B 108:16451–16456

    Article  Google Scholar 

  65. McNicholas TP, Ding L, Yuan D, Liu J (2009) Density enhancement of aligned single-walled carbon nanotube thin films on quartz substrates by sulfur-assisted synthesis. Nano Lett 9:3646–3650

    Article  Google Scholar 

  66. Xiao J et al (2009) Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett 9:4311–4319

    Article  Google Scholar 

  67. Ding L, Tselev A, Wang J, Yuan D, Chu H, McNicholas TP, Li Y, Liu J (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9:800–805

    Article  Google Scholar 

  68. Hur S, Park OO, Rogers JA (2005) Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors. Appl Phys Lett 86:243502

    Article  Google Scholar 

  69. Zhou Y, Liangbing H, Grüner G (2006) A method of printing carbon nanotube thin films. Appl Phys Lett 88:123109–1–3

    Google Scholar 

  70. Kocabas C, Kang SJ, Ozel T, Shim M, Rogers JA (2007) Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J Phys Chem C 111:17879–17886

    Article  Google Scholar 

  71. Tseng SH, Tai NH (2009) Fabrication of a transparent and flexible thin film transistor based on single-walled carbon nanotubes using the direct transfer method. Appl Phys Lett 95:204104

    Article  Google Scholar 

  72. Im J et al (2009) Direct printing of aligned carbon nanotube patterns for high-performance thin film devices. Appl Phys Lett 94:053109

    Article  Google Scholar 

  73. Zavodchikova MY, Nasibulin AG, Kulmala T, Grigoras K, Anisimov AS, Franssila S, Ermolov V, Kauppinen EI (2008) Novel carbon nanotube network deposition technique for electronic device fabrication. Phys Status Solidi (B) 245:2272–2275

    Article  Google Scholar 

  74. Wang C, Zhang J, Ryu K, Badmaev A, Arco LGD, Zhou C (2009) Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett 9:4285–4291

    Article  Google Scholar 

  75. Kämpgen M, Duesberg GS, Roth S (2005) Transparent carbon nanotube coatings. Appl Surf Sci 252:425–429

    Article  Google Scholar 

  76. Schindler A, Spiessberger S, Fruehauf N, Novak JP, Yaniv Z (2007) Solution-deposited carbon nanotube networks for flexible active matrix displays. In: Proceedings of Asia display, Shanghai, China, vol 1, pp 882–887

    Google Scholar 

  77. Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL (2009) Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater 21:3210–3216

    Article  Google Scholar 

  78. Vaillancourt J et al (2008) All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz. Appl Phys Lett 93:243301–3

    Article  Google Scholar 

  79. Liu J, Casavant MJ, Cox M, Walters DA, Boul P, Lu W, Rimberg AJ, Smith KA, Colbert DT, Smalley RE (1999) Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem Phys Lett 303:125–129

    Article  Google Scholar 

  80. Auvray S, Derycke V, Goffman M, Filoramo A, Jost O, Bourgoin J (2005) Chemical optimization of self-assembled carbon nanotube transistors. Nano Lett 5:451–455

    Article  Google Scholar 

  81. Xin H, Woolley AT (2003) DNA-templated nanotube localization. J Am Chem Soc 125:8710–8711

    Article  Google Scholar 

  82. Keren K, Berman RS, Buchstab E, Sivan U, Braun E (2003) DNA-templated carbon nanotube field-effect transistor. Science 302:1380–1382

    Article  Google Scholar 

  83. Mclean RS, Huang X, Khripin C, Jagota A, Zheng M (2006) Controlled two-dimensional pattern of spontaneously aligned carbon nanotubes. Nano Lett 6:55–60

    Article  Google Scholar 

  84. Maune HT, Han S-P, Barish RD, Bockrath M, Goddard WA, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66

    Article  Google Scholar 

  85. Xiong X, Chen C, Ryan P, Busnaina AA, Jung YJ, Dokmeci MR (2009) Directed assembly of high density single-walled carbon nanotube patterns on flexible polymer substrates. Nanotechnology 20:295302

    Article  Google Scholar 

  86. Yu G, Cao A, Lieber CM (2007) Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat Nanotechnol 2:372–377

    Article  Google Scholar 

  87. Kim Y, Minami N, Zhu W, Kazaoui S, Azumi R, Matsumoto M (2003) Homogeneous and structurally controlled thin films of single-wall carbon nanotubes by the Langmuir-Blodgett technique. Synthetic Met 135–136:747–748

    Article  Google Scholar 

  88. Jin S, Whang D, McAlpine MC, Friedman RS, Wu Y, Lieber CM (2004) Scalable interconnection and integration of nanowire devices without registration. Nano Lett 4:915–919

    Article  Google Scholar 

  89. Li X, Zhang L, Wang X, Shimoyama I, Sun X, Seo W, Dai H (2007) Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J Am Chem Soc 129:4890–4891

    Article  Google Scholar 

  90. Shimoda H, Oh S, Geng H, Walker R, Zhang X, McNeil L, Zhou O (2002) Self-assembly of carbon nanotubes. Adv Mater 14:899–901

    Article  Google Scholar 

  91. Huang L, Cui X, Dukovic G, Brien SPO (2004) Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions. Nanotechnology 15:1450–1454

    Article  Google Scholar 

  92. Engel M, Small JP, Steiner M, Freitag M, Green AA, Hersam MC, Avouris P (2008) Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2:2445–2452

    Article  Google Scholar 

  93. Zamora-Ledezma C, Blanc C, Maugey M, Zakri C, Poulin P, Anglaret E (2008) Anisotropic thin films of single-wall carbon nanotubes from aligned lyotropic nematic suspensions. Nano Lett 8:4103–4107

    Article  Google Scholar 

  94. Lay MD, Novak JP, Snow ES (2004) Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes. Nano Lett 4:603–606

    Article  Google Scholar 

  95. Xin H, Woolley AT (2004) Directional orientation of carbon nanotubes on surfaces using a gas flow cell. Nano Lett 4:1481–1484

    Article  Google Scholar 

  96. Meitl MA, Zhou Y, Gaur A, Jeon S, Usrey ML, Strano MS, Rogers JA (2004) Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett 4:1643–1647

    Article  Google Scholar 

  97. Schindler A, Spiessberger S, Hergert S, Fruehauf N, Novak JP, Yaniv Z (2008) Suspension-Deposited carbon nanotube networks for flexible active matrix displays. J Soc Info Disp 16:651–658

    Article  Google Scholar 

  98. LeMieux MC, Roberts M, Barman S, Jin YW, Kim JM, Bao Z (2008) Self-sorted, aligned nanotube networks for thin-film transistors. Science 321:101–104

    Article  Google Scholar 

  99. Roberts ME, LeMieux MC, Sokolov AN, Bao Z (2009) Self-sorted nanotube networks on polymer dielectrics for low-voltage thin-film transistors. Nano Lett 9:2526–2531

    Article  Google Scholar 

  100. Peng N, Zhang Q, Sun Y (2008) Motion of carbon nanotubes in suspension under AC electric field. Int J Nanomanufacturing 2:50–58

    Google Scholar 

  101. Vijayaraghavan A, Blatt S, Weissenberger D, Oron-Carl M, Hennrich F, Gerthsen D, Hahn H, Krupke R (2007) Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett 7:1556–1560

    Article  Google Scholar 

  102. Sorgenfrei S, Meric I, Banerjee S, Akey A, Rosenblatt S, Herman IP, Shepard KL (2009) Controlled dielectrophoretic assembly of carbon nanotubes using real-time electrical detection. Appl Phys Lett 94:053105

    Article  Google Scholar 

  103. Stokes P, Khondaker SI (2010) High quality solution processed carbon nanotube transistors assembled by dielectrophoresis. Appl Phys Lett 96:083110

    Article  Google Scholar 

  104. Stokes P, Silbar E, Zayas YM, Khondaker SI (2009) Solution processed large area field effect transistors from dielectrophoreticly aligned arrays of carbon nanotubes. Appl Phys Lett 94:113104

    Article  Google Scholar 

  105. Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236

    Article  Google Scholar 

  106. Zhou X, Park J, Huang S, Liu J, McEuen PL (2005) Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys Rev Lett 95:146805

    Article  Google Scholar 

  107. Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P (2002) Carbon nanotubes as schottky barrier transistors. Phys Rev Lett 89:106801

    Article  Google Scholar 

  108. Chen Z, Appenzeller J, Knoch J, Lin Y, Avouris P (2005) The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett 5:1497–1502

    Article  Google Scholar 

  109. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  Google Scholar 

  110. Ding L et al (2009) Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. Nano Lett 9:4209–4214

    Article  Google Scholar 

  111. Lim SC, Jang JH, Bae DJ, Han GH, Lee S, Yeo I, Lee YH (2009) Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Appl Phys Lett 95:264103

    Article  Google Scholar 

  112. Topinka MA, Rowell MW, Goldhaber-Gordon D, McGehee MD, Hecht DS, Grüner G (2009) Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett 9:1866–1871

    Article  Google Scholar 

  113. Hu L, Hecht DS, Grüner G (2004) Percolation in transparent and conducting carbon nanotube networks. Nano Lett 4:2513–2517

    Article  Google Scholar 

  114. Kumar S, Pimparkar N, Murthy JY, Alam MA (2006) Theory of transfer characteristics of nanotube network transistors. Appl Phys Lett 88:123505

    Article  Google Scholar 

  115. Skákalová V, Kaiser AB, Woo Y, Roth S (2006) Electronic transport in carbon nanotubes: from individual nanotubes to thin and thick networks. Phys Rev B 74:085403

    Article  Google Scholar 

  116. Li J, Zhang Z, Zhang S (2007) Percolation in random networks of heterogeneous nanotubes. Appl Phys Lett 91:253127–3

    Article  Google Scholar 

  117. Schindler A, Brill J, Fruehauf N, Novak JP, Yaniv Z (2007) Solution-deposited carbon nanotube layers for flexible display applications. Physica E 37:119–123

    Article  Google Scholar 

  118. Ishida M, Nihey F (2008) Estimating the yield and characteristics of random network carbon nanotube transistors. Appl Phys Lett 92:163507

    Article  Google Scholar 

  119. Cao Q, Kim H-S, Pimparkar N, Kulkarni JP, Wang C, Shim M, Roy K, Alam MA, Rogers JA (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495–500

    Article  Google Scholar 

  120. Pimparkar N, Cao Q, Rogers J, Alam M (2009) Theory and practice of “Striping” for improved ON/OFF ratio in carbon nanonet thin film transistors. Nano Res 2:167–175

    Article  Google Scholar 

  121. Fuhrer MS et al (2000) Crossed nanotube junctions. Science 288:494–497

    Article  Google Scholar 

  122. Stadermann M et al (2004) Nanoscale study of conduction through carbon nanotube networks. Phys Rev B 69:201402–1–3

    Article  Google Scholar 

  123. Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, McEuen P, Lundstrom M, Dai H (2002) High-[kappa] dielectrics for advanced carbon-nanotube transistors and logic gates. Nat Mater 1:241–246

    Article  Google Scholar 

  124. Xu H, Zhang S, Anlage SM, Hu L, Grüner G (2008) Frequency- and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density. Phys Rev B 77:075418

    Article  Google Scholar 

  125. Kocabas C, Pimparkar N, Yesilyurt O, Kang SJ, Alam MA, Rogers JA (2007) Experimental and theoretical studies of transport through large scale, partially aligned arrays of Single-Walled carbon nanotubes in thin film type transistors. Nano Lett 7:1195–1202

    Article  Google Scholar 

  126. Derycke V, Martel R, Appenzeller J, Avouris P (2002) Controlling doping and carrier injection in carbon nanotube transistors. Appl Phys Lett 80:2773

    Article  Google Scholar 

  127. Lin YM, Appenzeller J, Knoch J, Avouris P (2005) High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans Nanotechnol 4:481–489

    Article  Google Scholar 

  128. Shim M, Javey A, Kam NWS, Dai H (2001) Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J Am Chem Soc 123:11512–11513

    Article  Google Scholar 

  129. Siddons GP, Merchin D, Back JH, Jeong JK, Shim M (2004) Highly efficient gating and doping of carbon nanotubes with polymer electrolytes. Nano Lett 4:927–931

    Article  Google Scholar 

  130. Klinke C, Chen J, Afzali A, Avouris P (2005) Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett 5:555–558

    Article  Google Scholar 

  131. Zhou Y, Gaur A, Hur S, Kocabas C, Meitl MA, Shim M, Rogers JA (2004) p-Channel, n-Channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett 4:2031–2035

    Article  Google Scholar 

  132. Ryu K, Badmaev A, Wang C, Lin A, Patil N, Gomez L, Kumar A, Mitra S, Wong HP, Zhou C (2009) CMOS-analogous wafer-scale nanotube-on-Insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett 9:189–197

    Article  Google Scholar 

  133. Chen Z, Appenzeller J, Lin Y, Sippel-Oakley J, Rinzler AG, Tang J, Wind SJ, Solomon PM, Avouris P (2006) An integrated logic circuit assembled on a single carbon nanotube. Science 311:1735

    Article  Google Scholar 

  134. Kim T, Kim G, Choi WI, Kwon Y, Zuo J (2010) Electrical transport in small bundles of single-walled carbon nanotubes: intertube interaction and effects of tube deformation. Appl Phys Lett 96:173107

    Article  Google Scholar 

  135. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804

    Article  Google Scholar 

  136. Kar S, Vijayaraghavan A, Soldano C, Talapatra S, Vajtai R, Nalamasu O, Ajayan PM (2006) Quantitative analysis of hysteresis in carbon nanotube field-effect devices. Appl Phys Lett 89:132118–3

    Article  Google Scholar 

  137. Kim W, Javey A, Vermesh O, Wang Q, Yiming L, Dai H (2003) Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett 3:193–198

    Article  Google Scholar 

  138. Shimauchi H, Ohno Y, Kishimoto S, Mizutani T (2006) Suppression of hysteresis in carbon nanotube field-effect transistors: effect of contamination induced by device fabrication process. Jpn J Appl Phys 45:5501–5503

    Article  Google Scholar 

  139. Mizutani T, Iwatsuki S, Ohno Y, Kishimoto S (2005) Effects of fabrication process on current-voltage characteristics of carbon nanotube field effect transistors. Jpn J Appl Phys 44:1599–1602

    Article  Google Scholar 

  140. Kim SK, Xuan Y, Ye PD, Mohammadi S, Back JH, Shim M (2007) Atomic layer deposited Al2O3 for gate dielectric and passivation layer of single-walled carbon nanotube transistors. Appl Phys Lett 90:163108

    Article  Google Scholar 

  141. Zavodchikova MY, Kulmala T, Nasibulin AG, Ermolov V, Franssila S, Grigoras K, Kauppinen EI (2009) Carbon nanotube thin film transistors based on aerosol methods. Nanotechnology 20:085201

    Article  Google Scholar 

  142. Sun D-M, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nano 6:156–161

    Article  Google Scholar 

  143. Schindler A, Knorr S, Novak JP, Yaniv Z, Fruehauf N (2010) High yield solution-based deposition of carbon nanotube thin film transistors for flexible display applications. In: 10th International meeting on information display, Seoul, Korea

    Google Scholar 

  144. Nougaret L, Happy H, Dambrine G, Derycke V, Bourgoin JP, Green AA, Hersam MC (2009) 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes. Appl Phys Lett 94:243505

    Article  Google Scholar 

  145. Cao Q, Hur S, Zhu Z, Sun Y, Wang C, Meitl MA, Shim M, Rogers JA (2006) Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater 18:304–309

    Article  Google Scholar 

  146. Kocabas C et al (2009) High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett 9:1937–1943

    Article  Google Scholar 

  147. Rutherglen C, Jain D, Burke P (2009) Nanotube electronics for radiofrequency applications. Nat Nanotechnol 4:811–819

    Article  Google Scholar 

  148. Kocabas C, Kim H-S, Banks T, Rogers JA, Pesetski AA, Baumgardner JE, Krishnaswamy SV, Zhang H (2008) Radio frequency analog electronics based on carbon nanotube transistors. Proc Natl Acad Sci 105:1405–1409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Schindler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schindler, A. (2012). Carbon Nanotube TFTs. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_53

Download citation

Publish with us

Policies and ethics