Skip to main content

ITO Replacements: Polymers

  • Reference work entry
Book cover Handbook of Visual Display Technology

Abstract

Indium tin oxide (ITO) is widely used as electrode in the display industry. This chapter focuses on conductive polymers as ITO replacement. It describes the properties of intrinsically conductive polymers in general and those of the poly(3,4-ethylene dioxythiophene) (PEDOT), the most advanced intrinsically conductive polymer (ICP) in terms of conductivity and transparency, in particular. The synthesis of PEDOT is described and its conductivity, transmission, and refractive index are compared to that of ITO. Finally, first examples of PEDOT as ITO replacement are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AZO:

Aluminum Doped ZnO

EDOT:

Ethylenedioxythiophene

ICP:

Intrinsically Conductive Polymer

ITO:

Indium Tin Oxide

OLED:

Organic Light Emitting Diode

OPV:

Organic Photovoltaic

PEDOT:

Poly-(3,4-ethylenedioxythiophene)

PET:

Polyethylene Terephthalate

PLED:

Polymer Light Emitting Diode

PSS:

Polystyrenesulfonic Acid

SM-OLED:

Small Molecule Organic Light Emitting Diode

TCO:

Transparent Conductive Oxide

References

  1. Scholz F (2008) Conducting polymers. A new era in electrochemistry. Springer, Berlin

    Google Scholar 

  2. Skotheim TA, Reynolds JR (2007) Handbook of conducting polymers. CRC, New York

    Google Scholar 

  3. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12(7):481–494

    Article  Google Scholar 

  4. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. J Phys Chem B 105(36):8475–8491

    Article  Google Scholar 

  5. Kaiser AB (2001) Systematic conductivity behaviour in conjugated polymers: effects of heterogeneous disorder. Adv Mater 13(12–13):927–941

    Article  Google Scholar 

  6. Park YW, Choi ES, Suh DS (1998) Metallic temperature dependence of resistivity in perchlorate doped polyacetylene. Synth Met 96(1):81–86

    Article  Google Scholar 

  7. Jonas F, Schrader L (1991) Synth Met 41–43:831–836

    Article  Google Scholar 

  8. Jonas F, Heywang G, Schmidtberg W (1988) Deutsches Patentamt. DE 3813589 (Bayer AG)

    Google Scholar 

  9. Kirchmeyer S, Reuter K (2005) Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem 15(21):2077–2088

    Article  Google Scholar 

  10. Clevios™ PH 1000 supplied by Heraeus Clevios GmbH, Chempark Leverkusen, 51368 Leverkusen, Germany. www.clevios.com

  11. Winther-Jensen B, Breiby DW, West K (2005) Base inhibited oxidative polymerization of 3, 4-ethylenedioxythiophene with iron(III) tosylate. Synth Met 152(1–3):1–4

    Article  Google Scholar 

  12. Jonas F, Krafft W (1990) European Patent. EP 440957 (Bayer AG)

    Google Scholar 

  13. Petrak K (1992) Polyelectrolyte complexes. In: Hara M (ed) Polyelectrolytes. Marcel Dekker, New York, pp 265–297

    Google Scholar 

  14. Aleshin AN, Williams SR, Heeger AJ (1998) Transport properties of poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate). Synth Met 94(2):173–177

    Article  Google Scholar 

  15. Jönsson SKM, Birgerson J, Crispin X, Greczynski G, Osikowicz W, Denier van der Gon AW, Salaneck WR, Fahlman M (2003) The effect of solvents on the morphology and sheet resistance in poly(3, 4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synth Met 139(1):1–10

    Article  Google Scholar 

  16. Nardes AM, Jansen RAJ, Kemerink M (2008) A morphological model for the solvent-enhanced conductivity of PEDOT: PSS thin films. Adv Funct Mater 18(6):865–871

    Article  Google Scholar 

  17. Ghosh S, Inganäs O (2001) Nano-structured conducting polymer network based on PEDOT-PSS. Synth Met 121(1–3):1321–1322

    Article  Google Scholar 

  18. Kim JY, Jung JH, Lee DE, Joo J (2002) Enhancement of electrical conductivity of poly(3, 4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth Met 126(2–3):311–316

    Article  MATH  Google Scholar 

  19. Elschner A, Jonas F, Kirchmeyer S, Lövenich W (2008) PEDOT-based Layers for TCO-Substitution and Hole-Injection. SID 08 Digest 29.2:407–410

    Google Scholar 

  20. Gordon G (2000) Criteria for choosing transparent conductors. In: Ginley DS, Bright C (eds) MRS bulletin. Materials research society, Warrendale, pp 52–57

    Google Scholar 

  21. Fehse K, Walzer K, Leo K, Lövenich W, Elschner A (2007) Highly conductive polymer anodes as replacement of inorganic materials for high efficiency organic light-emitting diodes. Adv Mater 19(3):441–444

    Article  Google Scholar 

  22. Carter SA, Angelopoulos M, Karg S, Brock PJ, Scott JC (1997) Polymeric anodes for improved polymer light-emitting diode performance. Appl Phys Lett 70(16):2067–2069

    Article  Google Scholar 

  23. Neyts K, Marescaux M, Nieto AU, Elschner A, Lövenich W, Fehse K, Huang Q, Walzer K, Leo K (2006) Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity. J Appl Phys 100(11):114513/1–114513/4

    Article  Google Scholar 

  24. Neyts K, Real A, Marescaux M, Mladenovski M, Beeckman J (2008) Conductor grid optimization for luminance loss reduction in organic light emitting diodes. J Appl Phys 103(9):093113/1–093113/5

    Article  Google Scholar 

  25. Scott JC, Carter SA, Karg S, Angelopoulos M (1997) Polymeric anodes for organic light-emitting diodes. Synth Met 85(1–3):1197–1200

    Article  Google Scholar 

  26. Kim WH, Mäkinen AJ, Nikolov N, Shashidhar R, Kim H, Kafafi ZH (2002) Molecular organic light-emitting diodes using highly conductive polymers as anodes. Appl Phys Lett 80(20):3844–3846

    Article  Google Scholar 

  27. Ouyang J, Chu CW, Chen FC, Xu Q, Yang Q (2005) High-conductivity poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) films and its application in polymer optoelectronic devices. Adv Funct Mater 15(2):203–208

    Article  Google Scholar 

  28. http://en.wikipedia.org/wiki/Organic_light-emitting_diode. Accessed on 16 Feb 2011

  29. Fehse K, Meerheim R, Walzer K, Leo K, Lövenich W, Elschner A (2008) Lifetime of organic light-emitting diodes on polymer anodes. Appl Phys Lett 93(8):083303/1–083303/3

    Article  Google Scholar 

  30. Fehse K, Schwartz G, Walzer K, Leo K (2007) Combination of a polyaniline anode doped charge transport layers for high-efficiency organic light emitting diodes. J Appl Phys 101(12)):124509-1–124509-4

    Google Scholar 

  31. Visser P (2008) http://www.hitech-projects.com/euprojects/olla/news/press_release_june_2008/OLLA_pressrelease6_v4.pdf. Accessed on 16 Feb 2011

Further Reading

  • Elschner A, Kirchmeyer S, Lövenich W, Merker U, Reuter K (2010) PEDOT – principles and applications of an intrinsically conductive polymer. CRC, Boca Raton

    Book  Google Scholar 

  • Nalwa HS (1997) Handbook of organic conductive molecules and polymers. Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Lövenich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lövenich, W., Elschner, A. (2012). ITO Replacements: Polymers. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_56

Download citation

Publish with us

Policies and ethics