Skip to main content

Dry Etching

  • Reference work entry
  • 997 Accesses

Abstract

Production of large area flat panel displays (FPDs) involves several pattern transfer and device fabrication steps that can be performed with dry etching technologies. Even though the dry etching using capacitively coupled plasma is generally used to maintain high etch uniformity, due to the need for the higher processing rates in FPDs, high density plasma processing tools that can handle larger area substrate uniformly are more intensively studied especially for the dry etching of polysilicon thin films. In the case of FPD processing, the current substrate size ranges from 730 mm × 920 mm (fourth generation) to 2,200 mm × 2,500 mm (eighth generation), and the substrate size is expected to increase further within a few years. This chapter aims to present relevant details on dry etching including the phenomenology, materials to be etched with the different recipes, plasma sources fulfilling the dry etching requirements, and advantages of dry etching over wet processing. Current status and future trends are also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ARDE:

Aspect-Ratio Dependence-Etching

CCP:

Capacitively Coupled Plasmas

DBD:

Dielectric Barrier Discharge

ECR:

Electron Cyclotron Resonance

HWP:

Helicon Wave Plasmas

ICP:

Inductively Coupled Plasmas

PECVD:

Plasma Enhanced Chemical Vapor Deposition

RHP:

Right Hand Polarized

RIE:

Reactive Ion Etching

SWP:

Surface Wave Plasmas

References

  1. Chen FF, Chang JP (2003) Lecture notes on principles of plasma processing. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  2. Liberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing. Wiley, Hoboken

    Book  Google Scholar 

  3. Abe H, Yoneda M, Fujiwara N (2008) Developments of plasma etching technology for fabricating semiconductor devices. Jpn J Appl Phys 47:1435–1455

    Article  Google Scholar 

  4. Schmitt J, Elyaakoubi M, Sansonnens L (2002) Glow discharge processing in the liquid crystal display industry. Plasma Sources Sci Technol 11:A206–A210

    Article  Google Scholar 

  5. Schmidt H, Sansonnens L, Howling AA, Hollenstein Ch, Elyaakoubi M, Schmitt JPM (2004) Improving plasma uniformity using lens-shaped electrodes in a large area very high frequency reactor. J Appl Phys 95:4559–4564

    Article  Google Scholar 

  6. Howling AA, Derendinger L, Sansonnens L, Schmidt H, Hollenstein Ch, Sakanaka E, Schmitt JPM (2005) Probe measurements of plasma potential nonuniformity due to edge asymmetry in large-area radio-frequency reactors: the telegraph effect. J Appl Phys 97:1940136

    Article  Google Scholar 

  7. Jung SJ, Kim KN, Yeom GY (2005) Etching characteristics of multiple U-type internal linear inductively coupled plasma for flat panel display. Surf Coat Technol 200:780–783

    Article  Google Scholar 

  8. Kim KN, Lim JH, Park JK, Yeom GY (2008) Scalable internal linear double comb-type inductively coupled plasma source for large area flat panel display processing. Surf Coat Technol 202:5242–5245

    Article  Google Scholar 

  9. Setsuhara Y, Takenaka K, Cho K, Han JG (2009) Large-area and low-damage processes for hybrid flexible device fabrications with reactive high-density plasmas driven by multiple low-inductance antenna modules. J Phys Conf Ser 165:012042

    Article  Google Scholar 

  10. Colpo P, Meziani T, Rossi F (2005) Inductively coupled plasmas: optimizing the inductive-coupling efficiency for large-area source design. J Vac Sci Technol A23:270

    Google Scholar 

  11. Boswell RW, Chen FF (1997) Helicons – the early years. IEEE Trans Plasma Sci 25:1229–1244

    Article  Google Scholar 

  12. Chen FF, Boswell RW (1997) Helicons – the past decade. IEEE Trans Plasma Sci 25:1245–1257

    Article  Google Scholar 

  13. Chen FF, Torreblanca H (2007) Large-area helicon plasma source with permanent magnets. Plasma Phys Control Fusion 49:A81–A93

    Article  Google Scholar 

  14. Chen FF, Torreblanca H (2009) Permanent-magnet helicon sources and arrays: a new type of RF plasma. Phys Plasmas 16:057102

    Article  Google Scholar 

  15. Pichot M, Durandet A, Pelletier J, Arnal Y, Vallier L (1988) Microwave multipolar plasmas excited by distributed electron cyclotron resonance: concept and performance. Rev Sci Instrum 59:1072–1075

    Article  Google Scholar 

  16. Latrasse L, Lacoste A, Sirou J, Pelletier J (2007) High density distributed microwave plasma sources in a matrix configuration: concept design and performance. Plasma Sources Sci Technol 16:7–12

    Article  Google Scholar 

  17. Moisan M, Shivarova A, Trivelpiece AW (1982) Experimental investigations of the propagation of surface-wave along a plasma- column. Plasma Phys Control Fusion 24:1331–1400

    MathSciNet  Google Scholar 

  18. Komaki K, Kobayashi S (1989) Generation of a microwave plasma using traveling waves. J Microw Power Electromagn Energy 24:140

    Google Scholar 

  19. Ganachev IP, Sugai H (2002) Production and control of planar microwave plasmas for materials processing. Plasma Sources Sci Technol 11:A178–A190

    Article  Google Scholar 

  20. Ishijima T, Nojiri Y, Toyoda H, Sugai H (2010) Novel antenna coupler design for production of meter-scale high-density planar surface wave plasma. Jpn J Appl Phys 49:086002

    Article  Google Scholar 

  21. Park JY, Kim HS, Lee DH, Kwon KH, Yeom GY (2000) A study on the etch characteristics of ITO thin film using inductively coupled plasmas. Surf Coat Technol 131:247–251

    Article  Google Scholar 

  22. Han HR, Lee YJ, Yeom GY, Ohand KH, Hong MP (2000) Dry etch characteristics of Al-Nd films for TFT-LCD. Surf Coat Technol 133, 606–611

    Google Scholar 

  23. Jang KH, Lee WJ, Kim HR, Yeom GY (2004) Etching of cooper films for thin film transistor liquid crystal display using inductively coupled chlorine-based plasmas. Jpn J Appl Phys 43:8300–8303

    Article  Google Scholar 

  24. Kim M, Jeong JH, Lee HJ, Ahn TK, Shin HS, Park J-S, Jeong JK, Mo Y-G, Kim HD (2007) High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper. Appl Phys Lett 90:212114

    Article  Google Scholar 

  25. Williams KR, Muller RS (1996) Etch rates for micromachining processing. J Microelectromechanical Systems 5:256–269

    Article  Google Scholar 

  26. Urisu T, Kyuragi H (1987) Synchrotron radiation-excited chemical-vapor deposition and etching. J Vac Sci Technol B5:1436–1440

    Google Scholar 

  27. Chang KM, Yeh TH, Deng IC, Lin HC (1996) Highly selective etching for polysilicon and etch-induced damage to gate oxide with halogen-bearing electron-cyclotron-resonance plasma. J Appl Phs 80:3048–3055

    Google Scholar 

  28. Draghici M, Stamate E (2010) Properties and etching rates of negative ions in inductively copuled plasmas and dc discharges produced in Ar/SF6. J Appl Phys 107:123304

    Google Scholar 

Further Reading

  • Kyung S-J, Park J-B, Lee Y-H, Lee J-H, Yeom GY (2007) High-speed etching of amorphous silicon using pin-to-plate dielectric barrier discharge. Surf Coat Technol 202:1204–1207

    Article  Google Scholar 

  • Laverty SJ, Maguire PD (2000) Low resistance transparent electrodes for large area flat panel display devices. J Vac Sci Technol B19:1–6

    Google Scholar 

  • Park J-S, Jeong JK, Moo Y-G, Kim HD, Kim S-I (2007) Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Appl Phys Lett 90:262106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen Stamate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Stamate, E., Yeom, G.Y. (2012). Dry Etching. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_60

Download citation

Publish with us

Policies and ethics