Skip to main content

New Field Emission Technologies

  • Reference work entry
Book cover Handbook of Visual Display Technology

Abstract

Field emission has had a long history of development, but has not emerged as an economic technology. The Spindt tip device has resolved many operational problems and much of our understanding of field emission process, but manufacturing difficulties have precluded mass market devices. Attention is turning to nanotechnology solutions. Nano-Spindt shows much promise and can potentially resolve the manufacture difficulty. The emergence of carbon electronics and especially carbon nanotubes has now provided a new momentum. Planar devices, no longer relying on geometric field enhancement, are an attractive technology with nanocomposites providing high internal electric fields, and simple printing and laser techniques offering a route to manufacturability. New theories for this are now emerging. The field emission display is still a great hope for an emissive, low-power, low-cost display that can challenge the dominance of LCD, and is tantalizingly close. However, at this point, there are no plans to manufacture these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNT:

Carbon Nanotube

FED:

Field Emission Display

MIM:

Metal–Insulator–Metal

PBS:

Porous Polycrystalline Silicon–Based Ballistic Electron Surface Display

SED:

Surface Conduction Electron-Emitter Display

References

  1. Bonard JM, Salvetat JP, Stöckli T et al (1999) Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl Phys A 69:245–254

    Article  Google Scholar 

  2. Bonard JM, Kind H, Stoeckli T, Nilsson LO (2001) Field emission from carbon nanotubes: the first five years. Solid State Electron 45:893–914

    Article  Google Scholar 

  3. Milne WI, Teo KBK, Amaratunga GAJ et al (2004) Carbon nanotubes as field emission sources. J Mater Chem 14:933–943

    Article  Google Scholar 

  4. Cheng Y, Zhou O (2003) Electron field emission from carbon nanotubes. C R Phys 4:1021–1033

    Article  Google Scholar 

  5. Choi WB, Chung DS, Kang JH et al (1999) Fully sealed high – brightness carbon nanotube field emission display. Appl Phys Lett 75:3129–3131

    Article  Google Scholar 

  6. Choi YS, Kanga JH, Kima HY, Leea BG, Leea CG (2004) A simple structure and fabrication of carbon-nanotube field emission display. Appl Surf Sci 221:370–374

    Article  Google Scholar 

  7. Lim SC, Lee K, Lee IH, Lee YH (2007) Field emission and application of carbon nanotubes. NANO Brief Rep Rev 2(2):69–89

    Google Scholar 

  8. Teo KBK, Lee SB, Chhowalla M, Semet V, Binh VT, Groening O, Castignolles M, Loiseau A, Pirio G, Legagneux P, Pribat D, Hasko DG, Ahmed H, Amaratunga GAJ, Milne WI (2003) Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres – how uniform do they grow? Nanotechnology 14:204–211

    Article  Google Scholar 

  9. Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, Pirio G, Legagneux P, Wyczisk F, Olivier J, Pribat D (2002) Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by auger electron spectroscopy. J Vac Sci Technol B20(1):116–121

    Google Scholar 

  10. Gangloff L, Minoux E, Teo KBK, Vincent P, Semet VT, Binh VT, Yang MH, Bu IYY, Lacerda RG, Pirio G, Schnell JP, Pribat D (2004) Self-aligned, gated arrays of individual nanotube and nanowire emitters. Nano Lett 4(9):1579

    Article  Google Scholar 

  11. Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, Legagneux P, Pirio G, Gangloff L, Pribat D, Semet V, Binh VT, Bruenger WH, Eichholz J, Hanssen H, Friedrich D, Lee SB, Hasko DG, Ahmed H (2003) Fabrication and electrical characteristics of carbon nanotube-based microcathodes for use in a parallel electron-beam lithography system. J Vac Sci Technol B 21(2):693–697

    Article  Google Scholar 

  12. Kim JM, Choi WB, Lee NS, Jung JE (2000) Field emission from carbon nanotubes for displays. Diamond Relat Mater 9:1184–1189

    Article  Google Scholar 

  13. Lee NS, Chung DS, Kang JH, Kim HY, Park SH, Jin YW, Choi YS, Han IT, Park NS, Yun MJ, Jun JE, Lee CJ, You JH, Jo SH, Lee CG, Kim JM (2000) Carbon nanotube-based field-emission displays for large-area and full-color application. Jpn J Appl Phys 39:7154–7158

    Article  Google Scholar 

  14. Wang QL, Lei W, Zhang XB, Wang BP, Liu M, Zhou XD, Di YS, Ma XY (2005) A novel gate structure in large diagonal size printable CNT-FED. Appl Surf Sci 239:458–463

    Article  Google Scholar 

  15. Ito F, Tomihari Y, Okada Y, Konuma K, Okamoto A (2001) Carbon-nanotube-based triode-field-emission displays using gated emitter structure. IEEE Electron Device Lett 22(9):426–428

    Article  Google Scholar 

  16. Jung JE, Jin YW, Choi JH, Park YJ, Ko TY, Chung DS, Kim JW, Jang JE, Cha SN, Yi WK, Cho SH, Yoon MJ, Lee CG, You JH, Lee NS, Yoo JB, Kim JM (2002) Fabrication of triode-type field emission displays with high-density carbon-nanotube emitter arrays. Phys B 323:71–77

    Article  Google Scholar 

  17. Jung JE, Choi JH, Park YJ, Lee HW, Jin YW, Chung DS, Park SH, Jang JE, Hwang SY, Ko TY, Choi YS, Cho SH, Lee CG, You JH, Lee NS, Yoo JB, Kime JM (2003) Development of triode-type carbon nanotube field-emitter arrays with suppression of diode emission by forming electroplated Ni wall structure. J Vac Sci Technol B 21(1):375–381

    Article  Google Scholar 

  18. Fentimore AM, Cheng LT, Roach DH (2008) A stable under-gate triode CNT field emitter fabricated via screen printing. Diamond Relat Mater 17:2005–2009

    Article  Google Scholar 

  19. Yung YJ, Son GH, Park JH, Kim YW, Berdinsky AS, Yoo JB, Park CY (2005) Fabrication and properties of under-gated triode with CNT emitter for flat lamp. Diamond Relat Mater 14:2109–2112

    Article  Google Scholar 

  20. Yung YJ, Park JH, Jeon SY, Alegaonkar PS, Berdinsky AS, Yoo JB, Park CY (2006) Simple fabrication process of a screen-printed triode-CNT field emitter array. Diamond Relat Mater 15:1855–1858

    Article  Google Scholar 

  21. Nomura I, Sakai K, Yamaguchi E, Yamanobe M, Ikeda S (1996) A new emissive display based on surface-conduction electron emitters. In: Proceedings of IDW’96, Kobe, pp 523–526

    Google Scholar 

  22. Yamaguchi E, Sakai K, Nomura I, Ono T, Yamanobe M, Abe N, Hara T, Hatanaka K, Osada Y, Yamamoto H, Nakagiri T (1997) A 10-in. surface-conduction electron-emitter display. J Soc Inf Disp 5(4):345–348

    Article  Google Scholar 

  23. Bezryadin A, Dekker C (1997) Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters. J Vac Sci Technol B 15(4):793–799

    Article  Google Scholar 

  24. Lee HI, Park SS, Park DI, Ham SH, Lee JH, Lee JH (1998) Nanometer-scaled gap control for low voltage and high current operation of field emission array, J Vac Sci Technol B 16(2):762–764

    Article  Google Scholar 

  25. Oguchi T, Yamaguchi E, Sasaki K, Suzuki K, Uzawa S, Hatanaka K (2005) A 36-inch surface-conduction electron-emitter display (SED). SID Dig 32:1929–1931

    Article  Google Scholar 

  26. Lo HY, Li Y, Chao HY, Tsai CH, Pan FM (2007) Field-emission properties of novel palladium nanogaps for surface conduction electron emitters. Nanotechnology 18:475708

    Article  Google Scholar 

  27. Komoda T, Honda Y, Hatai T et al (2000) Matrix flat–panel application of ballistic electron surface–emission display. Soc Inf Display Int Symp Dig Tech 31:428–431

    Article  Google Scholar 

  28. Nishiguchi K, Zhao X, Oda S (2002) Nanocrystalline silicon electron emitter with a high efficiency enhanced by a planarization technique. J Appl Phys 92(5):2748–2757

    Article  Google Scholar 

  29. Nakajima Y, Toyama H, Kojima A et al (2003) A solid-state light-emitting device based on ballistic electron excitation using an inorganic material as a fluorescent film. Phys Stat Sol (a) 197(2):316–320

    Article  Google Scholar 

  30. Koshida N, Kojima A, Nakajima Y et al (2003) Application of nanocrystalline silicon and ballistic electron emitter to flat panel display devices. Electrochem Soc Interface 12(2):52–55

    Google Scholar 

  31. Komoda T, Koshida N (2009) Nanocrystalline silicon ballistic electron emitter. In: Koshida N (ed) Device applications of silicon nanocrystals and nanostructures – nanostructure science and technology. Springer, New York, pp 251–291

    Chapter  Google Scholar 

  32. Tang Y, Silva S, Rose MJ, Boscovich B, Shannon J (2002) Field emission from laser crystallised amorphous silicon. Appl Phys Lett 80:4154–4156

    Article  Google Scholar 

  33. Forrest RD, Cox DC, Tang YF, Shannon JM, Silva SRP (2003) Fabrication of a self aligned microtip field emission array. J Vac Sci Technol B 21:1560–1566

    Article  Google Scholar 

  34. Forbes RG (2001) Field induced electron emission from electrically nanostructured heterogeneous (ENH) materials. Ultramicroscopy 89:7–15

    Article  Google Scholar 

  35. Forbes RG (2001) Low macroscopic filed emission from carbon films and other electrically nanostructured heterogeneous materials. Solid State Electron 45:779–808

    Article  Google Scholar 

  36. Sharpe RG, Palmer RE (1996) Evidence for field emission in electronformed metal-insulator-metal devices. Thin Solid Films 288:164–166

    Article  Google Scholar 

  37. Kusunoki T, Suzuki M (2000) Increasing emission current from MIM cathodes by using an Ir-Pt-Au multilayer top electrode. IEEE Trans Electron Devices 47(8):1667–1672

    Article  Google Scholar 

  38. Lapicki A, Barstis TLO, Engstrom T (2003) Cold-cathode electron emission from nanostructured metal-insulator-metal devices. 41st Aerospace sciences meeting and exhibit. Reno

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mervyn Rose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rose, M., Fan, Y. (2012). New Field Emission Technologies. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_73

Download citation

Publish with us

Policies and ethics