Skip to main content

Materials and Phase Structures of Calamitic and Discotic Liquid Crystals

  • Reference work entry

Abstract

In this article, an introduction to the field of liquid crystals relevant to displays and devices is given. It covers the structures of nematic, and smectic, calamitic liquid crystals that can be used as the switching elements in displays, and nematic discotic and columnar nematic liquid crystals that can be used in optical films. Examples of the types of materials that can be employed, in each case, are given, and also the effects that can be achieved when the materials are chiral.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5CB:

4′-Pentyl-4-Cyanobiphenyl

8SI:

4-(2-Methylbutyl)phenyl 4-n-octylbiphenyl-4′-Carboxylate

AF:

Antiferroelectric

BDH:

British Drug Houses

CE8:

4-(2-methylbutyl)phenyl 4-n-Octylbiphenyl-4′-Carboxylate

Col:

Columnar

F:

Ferroelectric

IPS-LCD:

In-Plane Switching Liquid Crystal Display

LCD:

Liquid Crystal Display

N:

Nematic

Ps:

Spontaneous Polarization

Sm:

Smectic

SSF-LCD:

Surface-Stabilized Ferroelectric Liquid Crystal Display

STN-LCD:

Super-Twisted Nematic Liquid Crystal Display

TN-LCD:

Twisted Nematic Liquid Crystal Display

VAN-LCD:

Vertically Aligned Liquid Crystal Display

References

  1. Gray GW, Winsor PA (1974) Liquid crystals and plastic crystals, vol 1 & 2. Ellis Horwood, Chichester

    Google Scholar 

  2. Kelker H, Hatz R (1980) Handbook of liquid crystals. Verlag Chemie, Weinheim

    Google Scholar 

  3. Demus D, Goodby JW, Gray GW, Spiess H-W, Vill V (eds) (1998) Handbook of liquid crystals, vol 2A: low molecular weight liquid crystals I. Wiley, Weinheim

    Google Scholar 

  4. Demus D, Goodby JW, Gray GW, Spiess H-W, Vill V (eds) (1998) Handbook of liquid crystals, vol 2B: low molecular weight liquid crystals II. Wiley, Weinheim

    Google Scholar 

  5. Leadbetter AJ (1987) In: Gray GW (ed) Thermotropic liquid crystals, critical reports on applied chemistry vol 22. Wiley, Chichester, pp 1–27

    Google Scholar 

  6. Gray GW, Goodby JW (1984) Smectic liquid crystals, textures and structures. Leonard Hill, Philadelphia

    Google Scholar 

  7. Etherington G, Leadbetter AJ, Wang XJ, Gray GW, Tajbakhsh A (1986) Liq Cryst 1:209

    Article  Google Scholar 

  8. Sackmann H, Demus D (1966) Mol Cryst Liq Cryst 2:81

    Article  Google Scholar 

  9. Sackmann H (1980) In: Helfrich W, Heppke G (eds) Liquid crystals of one- and two-dimensional order. Springer, New York, p 19

    Chapter  Google Scholar 

  10. Leadbetter AJ, Mazid MA, Kelly BA, Goodby JW, Gray GW (1979) Phys Rev Lett 43:630

    Article  Google Scholar 

  11. Leadbetter AJ (1979) In: Luckhurst GR, Gray GW (eds) The molecular physics of liquid crystals. Academic Press, New York, p 285

    Google Scholar 

  12. Pershan PS, Aeppli G, Litster JD, Birgeneau RJ (1981) Mol Cryst Liq Cryst 67:205

    Article  Google Scholar 

  13. Benattar JJ, Moussa F, Lambert M (1984) J Phys (Paris) Lett 45:1053

    Google Scholar 

  14. Benattar JJ, Doucet J, Lambert M, Levelut A-M (1979) Phys Rev 20A:2505

    Google Scholar 

  15. Hardouin F, Tinh NH, Achard MF, Levelut A-M (1982) J Phys (Paris) Lett 43:327

    Google Scholar 

  16. Budai J, Pindak R, Davey SC, Goodby JW (1980) J Phys (Paris) Lett 41:1371

    Article  Google Scholar 

  17. de Gennes PG (1974) The physics of liquid crystals. Oxford University Press, Oxford

    Google Scholar 

  18. Kresse H (1983) Adv Liq Cryst 6:109

    Google Scholar 

  19. Bata L, Buka A (1981) Mol Cryst Liq Cryst 63:307

    Article  Google Scholar 

  20. Chandarsekhar S, Madhusudana NV (1985) Proc Indian Acad Sci (Chem Sci) 94:139

    Article  Google Scholar 

  21. Richardson RM, Leadbetter AJ, Frost JC (1982) Mol Phys 45:1163

    Article  Google Scholar 

  22. Leadbetter AJ, Richardson RM (1979) Incoherent quasielastic neutron scattering. In: Luckhurst GR, Gray GW (eds) The molecular physics of liquid crystals. Academic, New York, p 451

    Google Scholar 

  23. Chandrasekhar S, Raja VN, Sadishiva BK (1990) Mol Cryst Liq Cryst 7:65

    Google Scholar 

  24. Praefcke K, Kohne B, Singer D, Demus D, Pelzl G, Diele S (1990) Liq Cryst 7:589

    Article  Google Scholar 

  25. Dingemans TJ, Samulski ET (2000) Liq Cryst 131:27

    Google Scholar 

  26. Kumar S, Acharya BR, Primak A, Kumar S (2004) Phys Rev Lett 92:145506

    Article  Google Scholar 

  27. Xiang Y, Goodby JW, Görtz V, Gleeson HF (2009) Appl Phys Lett 94. ISBN 193507-1-3

    Google Scholar 

  28. Beattie DR, Hindmarsh P, Goodby JW, Haslam SD, Richardson RM (1992) J Mater Chem 2:1261

    Article  Google Scholar 

  29. Hindmarsh P, Hird M, Styring P, Goodby JW (1993) J Mater Chem 3:1117

    Article  Google Scholar 

  30. Ohnishi H, Baba Y (1992) SHARP Tech J 54:47

    Google Scholar 

  31. Pindak R, Moncton DE, Davey SC, Goodby JW (1981) Phys Rev Lett 46:1135

    Article  Google Scholar 

  32. Leadbetter AJ, Mazid MA, Kelly BA, Goodby JW, Gray GW (1979) Phys Rev Lett 43:630

    Article  Google Scholar 

  33. Benattar JJ, Moussa F, Lambert M (1983) J Chim Phys 80:99

    Google Scholar 

  34. Leadbetter AJ, Frost JC, Gaughan JP, Mazid MA (1979) J Phys Paris 40:C3–185

    Google Scholar 

  35. Als-Nielsen J, Litster JD, Birgeneau RJ, Kaplan M, Safinya CR, Lindegaard-Andersen A, Mathiesen B (1980) Phys Rev B22:312

    Article  Google Scholar 

  36. Als-Nielsen J (1981) In: Bocarra N (ed) Symmetries and broken symmetries. IDSET, Paris, p 107

    Google Scholar 

  37. Lösche A, Grande S, Eider K (1973) First specialised Colloque Ampère. Krakow, Poland, p 103

    Google Scholar 

  38. Lösche A, Grande S (1974) 18th ampère congress. Nottingham, England, p 201

    Google Scholar 

  39. De Vries A, Ekachai A, Spielberg N (1979) Mol Cryst Liq Cryst 49:143

    Article  Google Scholar 

  40. Leadbetter AJ, Durrant JLA, Rugman M (1977) Mol Cryst Liq Cryst Lett 34:231

    Article  Google Scholar 

  41. Leadbetter AJ, Frost JC, Gaughan JP, Gray GW, Mosley A (1979) J Phys (Paris) 40:375

    Article  Google Scholar 

  42. Hardouin F, Levelut A-M, Benattar JJ, Sigaud G (1980) Solid State Commun 33:337

    Article  Google Scholar 

  43. Hardouin F, Sigaud G, Tinh NH, Achard MF (1981) J Phys (Paris) Lett 42:63

    Google Scholar 

  44. Prost J (1984) Adv Phys 33:1

    Article  Google Scholar 

  45. Prost J, Barois P (1983) J Chim Phys 80:65

    Google Scholar 

  46. Ratna BR, Shashidhar R, Raja VN (1985) Phys Rev Lett 55:1476

    Article  Google Scholar 

  47. Goodby JW, Blinc R, Clark NA, Lagerwall ST, Osipov MA, Pikin SA, Sakurai T, Yoshino K, Zeks B (1991) Ferroelectric liquid crystals – principles, properties and applications. Gordon and Breach, Philadelphia

    Google Scholar 

  48. Dumrongrattana S, Huang CC (1986) Phys Rev Lett 56:464

    Article  Google Scholar 

  49. Dumrongrattana S, Nounesisand G, Huang CC (1986) Phys Rev 33A:2187

    Google Scholar 

  50. Levelut A-M, Germain C, Keller P, Liébert L, Billard J (1983) J Phys (Paris) 44:623

    Article  Google Scholar 

  51. Galerne Y, Liébert L (1990) Phys Rev Lett 64:906

    Article  Google Scholar 

  52. Nishiyama I, Goodby JW (1015) J Mater Chem 1992:2

    Google Scholar 

  53. Hiji N, Chandani ADL, Nishiyama S, Ouchi Y, Takezoe H, Fukuda A (1988) Ferroelectrics 85:99

    Article  Google Scholar 

  54. Galerne Y, Liébert L (1990) Phys Rev Lett 64:906

    Article  Google Scholar 

  55. Toyne KJ (1987) In: Gray GW (ed) Thermotropic liquid crystals, critical reports on applied chemistry vol 22. Wiley, Chichester, pp 28–63

    Google Scholar 

  56. Demus D, Demus H, Zaschke H (1974) Flüssige Kristalle in Tabellen. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  57. Demus D, Zaschke H (1984) Flüssige Kristalle in Tabellen, vol II. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  58. Gray GW (1976) Adv Liq Cryst (1978)2:39; Gray GW Advances in liquid crystal materials applications, BDH special publication. BDH Chemicals Ltd, Poole

    Google Scholar 

  59. Minas H, Murawski H-R, Stegemeyer H, Sucrow W (1982) J Chem Soc Chem Commun 1982:308

    Article  Google Scholar 

  60. Sucrow W, Minas H, Stegemeyer H, Geschwinder H, Murawski H-R, Krüger C (1985) Chem Ber 118:3322

    Google Scholar 

  61. Pohl L, Eidenschink R, Krause J, Erdman D (1977) Phys Lett 60A:421

    Google Scholar 

  62. Goodby JW (1998) Phase structures of calamitic liquid crystals. In: Demus D, Goodby JW, Gray GW, Spiess H-W, Vill V (eds) The handbook of liquid crystals low molecular weight liquid crystals I, vol 2A. Wiley, Weinheim, pp 413–440

    Google Scholar 

  63. Gray GW, Harrison KJ, Nash JA (1973) Electron Lett 9:130

    Article  Google Scholar 

  64. Eidenschink R, Erdman D, Krause J, Pohl L (1977) Angew Chem Int Ed Engl 17:133

    Article  Google Scholar 

  65. Osman MA, Huynh-Ba T (1984) Helv Chim Acta 67:959

    Article  Google Scholar 

  66. Boller A, Cereghetti M, Schadt M, Scherrer M (1977) Mol Cryst Liq Cryst 42:215

    Article  Google Scholar 

  67. Carr N, Gray GW, McDonnell DG (1983) Mol Cryst Liq Cryst 97:13

    Article  Google Scholar 

  68. Lueder E (2003) Liquid crystal displays. Wiley, Chichester

    Google Scholar 

  69. Yang D, Wu S (2006) Fundamentals of liquid crystal devices. Wiley, Chichester

    Book  Google Scholar 

  70. Pauluth D, Tarumi K (2004) J Mater Chem 14:1219

    Article  Google Scholar 

  71. Yang D, Wu S (2006) Fundamentals of liquid crystal devices. Wiley, Chichester

    Book  Google Scholar 

  72. Pauluth D, Tarumi K (2004) J Mater Chem 14:1219

    Article  Google Scholar 

  73. Kirsch P, Tarumi K (1998) Angew Chem Int Ed 37:484

    Article  Google Scholar 

  74. Klasen-Memmer M, Bremer M, Rillich M (2003) US Patent 6,896,939 B2

    Google Scholar 

  75. Klasen M, Weller C, Tarumi K, Bremer M (2004) US patent 6,764,722, B2

    Google Scholar 

  76. Gray GW, Hird M, Lacey D, Toyne KJ (1989) J Chem Soc Perk Trans 2 2041

    Google Scholar 

  77. Clark NA, Lagerwall ST (1980) Appl Phys Lett 36:899

    Article  Google Scholar 

  78. Jones JC, Towler MJ, Hughes JR (1993) Displays 14:86

    Article  Google Scholar 

  79. Perennes FA, Crossland WA (1997) Opt Eng 36:2294

    Article  Google Scholar 

  80. Goodby JW, Toyne KJ, Hird M, Styring P, Lewis RA, Beer A, Dong CC, Glendenning ME, Jones JC, Lymer KP, Slaney AJ, Minter V, Chan LKM (2000) Liquid crystal materials, devices and flat panel displays. In: Shashidhar R, Gnade B (eds) Proceedings of the SPIE, vol 3955, p 2

    Chapter  Google Scholar 

  81. Clark NA, Crandall C, Handschy MA, Meadows MR, Malzbender RM, Park C, Xue JZ (1003) Ferroelectrics 2000:246

    Google Scholar 

  82. O’Callaghan MJ, Ferguson R, Vohra R, Thurmes W, Harant AW, Pecinovsky CS, Zhang YQ, Yang S, O’Neill M, Handschy MA (2009) J SID 17:369

    Google Scholar 

  83. Gray GW, Harrison KJ (1971) Mol Cryst Liq Cryst 13:37

    Article  Google Scholar 

  84. Goodby JW, Gray GW (1976) J Phys (Paris) C3 37:17

    Article  Google Scholar 

  85. McMillan WL (1921) Phys Rev A 1973:8

    Google Scholar 

  86. Wulf A (1975) Phys Rev A 11:365

    Article  Google Scholar 

  87. Goodby JW, Gray GW (1976) Mol Cryst Liq Cryst 37:157

    Article  Google Scholar 

  88. Hird M (1990) The synthesis and properties of liquid crystals for twisted nematic and ferroelectric displays. Ph.D. Thesis, University of Hull

    Google Scholar 

  89. Gray GW, Hird M, Toyne KJ (1991) Mol Cryst Liq Cryst 204:43

    Article  Google Scholar 

  90. Zaschke H (1975) J Prakt Chem 317:617

    Article  Google Scholar 

  91. Dong C (1994) Fluorinated to lane and dioxane liquid crystals for ferroelectric display applications. Ph.D. Thesis, University of Hull

    Google Scholar 

  92. Finkenzeller U, Pausch AE, Poetsch E, Svermann J (1993) Kontakte 2:3

    Google Scholar 

  93. Kelly SM (1996) Liq Cryst 20:493

    Article  Google Scholar 

  94. Miyaura N, Suzuki A (1981) J Organomet Chem 213:C53

    Article  Google Scholar 

  95. Miyaura N, Yamada K, Suginome H, Suzuki A (1985) J Am Chem Soc 107:972

    Article  Google Scholar 

  96. Eliel EL (1962) Stereochemistry of carbon compounds. McGraw-Hill, New York

    Google Scholar 

  97. Orchin M, Kaplan F, Macomber RS, Wilson RM, Zimmer H (1980) The vocabulary of organic chemistry. Wiley, New York

    Google Scholar 

  98. Cahn RS, Ingold CK, Prelog V (1966) Angew Chem Int Ed 5:385

    Article  Google Scholar 

  99. Cahn RS, Ingold CK (1951) J Chem Soc 612

    Google Scholar 

  100. Solladie G, Zimmerman GR (1985) J Org Chem 50:4062

    Article  Google Scholar 

  101. Geivandov RC, Goncharov IV, Titov VV (1989) Mol Cryst Lid Cryst 166:101

    Google Scholar 

  102. Goodby JW (1991) J Mater Chem 1:307

    Article  Google Scholar 

  103. Gray GW, McDonnell DG (1977) Mol Cryst Liq Cryst Lett 34:211

    Article  Google Scholar 

  104. Goodby JW (1998) In: Cladis PE, Palffy-Muhoray P (eds) Dynamics and defects in liquid crystals: a Festschrift in honour of Alfred Saupe. Gordon and Breach, Amsterdam, pp 273–291

    Google Scholar 

  105. Yoshizawa A, Yokoyama NA, Kikuzaki H, Hirai T (1993) Liq Cryst 14:513

    Article  Google Scholar 

  106. Meyer RB (1976) Mol Cryst Liq Cryst 40:74

    Google Scholar 

  107. Meiboom S, Sammon M (1980) Phys Rev Lett 44:882

    Article  Google Scholar 

  108. Crooker PP (1989) Liq Cryst 5:751

    Article  Google Scholar 

  109. Berreman DW (1984) In: Griffin AC, Johnson JF (eds) Liquid crystals and ordered fluids, vol 4. Plenum Press, New York, pp 925–943

    Chapter  Google Scholar 

  110. Meiboom S, Sethna JP, Anderson PW, Brinkman WF (1981) Phys Rev Lett 46:1216

    Article  Google Scholar 

  111. Coates D, Gray GW (1973) Phys Lett 45A:115

    Google Scholar 

  112. Yan J, Cheng H-C, Gauza S, Li Y, Jiao MZ, Rao LH, Wu ST (2010) Appl Phys Lett 96:071105

    Article  Google Scholar 

Further Reading

  • Demus D, Goodby JW, Gray GW, Spiess H-W, Vill V (1998) Handbook of liquid crystals, vol 1: fundamentals. Wiley, Weinheim, p 914. ISBN 3-527-29270-5

    Google Scholar 

  • Demus D, Goodby JW, Gray GW, Spiess H-W, Vill V (1998) Handbook of liquid crystals, vol 2A: low molecular weight liquid crystals I. Wiley, Weinheim, p 490. ISBN 3-527-29271-3

    Google Scholar 

  • Demus D, Goodby JW, Gray GW, Spiess H-W, Vill V (eds) (1999) Physical properties of liquid crystals. Wiley, Weinheim, p 503. ISBN 3-527-29747-2

    Google Scholar 

  • Goodby JW, Blinc R, Clark NA, Lagerwall ST, Osipov MA, Pikin SA, Sakurai T, Yoshino K, Zeks B (1991) Ferroelectric liquid crystals – principles, properties and applications. Gordon and Breach, Philadelphia, p 474. ISBN 2-88124-282-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Goodby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Goodby, J.W. (2012). Materials and Phase Structures of Calamitic and Discotic Liquid Crystals. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_81

Download citation

Publish with us

Policies and ethics