Skip to main content

Alignment Properties of Liquid Crystals

  • Reference work entry

Abstract

This entry begins by outlining the main types of liquid crystal surface alignment, and common device geometries, and then goes on to describe how both uniform and patterned surface alignment can be achieved via conventional techniques such as rubbing and photo-alignment. Finally, the entry concludes with information on bistable alignment, bulk alignment techniques (such as field alignment and polymer networks), and how to align non-nematic phases such as cholesterics and smectics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ECB:

Electrically Controlled Birefringence

HAN:

Hybrid Aligned Nematic

IPS:

In-Plane Switching

LCD:

Liquid Crystal Display

OCB:

Optically Compensated Bend

TFTs:

Thin-Film-Transistors

TN:

Twisted Nematic

ULH:

Uniform Lying Helix

VAN:

Vertically Aligned Nematic

References

  1. Rapini A, Papoular MJ (1969) J Phys (France) Colloq 30:C4–C54

    Google Scholar 

  2. Tomlin MG (1997) J Opt Technol 64:458

    Google Scholar 

  3. Bos P, Koehler K, Beran R (1984) Mol Cryst Liq Cryst 113:329

    Article  Google Scholar 

  4. Sonin AA (1995) The surface physics of liquid crystals. Gordon and Breach, Amsterdam

    Google Scholar 

  5. Mauguin C (1911) Bull Soc Fr Min 34:71

    Google Scholar 

  6. Pidduck AJ, Bryan-Brown GP, Haslam SD, Bannister R (1996) Liq Cryst 21:759

    Article  Google Scholar 

  7. Takatoh K, Hasegawa M, Koden M, Itoh N, Hasegawa R, Sakamoto M (2005) Alignment technologies and applications of liquid crystal devices. Taylor & Francis, London

    Book  Google Scholar 

  8. Janning J (1979) Appl Phys Lett 21:173

    Article  Google Scholar 

  9. Gibbons W, Shannon P, Sun S, Swetlin B (1991) Nature 351:49

    Article  Google Scholar 

  10. Schadt M, Schmitt K, Hozinkov V, Chigrinov V (1992) Jpn J Appl Phys 31:2155

    Article  Google Scholar 

  11. O’Neill M, Kelly SM (2000) J Phys D Appl Phys 33:R67–R84

    Article  Google Scholar 

  12. Raynes EP (1974) EI Lett 10:141–142

    Article  Google Scholar 

  13. Guyon E, Pieranski P, Boix M (1973) Appl Eng Sci Lett 1:19

    Google Scholar 

  14. Sze-Yan Yeung F, Xie F-C, Kwok H-S, Wan J, Tsui O, Sheng P (May 2005) 23.2: High pretilt angles by nano-structured surfaces and their applications. SID international symposium digest of technical papers, vol 36, pp 1080

    Google Scholar 

  15. Paul Gass, Heather Stevenson, Richard Bray, Harry Walton, Nathan Smith, Shinichi Terashita, Martin Tillin (2003) Sharp Tech J 85:24

    Google Scholar 

  16. Dozov I, Nobili M, Durand G (1997) Appl Phys Lett 70(9):1179

    Article  Google Scholar 

  17. Bryan-Brown G, Brown CV, Jones JC, Wood EL, Sage IC, Brett P, Rudin J (1997) 5.3: Grating aligned bistable nematic device. In: Proceedings of society for information display international symposium. Digest of technical papers, Vol XXVIII, Boston MA, pp 37–40

    Google Scholar 

  18. Gwag JS, Fukuda J, Yoneya M, Yokoyama H (2007) Appl Phys Lett 91:073504

    Article  Google Scholar 

  19. Kim J-H, Yoneye M, Yamamoto J, Yokoyama H (2001) Appl Phys Lett 78:3055

    Article  Google Scholar 

  20. Salter PS, Elston SJ, Raynes EP, Parry-Jones LA (2009) Jpn J Appl Phys 48:101302

    Article  Google Scholar 

  21. Carbone G, Salter P, Elston SJ, Raynes EP, de Sio L, Ferjani S, Strangi G, Umeton C, Bartolino R (2009) Appl Phys Lett 95:011102

    Article  Google Scholar 

  22. Rieker TP, Clark NA, Smith GS, Parmar DS, Sirota EB, Safinya CR (1987) Phys Rev Lett 59:2658

    Article  Google Scholar 

  23. Hachiya S, Tomoike K, Yuasa K, Togawa S, Sekiya T, Takahashi K, Kawasaki K (1993) J Soc Inf Disp 1:295

    Article  Google Scholar 

  24. Dessaud N, Raynes EP (2001) Proceedings of international display workshops IDW, pp 41–44, Nagoya

    Google Scholar 

  25. Drzaic PS (1995) Liquid crystal dispersions. World Scientific Publishing, Singapore, pp 392–399

    Google Scholar 

  26. Minoura K, Asaoka Y, Satoh E, Deguchi K, Satoh T, Ihara I, Fujiwara S, Miyata A, Itoh Y, Gyoten S, Matsuda N, Kubota Y (2009) Making a mobile display using polarizer-free reflective LCDs and ultra-low-power driving technology. Inf Dis 25:12–16

    Google Scholar 

Further Reading

  • Cognard J (1982) Molecular crystals and liquid crystals. Gordon and Breach, New York, Supplement 1, p 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley Parry Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Jones, L.P. (2012). Alignment Properties of Liquid Crystals. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_86

Download citation

Publish with us

Policies and ethics