Skip to main content

Vertically Aligned Nematic (VAN) LCD Technology

  • Reference work entry
Handbook of Visual Display Technology
  • 1218 Accesses

Abstract

Vertically aligned liquid crystal displays (VA-LCDs) have now been well developed and are widely used in televisions (TV), monitors, notebooks, and mobile devices due to the many advantages that they have over other LC modes. In particular, the contrast ratio in the normal direction is very high, and by adopting a multi-domain technique, a wide viewing angle is also possible. In contrast with some other LC modes, yields are higher because of the possibility of rubbing-free mass-production, and there is the additional possibility of creating transflective displays. In this chapter, various VA-LCD modes and their respective advantages as well as the principal configuration of transflective displays are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CF:

Color Filter

CR:

Contrast Ratio

FHD:

Full High Definition. The Resolution is 1920 × RGB × 1080

IPS-LCD:

In-Plane Switching Mode LCD

ITO:

Transparent Electrode Comprised from the Oxide of Indium and Tin

LCD:

Liquid Crystal Display

PSA:

Polymer Sustained Alignment

TAC:

Tri-Acetyl Cellulose

TFT:

Thin Film Transistor

TV:

Television

VA-LCD:

Vertically Aligned Liquid Crystal Display

VAN technology:

Vertically Aligned Nematic Technology

References

  1. Schiekel MF, Fahrenschon K (1971) Deformation of nematic liquid crystals with vertical orientation in electrical field. Appl Phys Lett 19:391

    Article  Google Scholar 

  2. Utsumi Y, Takeda S, Kagawa H, Kajita D, Hiyama I, Tomikoka Y, Asakura T, Shimura M, Ishii M, Miyazaki K, Ono K (2008) Improver contrast ratio in IPS-Pro LCD-TV by using quantitative analysis of depolarized light leakage from component materials. SID ’08 Digest, p 129

    Google Scholar 

  3. Koike Y, Kamada T, Okamoto K, Ohashi M, Tomita I, Okabe M (1992) A full-color TFT-LCD with a domain-divided twisted-nematic structure. SID ’92 Digest, p 798

    Google Scholar 

  4. Kamada T, Koike Y, Tsuyuki S, Takeda A, Okamoto K (1992) Wide viewing angle full-color TFT LCDs. Digest of Japan Display ’92, p 886

    Google Scholar 

  5. Ohmuro K, Kataoka S, Sasaki T, Koike Y (1997) Development of super-high-image-quality vertical alignment-mode LCD. SID ’97 Digest, p 845

    Google Scholar 

  6. Takeda A, Kataoka S, Sasaki T, Chida H, Tsuda H, Ohmuro K, Sasabayashi T, Koike Y, Okamoto K (1998) SID ’98 Digest, p 1077

    Google Scholar 

  7. Tanaka Y, Taniguchi Y, Sakaki T, Takeda A, Koike Y, Okamoto K (1999) A new design to improve performance and simplify the manufacturing process of high quality MVA TFT-LCD Panels. SID ’99 Digest, p 206

    Google Scholar 

  8. Kim KH, Park SB, Song JK, Kim S, Souk JH (1998) Domain divided vertical alignment mode with optimized fringe field effect. Digest of Asia Display 98:383

    Google Scholar 

  9. Schadt M, Schmitt K, Kozinkov V, Chigrinov V (1992) Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers. Jpn J Appl Phys 31:2155

    Article  Google Scholar 

  10. Kobayashi S, Iimura Y (1997) Multidomain TN-LCD fabricated by photoalignment. SPIE 3015:40

    Article  Google Scholar 

  11. Nam MS, Wu JW, Choi YJ, Yang JH, Kim JY, Kim JH, Kwon SB (1997) Wide-viewing-angle TFT-LCD with photo-aligned four-domain TN mode. SID ’97 Digest, p 933

    Google Scholar 

  12. Yoshida H, Koike Y (1997) Inclined homeotropic alignment by irradiation of unpolarized UV light. Jpn J Appl Phys 36:L428–431

    Article  Google Scholar 

  13. Yoshida H, Seino T, Koike Y (1997) Four-domain divided inclined vertical alignment by irradiation of unpolarized ultra violet light. Jpn J Appl Phys 36:L1449

    Article  Google Scholar 

  14. Tasaka Y, Yoshida H, Seino T, Tsuda H, Chida H, Kataoka S, Mayama T, Koike Y, Ohhashi M (1998) TFT-LCD with divided inclined vertical alignment by irradiation of unpolarized ultra violet light. Digest of AM LCD 98:35

    Google Scholar 

  15. Hanaoka K, Nakanishi Y, Inoue Y, Tanuma S, Koike Y, Okamoto K (2004) A new MVA-LCD by polymer sustained alignment technology. SID ’04 Digest, pp 1200–1203

    Google Scholar 

  16. Yoshida H, Nakanishi Y, Sasabayashi T, Tasaka Y, Okamoto K, Inoue Y, Sukenori H, Fujikawa T (2000) Fast-switching LCD with multi-domain vertical alignment driven by oblique electric field. SID ’00 Digest, pp 334–337

    Google Scholar 

  17. Nakanishi Y, Yoshida H, Sasabayashi T, Tasaka Y, Okamoto K, Inoue H, Sukenori H, Fujikawa T (2000) Multi-domain vertically aligned LCD driven by oblique electric field. Digest of AM-LCD ’00, p 13

    Google Scholar 

  18. Yoshida H, Kamada T, Ueda K, Tanaka R, Koike Y, Okamoto K, Chen PL, Lin J (2004) Multi-domain vertically aligned LCDs with super-wide viewing range for gray-scale images. Digest of Asia Display/IMID ’04, pp 198–201

    Google Scholar 

  19. Park SB, Lyu J, Um Y, Do H, Ahn S, Choi K, Kim KH, Kim SS (2007) A novel charge-shared S-PVA technology. SID ’07 Digest p 1252

    Google Scholar 

  20. Kim SS (2005) The world’s largest (82-in.) TFT-LCD. SID ’05 Digest, p 1842

    Google Scholar 

  21. Kim SS, Berkely BH, Park JH, Kim T (2006) New era for TFT-LCD size and viewing angle performance. J SID 14(2):127

    Google Scholar 

  22. Kimura N, Ishihara T, Miyata H, Kumakura T, Tomizawa K, Inoue A, Horino S, Inaba Y (2005) New technologies for large-sized high-quality LCD TV. SID ’05 Digest 60.2, p 1734

    Google Scholar 

  23. Chen J, Kim KH, Jyu JJ, Souk JH, Kelly JR, Bos PJ (1998) Optimum film compensation modes for TN and VA LCDs. SID ’98 Digest 21.2, p 315

    Google Scholar 

  24. Maltese P, Ottavi CM (1978) Improved construction of liquid crystal cells. Alta Frequenza XLVII(9):664

    Google Scholar 

  25. Yoshida H, Tasaka Y, Tanaka Y, Sukenori H, Koike Y, Okamoto K (2004) MVA LCD for notebook or mobile PCs with high transmittance, high contrast ratio, and wide angle viewing. SID ’04 Digest, p 6

    Google Scholar 

  26. Hirata M, Watanabe N, Shimada T, Okamoto M, Mizushima S, Take H, Hijikigawa M (1996) Development of ‘Super-V’ TFT-LCDs. Digest of AM LCD’96 IDW 96:193

    Google Scholar 

  27. Nanutaki Y, Kubo M, Shinomiya T, Kimura N, Ishii Y, Funada F, Hijikigawa M (1999) Development of a novel TFT-LCD with excellent legibility under any intensity of ambient light. Euro Display ’99 Late-news paper, p 121

    Google Scholar 

  28. Jisaki M, Yamaguchi H (2001) Development of transflective LCD for high contrast and wide viewing angle by using homeotropic alignment. Digest of Asia Display/IDW ’01, p 134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidefumi Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Yoshida, H. (2012). Vertically Aligned Nematic (VAN) LCD Technology. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_91

Download citation

Publish with us

Policies and ethics