Skip to main content

Bistable Liquid Crystal Displays

  • Reference work entry
Handbook of Visual Display Technology

Abstract

Bistable liquid crystal displays offer many benefits, including the ability to display high levels of image content using passive matrix addressing and without thin-film transistors; ultralow power reflective displays with image storage that only consume power with changes to image; and flexible plastic displays capable of showing color images. The topic is diverse, involving nematic, smectic, and cholesteric liquid crystals; retardation, anisotropic absorption, scattering, and selectively reflecting optical modes; dielectrically, ferroelectrically, and flexoelectrically driven electrooptic effects; bistable textures stabilized by monostable surfaces or smectic layers and bistable surfaces; and applications ranging from electronic skins to high-definition television. Many different bistable display modes have been suggested over the past four decades, and this chapter concentrates on the bistable twisted nematic, surface stabilized ferroelectric liquid crystals (FLCs), scattering smectic A, grating aligned zenithal bistable display, and bistable cholesteric displays (BCDs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCD:

Bistable Cholesteric Display

BiNemâ„¢:

Trade Name for 0-Ï€ Bistable Nematic Mode marketed by Nemoptic

BTN:

Bistable Twisted Nematic often used for the 0-2Ï€ metastable nematic display mode

C1 and C2:

FLC Chevron smectic layer orientation directions defined with respect to the parallel surface alignment directions

CMOS:

Complementary Metal-Oxide Semiconductor/Silicon

DMOS:

Double Diffused Metal-Oxide Semiconductor/Silicon

DRAMA:

Defence Research Agency Multiplexed Addressing Scheme used for Ï„Vmin FLC

ESL:

Electronic Shelf-Edge Label used in retail for automatically displaying pricing and other product information

FLC:

Ferroelectric Liquid Crystal formed in chiral tilted smectic liquid crystals, but usually taken to mean chiral smectic C∗

FLCD:

Ferroelectric Liquid Crystal Display

HAN:

Hybrid-Aligned Nematic, usually taken to mean homeotropic alignment on one surface, and homogeneous or low pre-tilt alignment on the opposite surface

HDTV:

High-Definition Television usually corresponding to 1,920 × 1,080i (interlaced) or 1,920 × 1,080p (progressive) pixels

ITO:

Indium Tin Oxide, the transparent conducting oxide layer most commonly used by the display, touch screen, and solar panel industries

LCD:

Liquid Crystal Display

N and N∗ :

Nematic and Chiral Nematic Liquid Crystal Phases, where the pitch of the chiral nematic is arbitrarily taken to be much longer than the wavelength of light, to distinguish it from the cholesteric phase

NTSC:

National Television System Committee that defined the standards for US color television

OLED:

Organic Light Emitting Diode

PEDOT:

Poly (3,4- ethylenedioxythioiphene), a polymeric transparent conductor

PES:

Polyethersulfone polymer film that can be made without birefringence

PET:

Polyethylene Terephthalate, polymer film

Ps and Pf :

Electric Polarization, either spontaneous (ferroelectric) or elastically induced (flexoelectric)

QVGA:

Quarter-Video-Graphics Array, 320 × 240 pixels

RGBW:

Red-Green-Blue and transparent (White) color filter system

RMS:

Root Mean Square

SiOx :

Silicon Oxide Layer, usually evaporated onto glass surface to induce director alignment

SmA, SmC, and SmC∗ :

Smectic A, Smectic C, and Chiral Smectic C Phases

STN:

Supertwist Nematic Display, taken to include foil compensated STN

TDP:

Triangular Director Profile for SmC and FLC chevron structures

TFT:

Thin-Film Transistor, usually meaning one or more such elements at each pixel

TN:

Twisted Nematic

VAN:

Vertically Aligned Nematic, where both surfaces are homeotropically aligned

ZBD:

Zenithal Bistable Display/Device

Δn:

The birefringence of the anisotropic liquid crystal phases, given as the difference between extraordinary n e and ordinary n o refractive indices

Ï„Vmin mode:

FLCD Mode of operation for low Ps and highly positive dielectrically biaxial FLC

References

  1. Coates D (2011) Cholesteric liquid crystals. In: Chen J, Cranton W, Fihn M (eds) Handbook of visual display technology. Springer, Berlin

    Google Scholar 

  2. Rudquist P (2011) Smectic LCD modes. In: Chen J, Cranton W, Fihn M (eds) Handbook of visual display technology. Springer, Berlin

    Google Scholar 

  3. Berreman DW, Heffner WR (1980) New bistable liquid crystal twist cell. Appl Phys Lett 37:109–111

    Article  Google Scholar 

  4. Tanaka T, Sato Y, Inoue A, Momose Y, Notuma H, Iino S (1995) A bistable twisted nematic (BTN) LCD driven by passive-matrix addressing. Asia Disp 26:259–262

    Google Scholar 

  5. Nomura H, Obikawa T, Ozawa Y, Tanaka T (2000) Recent studies on multiplex driving of BTN-LCDs. J SID 8(4):289–294

    Google Scholar 

  6. Li J, Hoke CD, Fredley S, Bos PJ (1996) A bistable LCD using polymer stabilization. Proc SID Int Symp Dig Tech Papers 27:265–268

    Google Scholar 

  7. Acosta EJ, Smith NJ, Towler MJ (2006) Isolation techniques for long-term bistability of the bistable twisted nematic mode. Liq Cryst 33(3):249–256

    Article  Google Scholar 

  8. Elston S, Benzie P (2011) In: Chen J, Cranton W, Fihn M (eds) Handbook of visual display technology. Springer, Berlin

    Google Scholar 

  9. Boyd GD, Cheng J, Ngo PDT (1980) Liquid-crystal orientational bistability and nematic storage effects. Appl Phys Lett 36:556–558

    Article  Google Scholar 

  10. Thurston RN, Cheng J, Boyd GD (1980) Mechanically bistable liquid-crystal display structures. IEEE Trans Electron Devices ED-27(11):2069–2080

    Article  Google Scholar 

  11. Monkade M, Boix M, Durand G (1987) Order electricity and oblique nematic orientation on rough solid surfaces. Europhys Lett 5(8):697–702

    Article  Google Scholar 

  12. Barberi R, Boix M, Durand G (1989) Electrically controlled surface bistability in nematic liquid crystals. Appl Phys Lett 55(24):2506–2508

    Article  Google Scholar 

  13. Bryan-Brown GP, Towler MJ, Bancroft MS, McDonnell DG (1994) Bistable nematic alignment using bigratings. In: Proceedings of international display research conference (IDRC ’94), pp 209–212

    Google Scholar 

  14. Yi Y, Lombardo G, Ashby N, Barberi R, Maclennan JE, Clark NA (2009) Topographic-pattern-induced homeotropic alignment of liquid crystals. Phys Rev E 79(041701):1–9

    Google Scholar 

  15. Tsakonas C, Davidson AJ, Brown CV, Mottram NJ (2007) Multistable alignment states in nematic liquid crystal filled wells. Appl Phys Lett 90(111913):1–3

    Google Scholar 

  16. Lasak S, Davidson A, Brown CV, Mottram NJ (2009) Sidewall control of static azimuthal bistable nematic alignment states. J Phys D Appl Phys 42(085114):1–8

    Google Scholar 

  17. Barberi R, Giocondo M, Durand G (1992) Flexoelectrically controlled surface bistable switching in nematic liquid crystals. Appl Phys Lett 60(9):1085–1086

    Article  Google Scholar 

  18. Bradshaw MJ, Brown CV, Haslam SD, Hughes JR, Graham A, Jones JC, Katsuse H, Kawabata Y, Koden M, Miyoshi S, Nonomura K, Numao T, Shigeta M, Sugino M, Tagawa A, Gass PA, Raynes EP, Towler MJ (1997) Key technologies for τVmin FLCDs. In: Proceedings of international display research conference, Toronto, Sept 1997, pp L16–L17

    Google Scholar 

  19. Surguy PWH, Ayliffe PJ, Birch MJ, Bone MF, Crossland I, Hughes JR, Ross PW, Saunders FC, Towler MJ (1991) The ‘JOERS/Alvey’ ferroelectric multiplexing scheme. Ferroelectrics 122:63–79

    Article  Google Scholar 

  20. Jones JC, Towler MJ, Hughes JR (1993) Fast, high contrast ferroelectric liquid crystal displays and the role of dielectric biaxiality. Displays 14(2):86–93

    Article  Google Scholar 

  21. Itoh N, Akiyama H, Kawabata Y, Koden M, Miyoshi S, Numao T, Shigeta M, Bradshaw MJ, Brown CV, Graham A, Haslam SD, Hughes JR, Jones JC, Slaney AJ, Bonnett P, Gass PA, Raynes EP, Ulrich DC (1998) 17″ video-rate full colour FLCD. In: Proceedings of the international displays workshop (IDW), Kobe, Dec 1998, PLC 1–2, pp 205–208

    Google Scholar 

  22. Koden M (1999) Passive-matrix FLCDs with high contrast and video-rate full colour pictures. Ferroelectrics 246:87–96

    Article  Google Scholar 

  23. Clark NA, Lagerwall ST (1980) Submicrosecond bistable electro-optic switching in liquid crystals. Appl Phys Lett 36(1):899–901

    Article  Google Scholar 

  24. Rieker TP, Clark NA, Smith GS, Parmar DS, Sirota EB, Safinya CR (1987) Chevron local layer structure in surface stabilised ferroelectric smectic C cells. Phys Rev Lett 59(3):2658–2661

    Article  Google Scholar 

  25. Kanbe J, Inoue H, Mizutome A, Hanyuu Y, Katagiri K, Yoshihara S (1991) High resolution large area FLC display with high graphic performance. Ferroelectrics 114:3–26

    Article  Google Scholar 

  26. Anderson MH, Jones JC, Raynes EP, Towler MJ (1991) Optical studies of thin layers of smectic-C materials. J Appl Phys 24:338–342

    Google Scholar 

  27. Terada M, Yamada S, Katagiri K, Yoshihara S, Kanbe J (1993) Static and dynamic properties of chevron uniform FLC. Ferroelectrics 149:283–294

    Article  Google Scholar 

  28. Brown CV, Dunn PE, Jones JC (1997) The effects of elastic constants on the alignment and electro-optic behaviour of smectic C liquid crystals. Euro J Appl Math 8(3):281–291

    MATH  Google Scholar 

  29. Jones JC, Raynes EP (1992) Measurement of the biaxial permittivities for several smectic-C host materials used in ferroelectric liquid crystals devices. Liq Cryst 11(10):199–217

    Article  Google Scholar 

  30. Jones JC, Brown CV, Dunn PE (2000) The physics of τVmin ferroelectric liquid crystals. Ferroelectrics 246:191–201

    Article  Google Scholar 

  31. Mottram NJ, Ul Islam N, Elston SJ (1999) Biaxial modeling of the structure of the chevron interface in smectic liquid crystals. Phys Rev E 60:613–619

    Article  Google Scholar 

  32. Jones JC, Towler MJ, Raynes EP (1991) The importance of dielectric biaxiality for ferroelectric liquid crystal devices. Ferroelectrics 121(2):91–102

    Article  Google Scholar 

  33. Slaney AJ, Minter V, Jones JC (1997) Assessment of LC materials for τVmin devices. In: Proceedings of international display workshop (IDW), Nagoya, Nov 1997, PLC3-5, pp 885–886

    Google Scholar 

  34. Anderson MH, Hughes JR, Jones JC, Russell KG (1997) Comparison of three slot DRAMA with other τVmin drive schemes. In: Proceedings of 14th international display research conference (IDRC ’97), pp L40–L41

    Google Scholar 

  35. Hughes JR, Raynes EP (1993) A new set of high-speed matrix addressing schemes for ferroelectric liquid crystal displays. Liq Cryst 13:597–601

    Article  Google Scholar 

  36. Kondoh S, Suguro A, Noguchi K, Iio K, Ueda K, Takahashi N, Fujino M (2005) Low power consumption displays using ferroelectric liquid crystals. In: Proceedings of international display workshop (IDW’05), pp 81–82

    Google Scholar 

  37. Amakawa H, Kondoh S (2008) Developments of ferroelectric liquid crystal devices and applications utilizing memory effect. In: Proceedings of international display workshop (IDW’08), pp 1559–1562

    Google Scholar 

  38. Ulrich DC, Henley B, Tombling C, Tillin MD, Smith D, Dodgson N (2001) A 400-dpi reflective storage ferroelectric liquid-crystal display for highly readable, low-power mobile display applications. J SID 9(4):295–300

    Google Scholar 

  39. Coates D, Crossland WA, Morrissy JH, Needham B (1978) Electrically induced scattering textures in smectic A phases and their electrical reversal. J Phys D Appl Phys 11:2025–2034

    Article  Google Scholar 

  40. Crossland WA, Canter S (1985) An electrically addressed smectic storage device. In: Digest of SID ‘85, pp 124–126

    Google Scholar 

  41. Coates D (1998) Non-chiral smectic liquid crystals – applications, Chapter 3. In: Demus D, Goodby J, Gray GW, Spiess H-W, Vill V (eds) Handbook of liquid crystals. Wiley VCH/GmbH, Weinheim, pp 470–490

    Chapter  Google Scholar 

  42. Büyüktanir EA, Mitrokhin M, Holter B, Glushchenko A, West J (2006) Flexible bistable smectic-A polymer dispersed liquid crystal display. Jpn J Appl Phys 45:4146–4151

    Article  Google Scholar 

  43. Tang Y, Lei W, Zheng Y, Wang B, Sun G, Xia X (2010) Multi-gray level reflective LCD module design and its tiled application. Proc SID Int Symp Dig Tech Papers 41:1408–1410

    Article  Google Scholar 

  44. Dozov I, Nobili M, Durand G (1997) Fast bistable nematic display using monostable surface switching. Appl Phys Lett 70(9):1179–1181

    Article  Google Scholar 

  45. Joubert C, Angelé J, Boissier A, Pecout B, Forget SL, Dozov I, Stoenescu D, Lallemand S, Martinot-Lagarde P (2003) Reflective bistable nematic displays (BiNem) fabricated by standard manufacturing equipment. J SID 11(1):217–224

    Google Scholar 

  46. Dozov I, Martinot-Lagarde P (1998) First order breaking transition of tilted nematic anchoring. Phys Rev E 58(6):7442–7446

    Article  Google Scholar 

  47. Angelé J, Stoenescu D, Dozov I, Osterman J, Laffitte JD, Compagnon M, Emeraud T, Leblanc F (2007) New developments and applications update of BiNem displays. Proc SID Int Symp Dig Tech Papers 38:1351–1769

    Article  Google Scholar 

  48. Osterman J, Madsen L, Angelé J, Leblanc F, Scheffer T, Nordström R (2010) Optical optimization of the single-polarizer BiNem display for e-reading applications. Proc SID Int Symp Dig Tech Papers 41:203–206

    Article  Google Scholar 

  49. Joly S, Thomas P, Osterman J, Simon A, Lallemant S, Faget L, Laffitte J-D, Irzyk M, Madsen L, Angelé J, Leblanc F, Martinot-Lagarde P (2010) Demonstration of a technological prototype of an active-matrix Binem liquid-crystal display. J SID 18(12):1033–1039

    Google Scholar 

  50. Jones JC (2009) Approaching the Zenith: bistable LCDs in a retail environment. Inf Disp 25(3):8–11

    Google Scholar 

  51. Bryan-Brown GP, Brown CV, Jones JC (1997) Bistable nematic liquid crystal device. US Patent 06249332, priority 16 Oct 1995

    Google Scholar 

  52. Jones JC (2008) The Zenithal bistable display: from concept to consumer. J SID 16(1):143–154

    Google Scholar 

  53. Kitson S, Geisow A (2002) Controllable alignment of nematic liquid crystals around microscopic posts: stabilisation of multiple states. Appl Phys Lett 80(19):3635–3637

    Article  Google Scholar 

  54. Spencer TJ, Care C, Amos RM, Jones JC (2010) A Zenithal bistable device: comparison of modelling and experiment. Phys Rev E 82(021702):1–13

    Google Scholar 

  55. Davidson AJ, Mottram NJ (2002) Flexo-electric switching in a bistable nematic device. Phys Rev E 65(05171000):1–10

    Google Scholar 

  56. Jones JC, Amos RM (2011) Relating display performance and grating structure of a Zenithal bistable display. Mol Cryst Liq Cryst 543:823–834

    Google Scholar 

  57. Wood EL, Bryan-Brown GP, Brett P, Graham A, Jones JC, Hughes JR (2000) Zenithal bistable device (ZBD) suitable for portable applications. Proc SID Int Symp Dig Tech Papers 31:124–127

    Article  Google Scholar 

  58. Jones JC, Bryan-Brown GP (2010) Low cost Zenithal bistable device with improved white state. Proc SID Int Symp Dig Tech Papers 41:207–211

    Article  Google Scholar 

  59. Bryan-Brown GP, Walker DRE, Jones JC (2009) Controlled grating replication for the ZBD technology. Proc SID Int Symp Dig Tech Papers 40:1334–1337

    Article  Google Scholar 

  60. Jones JC (2006) Novel geometries of the Zenithal bistable device. Proc SID Int Symp Dig Tech Papers 37:1626–1629

    Article  Google Scholar 

  61. Bryan-Brown GP, Wood EL, Jones JC (1998) Optimisation of the Zenithal bistable nematic liquid crystal device. In: Proceedings of 18th international display research conference (IDRC ’98), pp 1051–1053

    Google Scholar 

  62. Jones JC, Beldon SM, Wood EL (2003) Gray scale in zenithal bistable displays: the route to ultra-low power color displays. J SID 11(2):269–275

    Google Scholar 

  63. Uche C, Elston SJ, Parry-Jones LA (2005) Microscopic observation of Zenithal bistable switching in nematic devices with different surface relief structures. J Phys D Appl Phys 38(13):2283–2291

    Article  Google Scholar 

  64. Jones JC (2001) Bistable nematic liquid crystal device. US Patent 7,371,362, priority 30 Nov 1999

    Google Scholar 

  65. Oo TN, Kimura N, Akahane T (2008) Effect of elastic constant ratio K33/K11 and stripe width area ratio on micro-patterned alignment of nematic liquid crystal. Adv Tech Mat Mat Proc J 10(1):9–20

    Google Scholar 

  66. Brill J, Lueder E, Randler M, Voegele S, Frey V (2002) A flexible ferroelectric liquid-crystal display with improved mechanical stability for smart-card applications. J SID 10(3):189–194

    Google Scholar 

  67. Barron C, Angelé J, Bajic L, Dozov I, Leblanc F, Perny S, Brill J, Specht J (2005) Development of Binem® displays on flexible plastic substrates. J SID 13(3):193–198

    Google Scholar 

  68. Bryan-Brown GP (2000) Zenithal bistable device (ZBD) using plastic substrates. In: Proceedings of 20th international display research conference (IDRC), pp 229–232

    Google Scholar 

  69. Jones JC, Brett P, Bryan-Brown GP, Graham A, Wood EL, Scanlon RJ, Martin H-L (2002) Meeting the display requirements for portable applications using Zenithal bistable devices (ZBD). Proc SID Int Symp Dig Tech Papers 33:90–93

    Article  Google Scholar 

  70. Rudin J, Kitson S, Geisow A (2009) Colour plastic bistable nematic display fabricated by imprint and ink-jet technology. J SID 17(4):309–316

    Google Scholar 

  71. Bobrov Y, Lazarev P, McMurtry D, Remizov S (2001) Incorporation of optiva polarizers in LCD production line. Proc SID Int Symp Dig Tech Papers 32:639–641

    Article  Google Scholar 

  72. Heilmeier GH, Goldmacher JE (1968) A new electric-field-controlled reflective optical storage effect in mixed liquid crystal systems. Appl Phys Lett 13(4):132–133

    Article  Google Scholar 

  73. Greubel W, Wolf U, Krüger H (1973) Electric field induced texture change in certain nematic/cholesteric liquid crystal mixtures. Mol Cryst Liq Cryst 24:103–106

    Article  Google Scholar 

  74. Greubel W (1974) Bistability behavior of texture in cholesteric liquid crystals in an electric field. Appl Phys Lett 25(1):5–7

    Article  Google Scholar 

  75. Kawachi M, Kato K, Kogure O (1978) Light scattering characteristics in nematic-cholesteric mixtures with positive dielectric anisotropy. Jpn J Appl Phys 17:1245–1250

    Article  Google Scholar 

  76. Yang D-K, Chien L-C, Doane JW (1991) Cholesteric liquid crystal/polymer gel dispersion bistable at zero field. In: Proceedings of international display research conference, pp 49–52

    Google Scholar 

  77. Yang D-K, West JL, Chien L-C, Doane JW (1994) Control of reflectivity and bistability in displays using cholesteric liquid crystals. J Appl Phys 76:1331–1333

    Article  Google Scholar 

  78. Doane JW, Khan A, Huang X-Y, Miller N (2003) Bistable reflective cholesteric displays. In: Proceedings of international display research conference, Paper 6.1, pp 84–87

    Google Scholar 

  79. Khan A, Shiyanovskaya I, Schneider T, Miller N, Ernst T, Marhefka D, Nicholson F, Green S, Magyar G, Pishnyak O, Doane JW (2005) Reflective cholesteric displays: from rigid to flexible. J SID 13(6):469–474

    Google Scholar 

  80. de Gennes PG, Prost J (1993) The physics of liquid crystals, 2nd edn. Clarendon, Oxford

    Google Scholar 

  81. Yang DK, Lu ZJ (1995) Switching mechanism of bistable reflective cholesteric displays. Proc SID Int Symp Dig Tech Papers 26:351–354

    Google Scholar 

  82. Yang DK, Huang XY, Zhu YM (1997) Bistable cholesteric reflective displays: materials and drive schemes. Annu Rev Mater Sci 27:117–146

    Article  Google Scholar 

  83. Kawachi M, Kogure O, Yoshii S, Kato K (1975) Field-induced nematic-cholesteric relaxation in a small angle wedge. Jpn J Appl Phys 14(9):1063–1064

    Article  Google Scholar 

  84. Yang D-K, Doane JW (1992) Cholesteric liquid crystal/polymer gel dispersions: reflective displays. Proc SID Int Symp Dig Tech Papers 23:759–762

    Google Scholar 

  85. Huang X-Y, Yang D-K, Bos PJ, Doane JW (1995) Dynamic drive for bistable cholesteric displays: a rapid addressing scheme. J SID 3:165–168

    Google Scholar 

  86. Stephenson S (2004) Development of flexible displays using photographic technology. Proc SID Int Symp Dig Tech Papers 35:774–777

    Article  Google Scholar 

  87. Shiyanovskaya I, Green S, Khan A, Mayar G, Pishnyak O, Doane JW (2008) Substrate-free cholesteric liquid-crystal displays. J SID 16(1):113–115

    Google Scholar 

  88. Hashimoto K, Okada M, Nishiguchi L, Masazumi N, Yamagawa E, Taniguchi T (1998) Reflective color display using cholesteric liquid crystals. Proc SID Int Symp Dig Tech Papers 39:897–900

    Article  Google Scholar 

  89. Taheri B, West JL, Yang DK (1998) Recent developments in bistable cholesteric displays. Proc SPIE 3297:115–121

    Article  Google Scholar 

  90. Kato T, Kurosaki Y, Kiyota Y, Tomita J, Yoshihara T (2010) Application and effects of orientation control technology in electronic paper using cholesteric liquid crystals. Proc SID Int Symp Dig Tech Papers 41:568–571

    Article  Google Scholar 

  91. Nose M, Uehara H, Shingai T (2010) Driving scheme of color e-paper using Ch-LC for high image quality. In Proceedings of the international displays workshops (IDW 10), paper EP6-1

    Google Scholar 

  92. Coates D (2009) Low-power large-area cholesteric displays. Inf Disp 25(3):16–19

    Google Scholar 

  93. Green A, Montbach E, Miller N, Davis DJ, Khan A, Schneider T, Doane JW (2008) Energy efficient flexible Reflex™ displays. Proc SID Int Symp Dig Tech Papers 39:55–58

    Google Scholar 

  94. Schneider T, Magyar G, Barua S, Ernst T, Miller N, Franklin S, Montbach E, Davis DJ, Khan A, Doane JW (2008) A flexible touch-sensitive writing tablet. Proc SID Int Symp Dig Tech Papers 39:1840–1842

    Article  Google Scholar 

Further Reading

  • Chigrinov VG (1999) Liquid crystal devices. Artech House, London

    Google Scholar 

  • Crawford G, Zumer S (eds) (1996) Liquid crystals in complex geometries formed by polymer and porous networks. Taylor and Francis, London

    Google Scholar 

  • Demus D, Goodby J, Gray GW, Spiess H-W, Vill V (eds) (1998) Handbook of liquid crystals. Wiley VCH, Weinheim

    Google Scholar 

  • Hilsum C (2010) Flat-panel electronic displays: a triumph of physics, chemistry and engineering. Philos Trans R Soc A Math Phys Eng Sci 368(1914):1027–1082

    Article  Google Scholar 

  • Lagerwall ST (1999) Ferroelectric and antiferroelectric liquid crystals. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Takatoh K, Sakamoto M, Hasegawa R, Koden M, Itoh N, Hasegawa M (2005) Alignment technologies and applications of liquid crystals. Taylor and Francis, London

    Book  Google Scholar 

  • Wu ST, Yang DK (2001) Reflective liquid crystal displays. Wiley, Chichester/New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cliff Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Jones, C. (2012). Bistable Liquid Crystal Displays. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_92

Download citation

Publish with us

Policies and ethics