Skip to main content

LCD Processing and Testing

  • Reference work entry
Handbook of Visual Display Technology

Abstract

The TFT-LCD technology is based upon Semiconductor IC fabrication processing. The unique point of the TFT-LCD technology is that it uses a glass substrate, instead of the conventional Si wafer. For the TFT fabrication process, thin film formation, such as CVD, sputtering and film coating on glass substrate are important. In the assembling process of color filter and TFT substrate, photo-spacer and ODF have been developed and applied for large-size LCDs. Light source of backlight is being replaced from CCFL by LED. Test and repair technologies have been essential technologies for stable production. As described in this chapter, these technologies are contributing to realize good yield for large-size display fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACF:

Anisotropic Conductive Film

AOI:

Automatic Optical Inspection System

a-Si:

Amorphous Silicon

BM:

Black Matrix

CCFL:

Cold Cathode Fluorescent Lamp

CF:

Color Filter

CDO:

Critical Dimension and Overlay Measurement

COF:

Chip On Film

COG:

Chip On Glass

CVD:

Chemical Vapor Deposition

FHG:

Fourth Harmonic Generation

FPC:

Flexible Printed Circuit Board

ITO:

Indium Tin Oxide

LCD:

Liquid Crystal Display

LED:

Light-Emitting Diode

MVA:

Multi-domain Vertical Alignment

NTSC:

National Television System Committee (body that develops television standards)

OD:

Optical Density

ODF:

One Drop Fill

OLB:

Out Lead Bonder

PE-CVD:

Plasma-Enhanced Chemical Vapor Deposition

PET:

Polyethylene Terephtharate

p-Si:

Polycrystalline Silicon

PVA:

Polyvinyl Alcohol

SiNx:

Silicon Nitride

TAB:

Tape Automated Bonding

TAC:

Triacetyl Cellulose

TFT:

Thin Film Transistor

THG:

Third Harmonic Generation

μe:

Electron Field Effect Mobility

YAG:

Yttrium Aluminum Garnet

References

  1. Spear WE, Le Comber PG (1975) Substitutional doping of amorphous silicon. Solid State Commun 17:1193–1196

    Article  Google Scholar 

  2. Le Comber PG, Spear WE, Ghaith A (1979) Amorphous-silicon field-effect device and possible application. Electron Lett 15:179–181

    Article  Google Scholar 

  3. Snell AJ, Mackenzie KD, Spear WE, Le Comber PG, Hughes AJ (1981) Application of amorphous silicon field effect transistors in addressable liquid crystal display panels. Appl Phys 24:357–362

    Article  Google Scholar 

  4. Colgan EG et al (1996) Copper-gate process for high information content a-Si TFT-LCDs. In: IDW96 Proceedings, Kobe, pp 29–32

    Google Scholar 

  5. Sirringhaus H, Kahn A, Wagner S (1996) Self-passivated copper gates for thin film silicon transistors. In: IDW96 Proceedings, pp 391–392

    Google Scholar 

  6. Koike J, Neishi K, Iijima J, Sutou Y (2007) Possibility of Cu-Mn alloy for TFT gate electrodes. In: IDW07 Proceedings, pp 2037–2040

    Google Scholar 

  7. Lieberman MA et al (2002) Standing wave and skin effects in large area, high frequency capacitive discharges. Plasma Sources Sci Technol 11:283–293

    Article  Google Scholar 

  8. Takehara T, Sun S, Kang ID (2004) The latest PECVD technology for large-size TFT-LCD. In: IDW04 Proceedings, pp 603–606

    Google Scholar 

  9. Takehara T (2005) Newest technology “akt-apxl” process chamber of the PECVD equipment for large TFT-LCD. AKT News 18:32–39

    Google Scholar 

  10. Sun S, Takehara T, Kang ID (2004) Scaling-up PECVD system for large-size substrate processing. In: SID04 DIGEST, pp 1499–1501

    Google Scholar 

  11. Okita T, Masaki Y (1999) The new photoresist for LCD panel spacer. In: IDW99 Proceedings, pp 415–118

    Google Scholar 

  12. Ohmori H, Sakagawa M, Tani M, Nagase T (2000) A new negative photoresist for LCD spacers with high resolution. In: IDW00 Proceedings, pp 399–402

    Google Scholar 

  13. Kamiya H et al (2001) Development of one drop fill technology for AM-LCDs. In: SID01 DIGEST, pp 1354–1357

    Google Scholar 

  14. Hirai A, Abe I, Mitsumoto M, Ishida S (2008) One drop filling for liquid crystal display panel produced from larger-sized mother glass. Hitachi Review 57(3):144–148

    Google Scholar 

  15. Yoshida M, Muramoto K, Oono T (2006) Liquid crystal drop filling (ODF)/vacuum bonding system: V-series. ULVAC Tech J 64:36–40

    Google Scholar 

  16. Yamada S et al (2001) A new production of large size TFT-panel by “LC-dropping method”. In: SID01 DIGEST, pp 1350–1353

    Google Scholar 

  17. Yamamoto T, Tomiyoshi A, Masuda T, Fujiwara K, Ajichi Y (2009) The LED backlight of AQUOS XS1. Sharp Tech J 99:32–37

    Google Scholar 

  18. Masuda T, Ajichi Y, Kubo T, Yamamoto T, Shinomiya T, Nakamura M, Shimizu T, Kasai N, Mouri H, Feng XF, Teragawa M (2009) Ultra thin LED backlight system using tandem light guides for large-size LCD-TV. In: IDW09 Proceedings, pp 1857–1860

    Google Scholar 

  19. Gourlay J et al (2009) Low-cost large-area LED backlight. In: SID09 DIGEST, pp 713–715

    Google Scholar 

  20. Igarashi D (2009) 2009 LCD technology outlook (complete works). Electronic J, 336–340

    Google Scholar 

  21. Freeman D, Hawthorne J (2000) Implications of super high resolution to array testing. In: SID00 DIGEST, pp 375–377

    Google Scholar 

  22. Suzuki Y et al (2005) Ekishou display no dekirumade. In: Nikkan Kogyou Sinbunsya, pp 135–136

    Google Scholar 

  23. Mizumura M (2009) 2009 LCD technology outlook (complete works). Electronic J, 345–349

    Google Scholar 

  24. Hitomi K (2009) 2009 LCD technology outlook (complete works). Electronic J, 354–357

    Google Scholar 

  25. Sato K, Kobayashi S (2001) Flat board probing for 30 m pitched flat panel inspection. In: SID01 DIGEST, pp 646–649

    Google Scholar 

  26. Wakabayashi K, Mitobe K, Torigoe T (2004) Laser CVD repair technology for final yield improvement method in mass and large size TFT-LCD production process. In: IDW04 Proceedings, pp 623–624

    Google Scholar 

  27. OMRON LASERFRONT INC HP (2009) http://www.laserfront.jp/en/product/sl455/adv.html

  28. Kakishita N (2004) Optical inspection system for the next generation LCD production. In: IDW04 Proceedings, pp 565–568

    Google Scholar 

  29. Honoki H, Nakasu N, Arai T, Yoshimura K, Edamura T (2006) In-line automatic defect inspection and repair method for possible highest yield TFT array production. In: IDW06 Proceedings, pp 849–852

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Yamamoto, Y. (2012). LCD Processing and Testing. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_98

Download citation

Publish with us

Policies and ethics