
A decision-making procedure for

resolution-based SAT-solvers

Eugene Goldberg

Cadence Research Labs, USA, 2150 Shattuck Ave.,10th floor, Berkeley, California,
94704, phone: 1-510-647-2825, fax:1-510-647-2801, egold@cadence.com

Abstract. We describe a new decision-making procedure for resolution-
based SAT-solvers called Decision Making with a Reference Point (DMRP).
In DMRP, a complete assignment called a reference point is maintained.
DMRP is aimed at finding a change of the reference point under which
the number of clauses falsified by the modified point is smaller than
for the original one. DMRP makes it possible for a DPLL-like algo-
rithm to perform a ”local search strategy”. We describe a SAT-algorithm
with conflict clause learning that uses DMRP. Experimental results show
that even a straightforward and unoptimized implementation of this al-
gorithm is competitive with SAT-solvers like BerkMin and Minisat on
practical formulas. Interestingly, DMRP is beneficial not only for satis-
fiable but also for unsatisfiable formulas.

1 Introduction

Resolution based SAT-solvers have gained great popularity due to their ability
to solve very large practical CNF formulas. An important contributor to this
success is conflict driven decision making (CDDM) introduced in [17] and further
developed in BerkMin [7], Minisat [3], Siege and other SAT-solvers. CDDM takes
into account the history of conflicts thus forcing the SAT-solver to explore the
parts of the search space that have not been visited before.
Despite the obvious success of CDDM, still there are many directions to

explore. In this paper, we introduce a resolution based SAT-solver whose deci-
sion making procedure employs a complete assignment further referred to as a
reference point. We will refer to this procedure as Decision Making with a
Reference Point (DMRP). (We will refer to the SAT-solver employing DMRP
that we describe in this paper as DMRP-SAT.)
The main idea of DMRP is as follows. Let F be the CNF formula to be solved.

Let p be a reference point and M(p) be the set of clauses of F that are falsified
by p. DMRP-SAT picks a clause C of M(p) and tries to find a modification
p′ of p that satisfies C and does not falsify any clauses of F that are not in
M(p) \ {C}. In other words, M(p′) ⊂ M(p).
Importantly, the search of the point p′ above is done by a regular DPLL-

like procedure with conflict clause learning. After p′ is found, it becomes a new
reference point and DMRP-SAT performs a complete restart. In our previous
paper [6], we described the resolution-based SAT-solver called FI that operates

on complete assignments. One can view the decision making procedure of FI as
a variation of CDDM. Similarly to CDDM and decision making of FI, DMRP
also gives some preference to recently derived conflict clauses. At the same time,
DMRP is not just a variation of CDDM.
DMRP makes it possible for a SAT-solver to monotonically reduce the num-

ber of clauses falsified by the current reference point. So, in a sense, DMRP-SAT
combines the features of algorithms based on the DPLL procedure [2] and lo-
cal search SAT-algorithms pioneered in [20, 21]. The strategy of reducing the
number of clauses falsified by a complete assignment has been successfully ap-
plied by local search procedures to various classes of satisfiable formulas with
no (or “little”) structure like random CNF formulas. For structured satisfiable
formulas, DPLL based SAT-solvers are usually more successful due to conflict
clause learning and Boolean Constraint Propagation. Our results imply that local
search strategy can be successfully applied to structured formulas as well. Inter-
estingly, DMRP-SAT works very well not only for satisfiable formulas (which is
somewhat expected) but also for unsatisfiable ones.
Currently, the main drawback of DMRP in comparison to CDDM is that

DMRP is more expensive. The reason is that DMRP has to maintain a particular
set of clauses that is updated after assigning/unassigning a variable. (Satisfying
all the clauses of this set means that a new reference point is found that falsifies
fewer clauses than the original one). However, our experiments show that due to
high quality of decision making, even a straightforward unoptimized implemen-
tation of DMRP-SAT can be competitive with SAT-solvers like BerkMin and
Minisat.
This paper is structured as follows. In Section 2, we introduce the idea of

DMRP and give an example. Section 3 describes DMRP-SAT in more detail.
In Section 4, DMRP-SAT is compared with other SAT-solvers. Experimental
results are presented in Section 5. We give some conclusions in Section 6.

2 Main idea of DMRP

In this section, we describe the basic idea of Decision Making with a Reference
Point (DMRP) that is implemented in the SAT-solver DMRP-SAT.
Let F be a CNF formula and p be a complete assignment to the variables of

F . (For the sake of brevity, we will also call p a point.) A clause C of F is said
to be falsified (satisfied) by p if C(p) = 0 (respectively C(p) = 1). Denote by
Vars(C) the set of variables of clause C. Denote by Vars(y) the set of variables
assigned in a partial assignment y.

Definition 1. Let M(p) be the set of clauses of F falsified by p. We will say
that p′ recursively satisfies a clause C of M(p) with respect to the reference
point p if a) C(p′) = 1; b) M(p′) ⊂ M(p).

The use of term ”recursively” is due to the fact that, given a reference point p,
when looking for the point p′ above, DMRP-SAT first satisfies clause C, then
satisfies “descendants” of clause C that get falsified after satisfying C and so on.

Note that if F is satisfiable, an assignment p′ meeting the two conditions of
Definition 1 always exists. (An assignment p′ satisfying F recursively satisfies
any clause C of F with respect to any reference point p falsifying C.) On the
other hand, even if F is unsatisfiable , one may find an assignment p′ recursively
satisfying C if |M(p)| > 1. Then M(p′) ⊂ M(p) and M(p′) 6= ∅.
The basic idea of DMRP is to look for a complete assignment recursively

satisfying a clause by regular branching as in the DPLL-procedure.

Definition 2. Let y be a partial assignment. Denote by modify(p,y) the point
obtained from p by flipping the assignments that are different in p and y. (So
assignments to Vars(y) in the point modify(p,y) are the same as in y.)

DMRP-SAT looks for a partial assignment y such that p′ = modify(p,y) re-
cursively satisfies C. To make this search efficient, DMRP-SAT maintains a set
D(C,p,y) of clauses that one needs to satisfy before finding a point recursively
satisfying C (see Definition 3). So ifD(C,p,y) = ∅, the point p′ =modify(p,y) re-
cursively satisfies C. DMRP-SAT implements DMRP using the following greedy
heuristic aimed at making D(C,p,y) empty. The next assignment is picked by
DMRP-SAT so as to satisfy the largest number of clauses of D(C,p,y).

Definition 3 (of the set D(C,p,y)). If partial assignment y is empty, then
D(C,p,y) = {C}. Otherwise, D(C,p,y) is defined as follows. A clause C ′ of F

is in D(C,p,y) iff 1) there is a variable xi ∈ Vars(y) ∩ Vars(C ′) that is assigned
differently in p and y; 2) C ′ is not satisfied by y.

Proposition 1. Let F be a CNF formula. Let p be a complete assignment and C

be a clause of M(p). Let y be a partial assignment satisfying C. If D(C,p,y) = ∅,
then the complete assignment p′=modify(p,y) recursively satisfies the clause C

with respect to the reference point p.

Proof. Assume the contrary, i.e. there is a clause C ′ ofM(p′) that is not inM(p)
and so p′ does not satisfy C recursively. Suppose the set of variables A=Vars(C ′)
∩ Vars(y) is empty. Then, C ′(p′)=0 implies C ′(p)=0 and so C ′ is in M(p). We
have a contradiction. Now suppose that A 6= ∅. Then all the assignments of y

to the variables of A have to falsify corresponding literals of C ′. (Otherwise,
C ′(p′) = 1). If all the variables of A are assigned identically in y and p, then
C ′(p) = 0 and so C ′ is in M(p). Suppose that at least one variable of A is
assigned differently in y and p. Then, since D(C,p,y) is empty, the clause C ′

has to be satisfied by some assignment in y. So we have a contradiction again.

Note that D(C,p,y)= ∅ is only a sufficient condition. For example, even if
D(C,p,y) 6= ∅ but all the clauses of D(C,p,y) are satisfied by the reference
point p, the complete assignment modify(p,y) may recursively satisfy C. One
can give another definition of D(C,p,y) so that D(C,p,y) = ∅ is also the neces-
sary condition for modify(p,y) to recursively satisfy C. However, in the current
version of DMRP-SAT, to simplify computation of D(C,p,y) we use Definition 3.

Example 1. Let F be the CNF formula specified by the following seven clauses:
C1 = x1 ∨ x2 ∨ x3, C2 = x3 ∨ x4 ∨ x5, C3 = x1 ∨ x6, C4 = x1 ∨ x7,

C5 = x2 ∨ x5 ∨ x7, C6 = x2 ∨ x4 ∨ x7, C7 = x2 ∨ x6 ∨ x4. Let p=(x1=0,
x2=0, x3=0, x4=1, x5=0, x6=0, x7=0) be a reference point. The set M(p)
consists of clauses C1 and C2. In this example, we describe a run of DMRP-
solve (see Figures 1 and 2) called by DMRP-SAT when looking for a point that
recursively satisfies clause C1. In this description, we use the terminology of
decision levels [22]. Decision level number k consists of the decision assignment
number k and all implied assignments derived in Boolean Constraint Propagation
(BCP) caused by this decision assignment.
Initially, Vars(y)=∅. So D(C1,p,y) = {C1}. Suppose that DMRP-SAT chose

variable x1 to satisfy C1 (the function pick lit of Figure 1). That is x1 = 1 is the
first decision assignment made by DMRP-solve. Then the clause C1 is removed
from D(C1,p,y) (because it is satisfied by an assignment in y). Only clauses C3

and C4 of F have literal x1. They are added to D(C1,p,y) because p and y have
different assignments to x1 and neither C3 nor C4 are satisfied by an assignment
in y. So for y= {x1=1} the set D(C1,p,y) is equal to {C3, C4}.
At this point C3 and C4 become unit. After BCP, DMRP-solve derives x6=0

(from clause C3) and x7=1 (from clause C4) and removes C3,C4 from D(C1,p,y).
Since assignment x6=0 is the same in y and p, no new clauses are added to
D(C1,p,y) when y becomes (x1=1,x6=0). On the other hand, the variable x7

is assigned differently in y and p. Since x7 is in C5 and C6 and they are not
satisfied by y, these clauses are added to D(C1,p,y). So after completing BCP
of decision level 1, we have y=(x1=1, x6=0, x7 = 1), D(C1,p,y)= {C5,C6}.
Suppose that DMRP-solve picks second decision assignment x2=1 to satisfy

C5. Then clauses C6 and C7 become unit, and DMRP-solve derives opposite
values of x4 from them. This leads to a conflict. DMRP-solve derives conflict
clause C8 = x1 ∨ x2 and backtracks to decision level 1. At this level, y =(x1=1,
x6=0, x7 = 1) again and D(C1,p,y) = {C5,C6}. However, now DMRP-solve has
to update D(C1,p,y) due to appearance of conflict clause C8 by adding it to
D(C1,p,y). (C8 contains variable x1 that is assigned differently in y and p and
C8 is not satisfied by y.) So, D(C1,p,y) = {C5,C6,C8}.
At decision level 1, the conflict clause C8 becomes unit and DMRP-solve

derives x2=0 from it. Since x2=0 agrees with p, no new clauses need to be added
toD(C1,p,y). At the same time, C6 and C8 are removed fromD(C1,p,y) because
they are both satisfied by x2= 0. So D(C1,p,y) = {C5}. DMRP-solve derives
x5=0 from C5 and the latter is removed from D(C1,p,y). Since x5=0 agrees
with p, no new clauses are added to D(C1,p,y). So, for the partial assignment
y=(x1=1, x6=0, x7=1, x2=0, x5=0), D(C1,p,y) is empty. This means, that
the clause C1 is recursively satisfied by the assignment p′ = modify(p,y) where
p′ = (x1=1, x2=0, x3=0, x4=1, x5=0, x6=0, x7=1). It is not hard to check that
indeed C1(p

′)=1 and M(p′) = {C2} and so M(p′) ⊂ M(p). Now DMRP-solve
performs a complete restart and picks p′ as the next reference point.

3 Description of DMRP-SAT

In this section, we describe DMRP-SAT in more detail.

3.1 DMRP-SAT (high-level view)

DMRP-SAT (F)
{p=gen ref point(F);
while (true)
{C = pick clause(M(p));
lit = pick lit(C,M(p));
(ans,y)=DMRP-solve(F ,C,lit,p);
if (ans == unsat) return(unsat);
if (ans == sat) return(sat);
if (ans == literal) continue;
if (ans == rec sat)
{p = modify(p,y);
if (M(p) == ∅) return(sat);}

if (ans == new point)
p =modify(p,y);}}

Figure 1. Pseudocode of
DMRP-SAT

Pseudocode of DMRP-SAT (F) is shown
in Figure 1. First, DMRP-SAT gen-
erates a reference point. This is done
identically to initial point generation of
FI [6]. “Decision” assignments are made
by gen ref point in the order variables of
F are numbered. A decision assignment
is made to variable xi only if it has not
been already assigned by BCP performed
after a previous decision assignment. The
polarity of assignment to xi is chosen to
satisfy the largest number of clauses of
F with variable xi. After a decision as-
signment is made, BCP is performed. If a
clause of F is falsified during BCP, it is
added to M(p).

DMRP-solve(F ,C,lit,p)
{D(C,p,y) = {C};
while (true)
{if (D(C,p,y) == ∅)
{restart(F);
return(y,rec sat);}

make assgn(F ,lit,D(C,p,y));
ans = BCP(F ,D(C,p,y),p);
if (ans == sat) return(sat);
if (ans == conflict)
{C∗ = gen cnfl clause(F);
if (empty(C∗) return(unsat);
if (C∗ == unit) p=upd pnt(p);

if (C∗ == lit)
{restart(F) ;
return(literal); }

add clause(F ,C∗);
backtrack(F);}

else continue; // no conflict
if (num of cnfl++ > THRESH)
{restart(F);
return(y,new point);}

if (num of cnfl > thresh)
{restart(F);
continue;} }}

Figure 2. Pseudocode
of DMRP-solve

The main work is done by DMRP-SAT
in the ’while’ loop. First, DMRP-SAT
picks a clause C of M(p) to be recur-
sively satisfied. If M(p) contains conflict
clauses, then the clause derived most re-
cently is chosen as C. Otherwise, DMRP-
SAT picks a clause of M(p) that has a
literal occurring most frequently among
clauses of M(p). Then a literal lit of C is
chosen by the pick lit procedure. Namely,
it chooses the literal of C that occurs most
frequently among clauses of M(p). When
looking for a complete assignment recur-
sively satisfying clause C, the function
DMRP-solve called next examines only
points for which lit evaluates to 1.
Being a DPLL-like procedure with learn-
ing, DMRP-solve returns answer unsat-
isfiable if an empty clause is derived. If
all clauses of F are satisfied by the cur-
rent partial assignment y, then DMRP-
solve returns satisfiable. If DMRP-solve
derives the literal lit it returns literal. This
means, that clause C cannot by satisfied
by setting literal lit to 1. Then DMRP-
SAT starts a new iteration.

If D(C,p,y)=∅ (where y is the current partial assignment), DMRP-solve re-
turns rec sat (C can be recursively satisfied). A new reference point modify(p,y)
is computed. If M(p) = ∅, then p is a satisfying assignment. Otherwise, a new
iteration of the ’while’ loop is started. If the number of conflicts that occurred
in DMRP-solve exceeds THRESH, DMRP-solve returns new pnt. In this case,
DMRP-SAT generates a new reference point modify(p,y) (where y is the partial
assignment of DMRP-solve when it encountered the last conflict).

3.2 DMRP-solve

The pseudocode of DMRP-solve(F ,C,lit,p) is shown in Figure 2. On the one
hand, DMRP-solve is a regular DPLL-like SAT-solver with conflict clause learn-
ing. In the ’while’ loop, it makes a decision assignment and then runs BCP. If
after BCP, all clauses of F are satisfied, then DMRP-solve returns satisfiable. If
a conflict is encountered during BCP, a conflict clause C∗ is generated using the
1UIP scheme ([23]). If C∗ is an empty clause, DMRP-solve returns unsatisfiable.
Otherwise, C∗ is added to the current CNF formula, DMRP-solve backtracks
and a new iteration starts (unless C∗ is equal to lit , see below). If the number of
conflicts that occurred since the last restart is larger than thresh, DMRP-solve
restarts [8] (i.e. backtracks to decision level 0).

On the other hand, DMRP-solve has a few differentiating features. If conflict
clause C∗ is unit and the current reference point p falsifies C∗, then p is modified
by flipping the value of the variable Vars(C∗). Besides, if C∗ is unit and equal
to lit , DMRP-solve informs DMRP-SAT that such a literal was derived. (Here,
lit is the literal of clause C to be satisfied recursively that was chosen by pick lit
of DMRP-SAT). For decision-making, DMRP-solve maintains the set D(C,p,y)
(see Definition 3). Before looking for a new decision assignment, DMRP-solve
checks if D(C,p,y)=∅. If so, it performs a restart and informs DMRP-SAT that
clause C is recursively satisfied.

At the first decision level, DMRP-solve always makes the assignment sat-
isfying the literal lit of C (and so satisfying C). At a level greater than 1,
DMRP-solve picks the next decision assignment as follows. If the set D(C,p,y)
contains a conflict clause, the clause C ′ of D(C,p,y) that was derived most re-
cently is chosen. Then, DMRP-solve finds the literal of C ′ that is shared by the
largest number of clauses of D(C,p,y) and picks the assignment that satisfies
this literal. If D(C,p,y) does not contain conflict clauses, DMRP-solve makes
the assignment satisfying the largest number of clauses from D(C,p,y).

If the number of conflicts that occurred since DMRP-solve has been called
is larger than THRESH, DMRP-solve performs a restart. Then DMRP-solve
informs DMRP-SAT to generate the new reference point p=modify(p,y). Here
y is the partial assignment DMRP-solve had when the last conflict occurred.
The value of THRESH is larger than that of thresh used for restarts without
changing the reference point.

3.3 Computation of D(C,p,y)

In the current implementation of DMRP-solve, set D(C,p,y) is computed incre-
mentally. Initially, D(C,p,y) = {C}. When making an assignment xi= b, b ∈
{0,1} (either decision one or derived by BCP), DMRP-solve does the following.
First it checks if reference point p has the same assignment xi=b. If so, no new
clauses are added to D(C,p,y). Otherwise, DMRP-solve examines all the clauses
of D(C,p,y) in which the assignment xi=b sets a literal of xi to 0. If such a clause
is neither satisfied nor it is already in D(C,p,y), it is added to D(C,p,y). Then
DMRP-solve removes from D(C,p,y) all the clauses that are satisfied by xi=b.
When undoing the assignment xi=b above (when backtracking), DMRP-solve

does similar updates. First, it removes from D(C,p,y) the clauses that were
added to D(C,p,y) due to assignment xi=b. Second, it returns to D(C,p,y) all
the clauses that were removed because they got satisfied by xi=b.

3.4 Brief discussion of DMRP and CDDM

Similar to conflict driven decision making (CDDM) introduced by Chaff, DMRP
takes into account the history of conflicts. First, when picking a clause C ofM(p)
to be satisfied recursively, DMRP gives preference to conflict clauses derived
most recently. Second, next decision assignment is made to a variable of the
most recently derived conflict clause C∗ of D(C,p,y) (if any).
At the same time, there are obvious differences. When picking next assign-

ment, DMRP finds the literal of Vars(C∗) with the largest occurrence in clauses
of D(C,p,y). So no preference is given to conflict clauses. Besides, no decay
scheme is used for literal activity computation. So DMRP cannot be called just
a variation of CDDM.
In our current implementation, DMRP is more expensive than CDDM. As

we mentioned above, every time DMRP-SAT makes/unmakes an assignment
(decision or implied one) it recomputes D(C,p,y). So one of the directions for
future research is to cut the cost of DMRP. A potential solution to this problem
is to compute D(C,p,y) approximately.

4 Background

In this section, we compare DMRP-SAT with other SAT-solvers. In this compar-
ison we take into account the following four features: BCP, learning, maintaining
a complete assignment, making restarts. Each of these features is arguably bene-
ficial. BCP allows one to find ”forced” assignments. Learning (e.g. conflict clause
recording [22]) helps in pruning away big chunks of the search space. Maintaining
a complete assignment provides some information about how far a SAT-solver
is from a satisfying assignment [20, 21]. Besides, having a complete assignment
can be used for (implicit) identification of small unsatisfiable sub-formulas [6].
Restarts [8] alleviate the problem of SAT-solver’s getting stuck in a part of the
search space that does not contain satisfying assignments. At the same time, we

do not claim that the more of these four features a SAT-solver has, the more ad-
vanced it is. For example, SAT-solvers that do not employ conflict clause learning
(e.g. Satz [14]) work much better for random CNF formulas.

SAT-algorithms like GSAT[20] and WalkSat[21] (and many other local search
algorithms [11]) operate on complete assignments and make restarts (in the sense
that they pick a new initial complete assignment every once in a while). These
algorithms work very well for some classes of formulas like satisfiable random
formulas. However, lack of learning and BCP makes local search algorithms
less efficient when applied to “highly structured” formulas. On the other hand,
DPLL-like SAT-solvers like Grasp [22], SATO [24], Zchaff [17], BerkMin [7],
Minisat[3], Siege and many others use learning and BCP. Most of them also
employ restarts. These SAT-algorithms have been very successful in solving both
satisfiable and unsatisfiable structured formulas. This success can be attributed
to a) efficient conflict driven learning (introduced by GRASP), b) fast BCP
(introduced by SATO and improved by Chaff) and c) conflict driven decision
making (introduced by Chaff and further developed by BerkMin, Minisat, Siege
and others).

There have been significant effort to combine local search algorithms and
SAT-solvers based on the DPLL procedure. In [15], in every node of the search
tree, a local search procedure is invoked to identify the next variable to branch
on. (An important observation made in [15] is that local search can be used for
identifying unsatisfiable cores.) This approach is further improved in [9] by tak-
ing into account variable dependencies. In [19], random backtracking is used to
improve the scalability of the DPLL procedure. In UnitWalk [10], BCP is used to
correct values of a complete assignment. The values of this complete assignment
are re-assigned in a random order, every variable assignment being followed by
BCP. A complete local search algorithm augmented by clause generation is intro-
duced in [4]. Clause generation is used in [4] for escaping local minima. In [6], we
described the resolution-based SAT-solver called FI that operates on complete
assignments. The decision making procedure of FI can be viewed as a variation
of CDDM. Namely, the choice of branching variables is reduced to variables of
clauses falsified by the current complete assignment.

Although only FI and DMRP-SAT have all four features mentioned above,
some SAT-algorithms can be augmented with missing features (for example, one
can add clause learning to UnitWalk.) However, only DMRP-SAT combines a
DPLL-like procedure and the ”genuine” local search strategy of minimizing the
set of clauses falsified by a complete assignment. Experiments show that such
a local search strategy can be very useful even for highly structured formulas
(both satisfiable and unsatisfiable).

There is similarity between the notion of a recursively satisfied clause and
that of an autarky [16, 5, 13]. When looking for a partial assignment y such that
modify(p,y) recursively satisfies a clause C of F , one tries to satisfy clauses of
F “touched” by y (like it is done when searching for an autarky). The main
difference is that a clause C ′ of F is considered as touched by an assignment to
variable xi only if xi is assigned differently in y and the reference point p.

5 Experimental results

In this section, we give results of some experiments with an implementation of
DMRP-SAT. The experiments were run on Intel’s Xeon CPU (3.06GHz) under
Linux. The main objective of experiments was to show that although currently
DMRP is more expensive than conflict driven decision making, it is competitive
with the latter due to high quality of decision making. To keep our implemen-
tation easily modifiable we made it very simple. In particular, it lacked many
techniques commonly employed to speed up a SAT-solver (see subsection 5.1).
We tried DMRP-SAT on a large set of structured CNF formulas. Here we give

data on Bounded Model Checking (BMC) [1, 18, 12] and equivalence checking
formulas. This data is representative of the typical behavior of DMRP-SAT.
For satisfiable formulas, DMRP-SAT seems to be, in general, more robust than
SAT-solvers based on conflict driven decision making. This can be attributed to
that, like local search algorithms, DMRP-SAT looks for a satisfying assignment
“incrementally”.
It is important to note that the current version of DMRP-SAT is meant just

to prove that decision-making with a reference point is viable. An optimal design
of DMRP-SAT (and many details such as generation of the initial reference point,
the best schedule for changing reference points and so on) will be the subject of
future research.

5.1 Brief description of implementation

DMRP-SAT is written in C++ and compiled by gcc (version 3.2.2). We used the
STL library for data structures like dynamic arrays. As mentioned above, our
implementation of DMRP-SAT is very simple. It does not have advanced fea-
tures like fast BCP, efficient formula representation, special treatment of binary
clauses and so on. For example, to check if a clause is unit in BCP, DMRP-SAT
just counts the number of unassigned literals (as it was done before SATO and
Chaff). The only kind of optimization we used in DMRP-SAT was lazy com-
putation of D(C,p,y). Namely, during BCP, DMRP-SAT accumulated all the
new assignments of y and only when BCP was over it updated D(C,p,y) if no
conflict occurred. The reason is that in case of a conflict, recomputing D(C,p,y)
is a waste of time because DMRP-SAT immediately backtracks eliminating all
the assignments made at the conflict decision level.
For each literal lit(xi), DMRP-SAT maintains an array with indexes of

clauses of the current formula containing lit(xi). So when xi is, say, set to 0,
DMRP-SAT examines the clauses of the corresponding array to see if new unit
clauses appeared. To avoid examining satisfied clauses, when lit(xi) is set to 1,
all the clauses with lit(xi) unsatisfied so far are marked as satisfied. The clauses
satisfied at a particular decision level are recorded together so that they can be
efficiently unmarked when backtracking.
To facilitate decision making and computation of the set D(C,p,y), DMRP-

SAT maintains an array that marks clauses that are currently in D(C,p,y). For
every lit(xi) it also maintains a counter containing the number of clauses of

D(C,p,y) that have lit(xi). Besides, it maintains the set of variables of clauses
that are currently in D(C,p,y). If this set is empty, then D(C,p,y) = ∅ and C

is recursively satisfied by modify(p,y). Finally, DMRP-SAT records the indexes
of clauses that are added to D(C,p,y) at a particular decision level. When un-
doing assignments of this level, DMRP-SAT removes the recorded clauses from
D(C,p,y).

In all the experiments, the values of thresh and THRESH were 150 and 3000
respectively (see Figure 1 and Figure 2). That is every 150 conflicts DMRP-SAT
made a restart without changing the reference point and every 3000 conflicts
such a restart was accompanied by changing the reference point.

5.2 BMC and equivalence checking formulas

In this subsection, we compare our implementation of DMRP-SAT with two
SAT-solvers. The first SAT-solver is a version of BerkMin [7] that is very close
to Forklift, the winner of the SAT-2003 contest in the industrial category (but
in contrast to Forklift, it only learns conflict clauses). This version is much
faster than the publicly available one (BerkMin561) on large CNF formulas.
The second SAT-solver is Minisat [3], version 1.13 (a similar version of Minisat
was the runner-up of the SAT-2005 contest in the industrial category). Table 1
summarizes results of BerkMin, Minisat and DMRP-SAT on a set of large BMC
formulas (up to a few millions of variables). These formulas describe various
properties of more than a dozen of customer designs. This set consists of 79
formulas (28 satisfiable and 51 unsatisfiable). For all three SAT-solvers, Table 1
gives the total number of conflicts (in thousands), total and median runtime for
satisfiable, unsatisfiable and both types of formulas. A sample of formulas from
this set are shown in Table 2 (satisfiable formulas are marked with ’*’).

These two tables show that, for satisfiable formulas, DMRP-SAT makes sig-
nificantly fewer backtracks (conflicts). Even though BerkMin and Minisat have
much faster code and DMRP is more expensive, DMRP-SAT converts the advan-
tage in the number of conflicts into smaller run-times. For unsatisfiable BMC
formulas, DMRP-SAT also has fewer conflicts, but this difference is not large
enough to convert it into better performance. (However, this should change with
a faster implementation.)

Table 3 gives direct evidence that DMRP-SAT indeed benefits from its deci-
sion making strategy. For a sample of satisfiable BMC formulas (from the set of
28 formulas mentioned above), this table describes the process of finding a satis-
fying assignment in more detail. DMRP-SAT can find a satisfying assignment in
two ways (see Figures 1,2). First, it can extend the current partial assignment y

so that all clauses of the CNF formula become satisfied. Second, when DMRP-
SAT is successful in recursively satisfying a clause C, it may find a reference
point p′ = modify(p,y) such that M(p′)= ∅. (When this happens, current par-
tial assignment y may satisfy only a fraction of clauses of F .) Interestingly, for
each of 28 satisfiable BMC formulas we used, a satisfying assignment was found
after recursively satisfying a clause.

Table 1. BMC formulas

category
(#formulas)

BerkMin Minisat DMRP-SAT

#cnfl.
×103

total
(median)
time, sec.

#cnfl.
×103

total
(median)
time, sec.

#cnfl.
×103

total
(median)
time, sec.

sat (28) 2,546 44,814 (246) 3,457 58,319 (619) 333 9,565 (57)

unsat (51) 2,156 28,594 (64) 1,355 14,507 (80) 791 15,160 (151)

total(79) 4,702 73,408 (96) 4,812 72,826 (178) 1,124 24,725 (69)

The number of backtracks made before finding a satisfying assignment is
reported in the second column of Table 3. The third column shows the number
of clauses |M(p)| falsified by the original reference point p. The number of cases
when a clause of M(p) was recursively satisfied is given in the fourth column.
The size of the longest chain of events when a clause was recursively satisfied
with fewer than THRESH=3000 backtracks is shown in the fifth column. (Recall
that when the number of backtracks exceeds 3000, DMRP-SAT makes a restart
and picks a new reference point p′. Usually |M(p)| < |M(p′)| .) The last column
gives the size of y (in percent of |Vars(F)|) when a satisfying assignment p′ =
modify(p,y) was found.

Table 3 shows that DMRP-SAT indeed successfully used the “local search
strategy” of minimizing the set of falsified clauses to find satisfying assignments.
For example, for the formula byteen, the original reference point falsified 543
clauses. Then after 255 cases of recursively satisfied clauses a satisfying assign-
ment was found. At this point, only 3.5% of the variables were assigned in the
partial assignment y. So, in the case of formula byteen, DMRP-SAT kept mono-
tonically reducing the size of M(p) until a satisfying assignment was found. For
some formulas (like data), the value of THRESH was exceeded and a new refer-
ence point was generated (possibly more than once). In such cases the size of the
longest chain is smaller than the number of cases when a clause was recursively
satisfied. It is worth mentioning that DMRP-SAT had a lot cases of recursively
satisfying clauses of M(p) for unsatisfiable formulas too.

Finally, Table 4 summarizes results of experiments with satisfiable equiva-
lence checking CNF formulas. Each formula F of Table 4 describes equivalence
checking of a combinational circuit N1 with a circuit N2 obtained from N1 by
optimization. If N1 and N2 are functionally equivalent (inequivalent), then F is
unsatisfiable (respectively satisfiable). We manually introduced detectable bugs
to the circuit N2. So all equivalence checking formulas of Table 4 were satisfiable.
The first column of Table 4 identifies circuit N1 (des stands for design) and gives
the number of bugs introduced in circuit N2 (each bug corresponds to a sepa-
rate satisfiable formula). Second and third columns give the size of the formula
F describing equivalence checking of N1 and N2 without any bugs. (Introducing
a bug does not affect the formula size much.)

Table 2. Sample of BMC formulas (satisfiable* and unsatisfiable)

name #vars
×106

#clau-
ses
×106

BerkMin Minisat DMRP-
SAT

#cnfl.
×103

time
(sec.)

#cnfl.
×103

time
(sec.)

#cnfl.
×103

time
(sec.)

sched* 1.0 2.7 24 386 23 1,038 0.07 2.6

byteen* 0.2 0.6 21 138 60 1,074 8.8 245

stimulus* 0.1 0.4 7.9 39 49 370 7.5 82

ipt* 1.2 3.5 61 2,896 108 3,029 4.8 205

iqm* 2.3 7.0 308 11,704 732 16,568 0.5 70

prop3* 1.4 4.3 822 5,230 495 9,084 77 2,479

gmtx* 2.7 7.9 12 281 47 2,462 0.05 7.5

sdl* 0.4 1.2 183 551 149 472 75 1,659

write* 0.6 1.8 8.4 168 48 552 1.2 51

prop9* 1.0 3.0 74 898 40 429 2.9 58

unsatisfiable formulas

always 0.2 0.8 19 45 21 213 5.0 38

page 0.2 0.8 19 35 19 151 14 425

mcbdm 0.3 0.8 17 144 6.2 84 1.5 31

lddata 0.2 0.5 20 31 55 666 18 255

cmcnt 1.2 3.6 8.5 491 2.5 68 3.0 134

iwrk 1.3 4.1 202 3,934 31 447 6.5 108

cho 0.1 0.3 14 23 15 42 31 1,308

CCC 0.3 1.1 38 199 22 165 23 1,941

Results of Table 4 show again that DMRP-SAT generated fewer conflicts than
BerkMin and Minisat and this advantage was converted into better summary
performance. Although DMRP-SAT did not have smaller number of backtracks
for all designs, it showed more robust behavior. In particular, it relatively eas-
ily solved the equivalence checking formulas generated off the design des7 that
contained a multiplier. We also applied DMRP-SAT to unsatisfiable equivalence
checking formulas (no bugs in N2). DMRP-SAT again had very good perfor-
mance in terms of the number of backtracks and run-times. For the lack of space
we omit these results.

6 Conclusions

We introduce a new decision making strategy DMRP (decision making with a
reference point) for resolution-based SAT-solvers. DMRP allows a DPLL-like
procedure to pursue a local search strategy. Experiments show that our SAT-
solver DMRP-SAT implementing DMRP works well for both satisfiable and
unsatisfiable structured formulas. In the current implementation, DMRP is more
expensive than conflict driven decision making introduced by Chaff. In our future
research we will work on reducing the cost of DMRP. At the same time, even

Table 3. Statistics on recursively satisfied clauses

name #confl. size of
initial
M(p)

#cases of
rec. sat.
a clause

#longest
chain

|y|/|Vars(F)|
when M(p)=∅

%

sched 67 1 1 1 18

byteen 8,824 543 255 255 3.5

stimulus 7,518 276 29 29 1.8

data 15,521 1,034 212 114 77

ifreeq 3,426 615 438 438 1.9

ipt 4,750 775 601 601 0.8

prop3 77,127 44 29 6 76

muls 556 104 69 69 1.4

T1 64 2 1 1 67

TX 77,934 8 7 3 96

HP-4850 17,932 62 8 7 1.0

HP-974 2,092 1 1 1 44

write 1,175 149 87 87 0.9

prop9 2,892 1 1 1 31

SUN-442 17 1 1 1 95

SUN-443 2,010 3,999 2,000 2,000 1.6

a straightforward and unoptimized implementation of DMRP-SAT shows very
good performance due to high quality of decision-making.

References

1. A.Biere, A.Cimatti, E.Clarke, O.Strichman, Y.Zhu. Bounded Model Checking, (a
book chapter), Advances in computers vol. 58, ed. by M. Zelkovitz, Elsevier, 2003.

2. M.Davis, G.Longemann, D.Loveland. A Machine program for theorem proving.
Communications of the ACM, 1962, vol. 5, pp.394-397.

3. Een N., Sorensson N. An extensible SAT-solver. Proceedings of SAT-2003 in LNCS
2919, pp.503-518.

4. H.Fang, W.Ruml. Complete Local Search for Propositional Satisfiability. Proc. of
19th National Conference on Artificial Intelligence, 2004, pp.161-166.

5. A.V.Gelder Autarky pruning in propositional model elimination reduces failure re-
dundancy. J. of Autom. Reasoning,1999, vol 23(2),pp.137-193

6. E.Goldberg. Determinization of resolution by an algorithm operating on complete
assignments. SAT-2006, LNCS 4121, pp.90-95.

7. E.Goldberg, Y.Novikov. BerkMin: a Fast and Robust SAT-Solver. DATE-2002,
Paris, pp.142-149.

8. C. P. Gomes, B. Selman, H. Kautz. Boosting Combinatorial Search Through Ran-
domization. Proc. AAAI-98.

9. D.Habet, C.M.Li, L.Devendeville, M.Vasquez. A hybrid approach for SAT. Int.
Conf. on Principles and Practice of Constraint Programming, 2002, pp. 172-184.

10. E. A. Hirsch, A. Kojevnikov. UnitWalk: A new SAT solver that uses local search
guided by unit clause elimination. Annals of Math. and Artif. Intell. 43(1-4), pp.91-
111, 2005

Table 4. Equivalence checking (satisfiable formulas)

name
(#bugs)

#vars
×103

#clau-
ses
×103

BerkMin Minisat DMRP-
SAT

#cnfl.
×103

total
time
(sec.)

#cnfl.
×103

total
time
(sec.)

#cnfl.
×103

total
time
(sec.)

des1 (7) 4.7 53 271 120 110 143 11 56

des2(8) 2.4 24 229 40 95 10 162 197

des3(7) 2.7 29 169 39 46 3 83 114

des4(5) 1.0 9.8 54 5 14 0.4 13 6

des5 (5) 1.9 20 80 8 55 4 37 25

des6(7) 9.5 106 2,484 2,624 1,327 1,783 88 389

des7 (4) 1.6 16 75 11 39 2 15 8

des8(4) 3.5 39 69 17 111 53 52 116

Total 3,431 2,864 1,797 1,998 461 911

11. H.Hoos, T.Stutzle. Stochastic Local Search: Foundations and Applications.Morgan
Kaufmann, San Francisco (CA), USA, 2004.

12. J.Katz, Z.Hanna, N.Dershowitz. Space-efficient Bounded Model Checking. DATE-
2005, pp. 686-687.

13. O.Kullmann. Investigations on autark assignments, Discrete Applied Mathematics
2000, vol 107, pp.99-137.

14. C.M.Li. A constrained-based approach to narrow search trees for satisfiability. In-
formation processing letters,1999, 71, pp.75-80.

15. B.Mazure, L.Sais, and R.Gregoire. Boosting complete techniques thanks to local
search methods. Annals of Math. and Artif. Intell, vol. 22 (1998), pp. 319-331.

16. B.Monien, E.Speckenmeyer. Solving satisfiability in less than 2 n steps. Discrete
Applied Mathematics, 1985, vol. 10, pp.287-295.

17. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: Engineering an
Efficient SAT Solver. DAC-2001.

18. M.Prasad, A.Biere, A.Gupta, A survey of recent advances in SAT-based formal
verification, STTT vol. 7(2), pp.16-173, 2005.

19. S.Prestwich. Local search and backtracking vs. non-systematic backtracking. AAAI
Fall Symposium on Using Uncertainty Within Computation. Nov. 2-4, 2001, North
Falmouth, Cape Cod, MA,pp.109-115.

20. B. Selman H. Levesque, D. Mitchell. 1992. A New Method for Solving Hard Satis-
fiability Problems. AAAI-92, pp. 440-446.

21. B.Selman, H.A.Kautz. and B.Cohen. Noise strategies for improving local search.
AAAI-94, Seattle, pp. 337-343, 1994.

22. J.P.M.Silva, K.A.Sakallah. GRASP: A Search Algorithm for Propositional Satisfi-
ability. IEEE Transactions of Computers, 1999, vol. 48, pp. 506-521.

23. L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient Conflict Driven
Learning in a Boolean Satisfiability Solver. ICCAD-2001.

24. H.Zhang. SATO: An efficient propositional prover. International Conference on
Automated Deduction, July 1997, pp.272-275.

