
Towards More Effective Unsatisfiability-Based
Maximum Satisfiability Algorithms

Joao Marques-Silva and Vasco Manquinho

School of Electronics and Computer Science, University of Southampton, UK
IST/INESC-ID, Technical University of Lisbon, Portugal
jpms@ecs.soton.ac.uk,vmm@sat.inesc-id.pt

Abstract. The MaxSAT problem and some of its well-known variants find an
increasing number of practical applications in a wide rangeof areas. Examples
include different optimization problems in system design and verification. How-
ever, most MaxSAT problem instances from these practical applications are too
hard for existing branch and bound algorithms. One recent alternative to branch
and bound MaxSAT algorithms is based on unsatisfiable subformula identifica-
tion. A number of different unsatisfiability-based MaxSAT algorithms have been
developed, which are effective at solving different classes of problem instances.
All MaxSAT algorithms based on unsatisfiable subformula identification require
using additional Boolean variables, either to allow relaxing some of the clauses or
to encode cardinality constraints used by these algorithms. As a result, these al-
gorithms may require using a significant number of additional Boolean variables,
that can exceed the original number of variables for some problem instances.
This paper proposes techniques for effectively reducing the number of auxiliary
variables that must be used in unsatisfiability-based MaxSAT algorithms. Exper-
imental results indicate that the techniques for reducing the number of auxiliary
variables are effective, and contribute to more efficient MaxSAT algorithms.

1 Introduction

Maximum Satisfiability (MaxSAT) and variants allow modeling an increasingly large
number of optimization problems in an also growing number ofpractical settings. The
recent application of MaxSAT and variants in design debugging and verification of
complex designs [11, 4, 5] motivated the development of new MaxSAT algorithms, ca-
pable of solving large structured problem instances commonto these application do-
mains. Despite the significant improvements made in recent years to standard branch
and bound MaxSAT algorithms, in practice existing branch and bound algorithms are
unable to solve the vast majority of problem instances from practical applications.

One recent promising line of research is the development of MaxSAT solvers based
on the identification of unsatisfiable subformulas (or cores) [4, 8, 9]. These MaxSAT al-
gorithms are built on top of SAT solvers, and so can exploit the most effective SAT
techniques [2]. Moreover, these algorithms rely extensively on the ability of mod-
ern SAT solvers for producing certificates of unsatisfiability [12]. Even though the
organization of existing unsatisfiability-based MaxSAT algorithms is fairly different,
these algorithms also share a number of key common characteristics. For example,



all unsatisfiability-based MaxSAT algorithms iterativelyidentify and relax unsatisfi-
able subformulas. The approach for relaxing unsatisfiable subformulas is well-known
(e.g. see [8] for an overview), and consists of addingrelaxing (or blocking) variables
to each clause in each identified unsatisfiable subformula. Even though existing ex-
perimental results suggest great promise for unsatisfiability-based MaxSAT algorithms,
many problem instances are still too complex even for the most effective algorithms.
One clear potential drawback of unsatisfiability-based MaxSAT algorithms is the iter-
ated addition of auxiliary variables. For many problem instances, it is possible that the
number of additional variables becomes far larger than the original number of variables.
As a result, besides the increase of search space, the much larger number of variables
can often have a negative effect on SAT solvers. This paper proposes techniques for re-
ducing the number of additional variables used in unsatisfiability-based MaxSAT algo-
rithms. The first technique addresses the encoding of the cardinality constraints relating
blocking variables. The second technique addresses the reduction of the actual number
of blocking variables. Experimental results, obtained on awide range of practical prob-
lem instances, indicates that the reduction of additional variables can often contribute
to significantly reduce run times. The paper is organized as follows. The next two sec-
tions introduce MaxSAT and variants, existing branch and bound algorithms, and recent
unsatisfiability-based algorithms for MaxSAT. Afterwards, Section 4 proposes the new
techniques for reducing the number of variables. The new MaxSAT solvers are evalu-
ated in Section 5 and the paper concludes in Section 6.

2 Maximum Satisfiability

This section provides definitions and background knowledgefor the MaxSAT problem;
familiarity with SAT and related topics is assumed [2]. The maximum satisfiability
(MaxSAT) problem can be stated as follows: given a SAT instance represented in Con-
junctive Normal Form (CNF), compute an assignment to the variables that maximizes
the number of satisfied clauses. Variants of the MaxSAT problem include the partial
MaxSAT, the weighted MaxSAT problem and the partial weighted MaxSAT problem.
In the partial MaxSAT problem some clauses (i.e. thehard clauses) must be satisfied,
whereas others (i.e. thesoft clauses) may not be satisfied. Weighted variants are ad-
dressed elsewhere (e.g. see [5]). MaxSAT algorithms have been subject to significant
improvements over the last decade (see for example [6, 5] fora review of past work).
Despite the clear relationship with the SAT problem, most modern SAT techniques can-
not be applied directly to the MaxSAT problem [6, 5]. As a result, the most successful
MaxSAT algorithms implement branch and bound search, and integrate sophisticated
lower bounding and inference techniques [5, 6]. Effective lower bounding techniques
are based on unit propagation, whereas effective inferencetechniques can be viewed as
based on specific resolution patterns. One alternative approach for solving the MaxSAT
problem is to use Pseudo-Boolean Optimization (PBO). An overview is provided in [8].

3 Unsatisfiability-Based MaxSAT Algorithms

As mentioned in the previous section, one of the major drawbacks of the PBO model for
MaxSAT is the large number of blocking variables that must beconsidered. The ability



to reduce the number of required blocking variables is expected to improve significantly
the ability of SAT/PBO based solvers for tackling instancesof MaxSAT. Moreover, any
solution to the MaxSAT problem will be unable to satisfy clauses thatmustbe part of
an unsatisfiable subformula. Consequently, one approach for reducing the number of
blocking variables is to associate blocking variables onlywith clauses that are part of
unsatisfiable subformulas. However, it is not simple to identify all clauses that are part
of unsatisfiable subformulas. One alternative is the identification and relaxation of un-
satisfiable subformulas. A number of unsatisfiability-based MaxSAT algorithms have
been proposed in recent years [4, 8, 9]. The first algorithm [4] (referred to asmsu1)
iteratively finds unsatisfiable cores, adds new blocking variables to the non-auxiliary
clauses in the unsatisfiable core, and requires that exactlyone of the new blocking vari-
ables must be assigned value 1. The algorithm terminates whenever the CNF formula
is satisfiable, and the number of assigned blocking variables is used for computing the
solution to the MaxSAT problem instance. The clauses used for implementing the cardi-
nality constraints are declared auxiliary; all other clauses are non-auxiliary.Observe that
each non-auxiliary clause may receive more than one blocking variable, and the total
number of blocking variables a clause receives correspondsto the number of times the
clause is part of an unsatisfiable core. In themsu1 algorithm [4] the pairwise encoding
is used for encoding AtMost1 constraints. In contrast,msu1.1 [8]1 proposes different
linear encodings. Also,msu1.1 uses AtMost1 constraints on the blocking variables as-
sociated with each clause. Alternative unsatisfiability-based MaxSAT algorithms,msu3
andmsu4, were proposed recently [8, 9]. Bothmsu3 andmsu4 use asinglecardinality
constraint to constrain the number of blocking variables that can be assigned value 1,
and so ensure that at most one blocking variable is required for each clause.msu4 iter-
ates between lower and upper bounds on the number of blockingvariables. In contrast,
msu3 resemblesmsu1 and variants, where only a lower bound on the number of block-
ing variables is updated. Existing experimental results indicate thatmsu1.1 is often
more efficient than either formsu3 or msu4 for most problem instances.

4 Reducing the Number of Additional Variables

This section describes two techniques for reducing the number of variables. The first
one addresses the encoding of cardinality constraints, while the second one extends the
same ideas to the way blocking variables are used. The original unsatisfiability-based
(partial) MaxSAT algorithm [4] used the pairwise encoding for the AtMost 1 cardinality
constraints (this algorithm will be referred to asmsu1). A more effective approach is
to use a linear encoding for the AtMost1 cardinality constraint (e.g. [8] compares a
number of alternative linear encodings). For problem instances with large unsatisfiable
cores, the linear encodings are significantly more effective. The linear encodings use
a linear number of additional variables, the auxiliary variables, and a linear number of
clauses. The number of additional variables, albeit linear, can be a potential drawback
for some problem instances.

One approach to reduce the number of additional variables isto use the recently
proposedbitwise encoding[10]. Consider an AtMost1 constraint

∑k−1

i=0
xi ≤ 1. Create

1 For consistency, the algorithmmsu2 in [8] is renamed tomsu1.1.



r auxiliary variables, wherer = 1 if k = 1 andr = ⌈logk⌉ if k > 1. Let v0, . . . , vr−1

be the auxiliary variables. Now associate with eachxi the binary representation ofi−1.
Finally, for eachxi create the clauses:(¬xi∨pj), j = 0, . . . , r−1, wherepj = vj if the
binary representation ofi− 1 has value 1 in positionj, andpj = ¬vj otherwise. For an
AtMost1 constraint withk variables, the bitwise encoding requiresO(logk) variables
andO(k logk) clauses, i.e.O(logk) for each variable in the AtMost1 constraint. Ob-
serve that linear encodings (e.g. [8]) require a linear number of auxiliary variables and
a linear number of clauses. Hence, the bitwise encoding trades off variables for clauses.

Given that the number of iterations ofmsu1 andmsu1.1 isO(m) [8], wherem is the
number of clauses in the original formula, the number of additional variables for these
algorithms is inO(m2). By using the bitwise encoding, this asymptotic complexityre-
mains unchanged, but the actual constant is considerably smaller. Also, observe that
the number of blocking variables will be the same; only the number of auxiliary vari-
ables used for encoding the AtMost1 constraint is reduced. One should also observe
that the created binary clauses only selects which variableof the AtMost1 constraint
can be assigned value 1; all the other variables are required to be assigned value 0.
Hence, the encoding effectively represents an AtMost1 constraint. In order to encode
the constraint Exactly1, it would suffice to simply add a clause to capture the AtLeast1
constraint (e.g. [8]). The modified algorithm, using a logarithmic number of auxiliary
variables for representing AtMost1 constraints, is referred to asmsu1.2.

The use of the bitwise encoding [10] above for reducing the number of auxiliary
variables, motivates using the same ideas for actually reducing the number of blocking
variables. Instead of selecting at most one blocking variable out of set ofk blocking
variables, the bitwise encoding now operates on the clausesof each identified unsatisfi-
able core. This essentially allows eliminating the blocking variables by working directly
with the auxiliary variables used in the bitwise encoding. For an unsatisfiable core with
k clauses, the proposed encoding will requirer auxiliary variables, wherer = 1 if
k = 1 andr = ⌈logk⌉ if k > 1. Moreover, the encoding will requireO(logk) vari-
ables andO(k logk) new clauses, i.e.O(logk) new clauses for each original clause
in the unsatisfiable core. Hence each original clauseωi in an unsatisfied coregenerates
O(logk) new clauses. The proposed approach needs to take into consideration when
a clause has already been relaxed. Assume clauseωij , relaxed from an original clause
ωi, is included in an identified unsatisfiable core. Thenall clauses generated fromωi

need to be re-relaxed. The modified algorithm, using a logarithmic number of blocking
variables for each unsatisifiable core, is referred to asmsu2.

5 Results

This section summarizes results on MaxSAT and partial MaxSAT instances from practi-
cal applications. A number of classes of instances were considered. Class DEBUG [11]
represents design debugging MaxSAT instances. FIR [7] represents filter design par-
tial MaxSAT instances. Class SYN [7] represents logic synthesis partial MaxSAT in-
stances. Finally, class MTG [7] represents minimum size test pattern generation partial
MaxSAT instances. All partial MaxSAT instances are obtained by translating restricted
pseudo-Boolean problem instances into partial MaxSAT (e.g. using a recently proposed



Table 1.Number of aborted instances, with a 1000 seconds timeout

Class #I maxsatz minimaxsat minisat+ msu1 msu1.1 msu1.2 msu2 msu3 msu4

DEBUG 65 62 65 63 22 14 8 11 24 23
FIR 59 – 45 37 15 14 9 12 32 44
SYN 74 – 46 44 48 44 42 42 47 51
MTG 215 – 7 0 44 44 52 60 11 16
Total 413 – 163 144 129 116 111 125 114 134

translation [5]). A number of MaxSAT solvers was considered, namely:maxsatz [6],
the best performing solver in the MaxSAT 2007 evaluation [1]; minimaxsat [5], a
recent competitive MaxSAT solver; and the PBO formulation of the MaxSAT prob-
lem solved withminisat+ [3], one of the best performing PBO solvers [7]. More-
over, the unsatisfiability-based MaxSAT solvers considered weremsu1 [4]; msu1.1 [8]
(renamed frommsu2 for naming consistency);msu3 [8]; msu4 [9]; and the new algo-
rithms described in this papermsu1.2 andmsu2. All msu algorithms are built on top
of the same unsatisfiable core extractor, implemented withminisat 1.14 [2]. Other
alternative MaxSAT algorithms (see [8, 9] for an overview) are known not to be effi-
cient for these instances. Moreover,minisat+ was run with its best configuration for
these classes of instances and, for the partial MaxSAT instances, the original PBO in-
stances were considered. The results for all MaxSAT solverson all problem instances
were obtained on a Linux server running RHE Linux, with a Xeon5160 3.0 GHz dual-
core processor. For the experiments, the available physical memory of the server was
2 GByte. The time limit was set to 1000 seconds per instance. Table 1 summarizes the
number of aborted instances for the MaxSAT solvers considered. Overall, CPU times
correlate well with the number of aborted instances and are not shown due to lack of
space (see [8, 9] for plots for the other algorithms). Formaxsatz, only MaxSAT results
are shown, sincemaxsatz cannot be used with partial MaxSAT instances. The solvers
exhibiting the best performance are highlighted in bold. The results indicate that the
new algorithms are more efficient than previous MaxSAT algorithms. With the excep-
tion of class MTG, MaxSAT algorithms are now vastly superiorto minisat+, one of the
best performing PBO solvers [3]. For classes DEBUG and FIR, the instances aborted by
eithermsu1.2 andmsu2 are a fraction of the instances aborted byminisat+. Similarly,
the two branch and bound algorithms considered,maxsatz andminimaxsat, perform
much worse thananyof the unsatisfiability-based MaxSAT algorithms. The results in-
dicate thatmsu1.2 is the overall best performing algorithm.msu2 does not perform as
well, especially for class MTG. This is in part explained by the growth in the number
of clauses thatmsu2 often requires. The improvements introduced bymsu1.2 allow
significantly reducing the number of aborted instances for classes DEBUG and FIR,
and also reducing the number of aborted instances for class SYN. For class MTG the
results formsu1.2 are worse than formsu1.1, and also worse than formsu3 andmsu4.
Moreover, the results also suggest thatmsu1.2 is the preferred algorithm for classes
DEBUG, FIR and SYN, and thatminisat+ is the preferred algorithm for class MTG.
Together,msu1.2 andminisat+ abort only 50 instances, thus motivating a portfolio of



algorithms for MaxSAT. The experimental results confirm that techniques for reducing
the number of additional variables are often effective. Theperformance ofmsu2 is af-
fected by the significant increase in the number of clauses that can often take place. As
a result, a mixed approach, involvingmsu1.2 andmsu2 should be considered.

6 Conclusions

Despite the significant improvements in MaxSAT algorithms over the last few years [6,
5], current state of the art MaxSAT solvers are ineffective on many problem instances
obtained from practical applications [11, 5, 9]. This papercontinues recent work on de-
veloping MaxSAT algorithms based on identification of unsatisfiable sub-formulas [4,
8, 9], by proposing effective techniques for reducing the number of additional variables
that must be used. Two different algorithms are developedmsu1.2 andmsu2. The ex-
perimental results indicate that the proposed techniques are effective, and thatmsu1.2
is the most effective algorithm. The results also suggest that a mixed approach between
msu1.2 andmsu2 is expected to provide the most efficient approach.

Acknowledgement. This work is partially supported by EPSRC grant EP/E012973/1,
by EU grants IST/033709 and ICT/217069, and by FCT grants POSC/EIA/61852/2004
and PTDC/EIA/76572/2006.

References

1. J. Argelich, C. M. Li, F. Manyà, and J. Planes. MaxSAT evaluation. www.maxsat07.udl.es.
2. N. Een and N. Sörensson. An extensible SAT solver. InInternational Conference on Theory

and Applications of Satisfiability Testing, pages 502–518, May 2003.
3. N. Een and N. Sörensson. Translating pseudo-Boolean constraints into SAT. Journal on

Satisfiability, Boolean Modeling and Computation, 2, March 2006.
4. Z. Fu and S. Malik. On solving the partial MAX-SAT problem.In International Conference

on Theory and Applications of Satisfiability Testing, pages 252–265, August 2006.
5. F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSat: a new weighted Max-SAT solver. In

International Conference on Theory and Applications of Satisfiability Testing, pages 41–55,
May 2007.

6. C. M. Li, F. Manyà, and J. Planes. New inference rules for Max-SAT. Journal of Artificial
Intelligence Research, 30:321–359, 2007.

7. V. Manquinho and O. Roussel. Pseudo-Boolean evaluation.www.cril.univ-artois.fr/PB07.
8. J. Marques-Silva and J. Planes. On using unsatisfiabilityfor solving maximum satisfiability.

Computing Research Repository, abs/0712.0097, December 2007.
9. J. Marques-Silva and J. Planes. Algorithms for maximum satisfiability using unsatisfiable

cores. InDesign, Automation and Testing in Europe Conference, March 2008.
10. S. D. Prestwich. Variable dependency in local search: Prevention is better than cure. In

International Conference on Theory and Applications of Satisfiability Testing, pages 107–
120, May 2007.

11. S. Safarpour, H. Mangassarian, A. Veneris, M. H. Liffiton, and K. A. Sakallah. Improved
design debugging using maximum satisfiability. InFormal Methods in Computer-Aided De-
sign, pages 13–19, November 2007.

12. L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. InDesign, Automation and Test-
ing in Europe Conference, pages 10880–10885, March 2003.


