Towards More Effective Unsatisfiability-Based
Maximum Satisfiability Algorithms

Joao Marques-Silva and Vasco Manquinho

School of Electronics and Computer Science, UniversityaftBampton, UK
IST/INESC-ID, Technical University of Lisbon, Portugal

jpms@ecs.soton.ac.uk,vmm@sat.inesc-id.pt

Abstract. The MaxSAT problem and some of its well-known variants find an
increasing number of practical applications in a wide raofyareas. Examples
include different optimization problems in system desigd gerification. How-
ever, most MaxSAT problem instances from these practigaliGgiions are too
hard for existing branch and bound algorithms. One recéetredtive to branch
and bound MaxSAT algorithms is based on unsatisfiable sohfiar identifica-
tion. A number of different unsatisfiability-based MaxSAgaithms have been
developed, which are effective at solving different classieproblem instances.
All MaxSAT algorithms based on unsatisfiable subformulantifieation require
using additional Boolean variables, either to allow relg@ome of the clauses or
to encode cardinality constraints used by these algorit®s result, these al-
gorithms may require using a significant number of addifi@wlean variables,
that can exceed the original number of variables for soméleno instances.
This paper proposes techniques for effectively reduciegniimber of auxiliary
variables that must be used in unsatisfiability-based Max&gorithms. Exper-
imental results indicate that the techniques for redudiegniumber of auxiliary
variables are effective, and contribute to more efficienk S algorithms.

1 Introduction

Maximum Satisfiability (MaxSAT) and variants allow modgjian increasingly large
number of optimization problems in an also growing numbeprattical settings. The
recent application of MaxSAT and variants in design deboggind verification of
complex designs [11, 4, 5] motivated the development of new$®AT algorithms, ca-
pable of solving large structured problem instances comtadhese application do-
mains. Despite the significant improvements made in receatsyto standard branch
and bound MaxSAT algorithms, in practice existing brancti bound algorithms are
unable to solve the vast majority of problem instances froatfical applications.

One recent promising line of research is the developmentaf3AT solvers based
on the identification of unsatisfiable subformulas (or cpf#s3, 9]. These MaxSAT al-
gorithms are built on top of SAT solvers, and so can explait tost effective SAT
techniques [2]. Moreover, these algorithms rely exterigiom the ability of mod-
ern SAT solvers for producing certificates of unsatisfigpilil2]. Even though the
organization of existing unsatisfiability-based MaxSAgaithms is fairly different,
these algorithms also share a number of key common chasdicter For example,

all unsatisfiability-based MaxSAT algorithms iterativetientify and relax unsatisfi-
able subformulas. The approach for relaxing unsatisfialtdosmulas is well-known
(e.g. see [8] for an overview), and consists of addilgxing (or blocking variables
to each clause in each identified unsatisfiable subformwanEhough existing ex-
perimental results suggest great promise for unsatisfighihsed MaxSAT algorithms,
many problem instances are still too complex even for thetmffsctive algorithms.
One clear potential drawback of unsatisfiability-based $kik algorithms is the iter-
ated addition of auxiliary variables. For many problemamnstes, it is possible that the
number of additional variables becomes far larger than tiggnal number of variables.
As a result, besides the increase of search space, the nrgeh taumber of variables
can often have a negative effect on SAT solvers. This pamgrgses techniques for re-
ducing the number of additional variables used in unsaligitizbased MaxSAT algo-
rithms. The first technique addresses the encoding of tlinzdity constraints relating
blocking variables. The second technique addresses thetied of the actual number
of blocking variables. Experimental results, obtained evide range of practical prob-
lem instances, indicates that the reduction of additioaaibles can often contribute
to significantly reduce run times. The paper is organizedbewWs. The next two sec-
tions introduce MaxSAT and variants, existing branch anghgalgorithms, and recent
unsatisfiability-based algorithms for MaxSAT. Afterwar&gction 4 proposes the new
techniques for reducing the number of variables. The new3Adxsolvers are evalu-
ated in Section 5 and the paper concludes in Section 6.

2 Maximum Satisfiability

This section provides definitions and background knowlddgthe MaxSAT problem;
familiarity with SAT and related topics is assumed [2]. Theximum satisfiability
(MaxSAT) problem can be stated as follows: given a SAT instaiepresented in Con-
junctive Normal Form (CNF), compute an assignment to thaées that maximizes
the number of satisfied clauses. Variants of the MaxSAT mgmhhclude the partial
MaxSAT, the weighted MaxSAT problem and the partial weightéaxSAT problem.
In the partial MaxSAT problem some clauses (i.e. llaed clauses) must be satisfied,
whereas others (i.e. theoft clauses) may not be satisfied. Weighted variants are ad-
dressed elsewhere (e.g. see [5]). MaxSAT algorithms haga bebject to significant
improvements over the last decade (see for example [6, & ferview of past work).
Despite the clear relationship with the SAT problem, mostlera SAT techniques can-
not be applied directly to the MaxSAT problem [6, 5]. As a lgghe most successful
MaxSAT algorithms implement branch and bound search, ategjiate sophisticated
lower bounding and inference techniques [5, 6]. Effecta@dr bounding techniques
are based on unit propagation, whereas effective inferentmiques can be viewed as
based on specific resolution patterns. One alternativeoapprfor solving the MaxSAT
problemis to use Pseudo-Boolean Optimization (PBO). Amadee is provided in [8].

3 Unsatisfiability-Based MaxSAT Algorithms

As mentioned in the previous section, one of the major drakdaf the PBO model for
MaxSAT is the large number of blocking variables that mustdxesidered. The ability

to reduce the number of required blocking variables is ebqubto improve significantly
the ability of SAT/PBO based solvers for tackling instancESlaxSAT. Moreover, any
solution to the MaxSAT problem will be unable to satisfy cdas thatmustbe part of
an unsatisfiable subformula. Consequently, one approacdtedcing the number of
blocking variables is to associate blocking variables amityh clauses that are part of
unsatisfiable subformulas. However, it is not simple to fdgll clauses that are part
of unsatisfiable subformulas. One alternative is the ifieation and relaxation of un-
satisfiable subformulas. A humber of unsatisfiability-lohs&axSAT algorithms have
been proposed in recent years [4, 8, 9]. The first algorithp(rgferred to asnsu1)
iteratively finds unsatisfiable cores, adds new blockingatédes to the non-auxiliary
clauses in the unsatisfiable core, and requires that exaotlyf the new blocking vari-
ables must be assigned value 1. The algorithm terminateeevie the CNF formula
is satisfiable, and the number of assigned blocking varsablesed for computing the
solution to the MaxSAT problem instance. The clauses usathfdlementing the cardi-
nality constraints are declared auxiliary; all other ckaiare non-auxiliary. Observe that
each non-auxiliary clause may receive more than one blgckamiable, and the total
number of blocking variables a clause receives corresptniti® number of times the
clause is part of an unsatisfiable core. Intl@1 algorithm [4] the pairwise encoding
is used for encoding AtMost1 constraints. In contrasiy1. 1 [8]* proposes different
linear encodings. Alsagsul. 1 uses AtMostl constraints on the blocking variables as-
sociated with each clause. Alternative unsatisfiabiliygdd MaxSAT algorithmsy,su3
andmsu4, were proposed recently [8, 9]. Bo#lzu3 andmsu4 use asinglecardinality
constraint to constrain the number of blocking variableg ttan be assigned value 1,
and so ensure that at most one blocking variable is requineeldich clausensu4 iter-
ates between lower and upper bounds on the number of bloghieples. In contrast,
msu3 resemblesisul and variants, where only a lower bound on the number of block-
ing variables is updated. Existing experimental resulticate thatmsul.1 is often
more efficient than either farsu3 or msu4 for most problem instances.

4 Reducing the Number of Additional Variables

This section describes two techniques for reducing the murobvariables. The first
one addresses the encoding of cardinality constraintdewiie second one extends the
same ideas to the way blocking variables are used. The atigimsatisfiability-based
(partial) MaxSAT algorithm [4] used the pairwise encodingthe AtMost 1 cardinality
constraints (this algorithm will be referred to msu1). A more effective approach is
to use a linear encoding for the AtMost1 cardinality corietrée.g. [8] compares a
number of alternative linear encodings). For problem imsts with large unsatisfiable
cores, the linear encodings are significantly more effectihe linear encodings use
a linear number of additional variables, the auxiliary ahtés, and a linear number of
clauses. The number of additional variables, albeit linean be a potential drawback
for some problem instances.

One approach to reduce the number of additional variablés isse the recently
proposeditwise encoding10]. Consider an AtMost1 constraiﬁtjf;o1 x; < 1. Create

! For consistency, the algorithmsu2 in [8] is renamed tasu1. 1.

r auxiliary variables, where = 1 if K = 1 andr = [logk] if k¥ > 1. Letvg,...,v,—1
be the auxiliary variables. Now associate with eagcthe binary representation of- 1.
Finally, for eachr; create the clauseész; Vp;),j =0,...,r—1, wherep; = v; ifthe
binary representation éf— 1 has value 1 in positiof, andp; = —wv; otherwise. For an
AtMost1 constraint witht variables, the bitwise encoding requi@glog k) variables
andO(k logk) clauses, i.eO(log k) for each variable in the AtMost1 constraint. Ob-
serve that linear encodings (e.g. [8]) require a linear nemalh auxiliary variables and
a linear number of clauses. Hence, the bitwise encodingsraff variables for clauses.

Given that the number of iterationsméu1 andmsu1 . 1is O(m) [8], wherem is the
number of clauses in the original formula, the number of tldal variables for these
algorithms is inO(m?). By using the bitwise encoding, this asymptotic complexety
mains unchanged, but the actual constant is consideraldilesmAlso, observe that
the number of blocking variables will be the same; only thenhar of auxiliary vari-
ables used for encoding the AtMostl constraint is reduces €hould also observe
that the created binary clauses only selects which variaibiee AtMostl constraint
can be assigned value 1; all the other variables are requirec: tasBigned value 0.
Hence, the encoding effectively represents an AtMostl tcaims. In order to encode
the constraint Exactlyl, it would suffice to simply add a skato capture the AtLeastl
constraint (e.g. [8]). The modified algorithm, using a latlemic number of auxiliary
variables for representing AtMost1 constraints, is reféto asnsul. 2.

The use of the bitwise encoding [10] above for reducing thmlper of auxiliary
variables, motivates using the same ideas for actuallyaiaduhe number of blocking
variables. Instead of selecting at most one blocking véiaht of set oft blocking
variables, the bitwise encoding now operates on the claafsch identified unsatisfi-
able core. This essentially allows eliminating the blogkmariables by working directly
with the auxiliary variables used in the bitwise encodingy. & unsatisfiable core with
k clauses, the proposed encoding will requirauxiliary variables, where = 1 if
k = 1 andr = [logk] if & > 1. Moreover, the encoding will requi@(log k) vari-
ables andD(k logk) new clauses, i.e0(log k) new clauses for each original clause
in the unsatisfiable core. Hence each original clayse an unsatisfied corgenerates
O(logk) new clauses. The proposed approach needs to take into ecatfich when
a clause has already been relaxed. Assume clayseelaxed from an original clause
w;, is included in an identified unsatisfiable core. Thadinclauses generated from
need to be re-relaxed. The modified algorithm, using a ltiyaic number of blocking
variables for each unsatisifiable core, is referred tosa.

5 Results

This section summarizes results on MaxSAT and partial Maxi@stances from practi-
cal applications. A number of classes of instances weredderesi. Class DEBUG [11]
represents design debugging MaxSAT instances. FIR [7kssmts filter design par-
tial MaxSAT instances. Class SYN [7] represents logic sgsith partial MaxSAT in-
stances. Finally, class MTG [7] represents minimum sizepatern generation partial
MaxSAT instances. All partial MaxSAT instances are obtdihg translating restricted
pseudo-Boolean problem instances into partial MaxSAT. (esiing a recently proposed

Table 1. Number of aborted instances, with a 1000 seconds timeout

Class #llmaxsatz|minimaxsat|minisat+|msul|msul.1|msul.2|msu2msu3|msud
DEBUG| 65 62 65 63 22 14 8 11 24 23
FIR 59 —| 45 37| 15 14 9| 12| 32| 44
SYN 74 —| 46 44| 48 44 42| 42| 47 51
MTG 215 —| 7 0 44 44 52/ 60] 11} 16
Total 413 —| 163 144 12 116 111 125 114 134

translation [5]). A number of MaxSAT solvers was considemeaimely:maxsatz [6],
the best performing solver in the MaxSAT 2007 evaluation fliinimaxsat [5], a
recent competitive MaxSAT solver; and the PBO formulatidérine MaxSAT prob-
lem solved withminisat+ [3], one of the best performing PBO solvers [7]. More-
over, the unsatisfiability-based MaxSAT solvers consideveremsul [4]; msul. 1 [8]
(renamed fromnsu2 for naming consistencyjisu3 [8]; msu4 [9]; and the new algo-
rithms described in this papesul .2 andmsu2. All msu algorithms are built on top
of the same unsatisfiable core extractor, implemented mithisat 1.14 [2]. Other
alternative MaxSAT algorithms (see [8, 9] for an overviewy &nown not to be effi-
cient for these instances. Moreoveinisat+ was run with its best configuration for
these classes of instances and, for the partial MaxSATrinst& the original PBO in-
stances were considered. The results for all MaxSAT solwerall problem instances
were obtained on a Linux server running RHE Linux, with a X&ad60 3.0 GHz dual-
core processor. For the experiments, the available pHysiemory of the server was
2 GByte. The time limit was set to 1000 seconds per instaraigleTl summarizes the
number of aborted instances for the MaxSAT solvers consdleédverall, CPU times
correlate well with the number of aborted instances and atetmown due to lack of
space (see [8, 9] for plots for the other algorithms).katsatz, only MaxSAT results
are shown, sinceaxsatz cannot be used with partial MaxSAT instances. The solvers
exhibiting the best performance are highlighted in bolde Tésults indicate that the
new algorithms are more efficient than previous MaxSAT atgors. With the excep-
tion of class MTG, MaxSAT algorithms are now vastly supet@minisat+, one of the
best performing PBO solvers [3]. For classes DEBUG and FiRirtstances aborted by
eithermsul .2 andmsu? are a fraction of the instances aborteddiyii sat+. Similarly,
the two branch and bound algorithms considetegtsatz andminimaxsat, perform
much worse thaany of the unsatisfiability-based MaxSAT algorithms. The resin-
dicate thaimsu1.2 is the overall best performing algorithmsu2 does not perform as
well, especially for class MTG. This is in part explained bg growth in the number
of clauses thahsu2 often requires. The improvements introducednyi .2 allow
significantly reducing the number of aborted instances kasses DEBUG and FIR,
and also reducing the number of aborted instances for chélk Bor class MTG the
results formsul . 2 are worse than fatisul . 1, and also worse than fasu3 andmsu4.
Moreover, the results also suggest thati1.2 is the preferred algorithm for classes
DEBUG, FIR and SYN, and thatinisat+ is the preferred algorithm for class MTG.
Togethermsul.2 andminisat+ abort only 50 instances, thus motivating a portfolio of

algorithms for MaxSAT. The experimental results confirnt teahniques for reducing
the number of additional variables are often effective. pagormance ofhsu? is af-
fected by the significant increase in the number of claussscdn often take place. As
a result, a mixed approach, involviagu1 .2 andmsu2 should be considered.

6 Conclusions

Despite the significant improvements in MaxSAT algorithmerdhe last few years [6,
5], current state of the art MaxSAT solvers are ineffectimentany problem instances
obtained from practical applications [11, 5, 9]. This pagamntinues recent work on de-
veloping MaxSAT algorithms based on identification of uis&ble sub-formulas [4,
8, 9], by proposing effective techniques for reducing thembar of additional variables
that must be used. Two different algorithms are develaped . 2 andmsu2. The ex-
perimental results indicate that the proposed technigueesféective, and thaisul .2

is the most effective algorithm. The results also suggedtaimixed approach between
msul.2 andmsu?2 is expected to provide the most efficient approach.

Acknowledgement. This work is partially supported by EPSRC grant EP/E0129,73/
by EU grants IST/033709 and ICT/217069, and by FCT grantsGBI®/61852/2004
and PTDC/EIA/76572/2006.

References

1. J. Argelich, C. M. Li, F. Manya, and J. Planes. MaxSAT aaséibn. www.maxsat07.udl.es.

2. N. Eenand N. Sorensson. An extensible SAT solvemternational Conference on Theory
and Applications of Satisfiability Testingages 502-518, May 2003.

3. N. Een and N. Sorensson. Translating pseudo-Booleastraoms into SAT. Journal on
Satisfiability, Boolean Modeling and Computati@) March 2006.

4. Z.Fuand S. Malik. On solving the partial MAX-SAT problein.International Conference
on Theory and Applications of Satisfiability Testipgges 252—-265, August 2006.

5. F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSat: a newghted Max-SAT solver. In
International Conference on Theory and Applications ofsiability Testing pages 41-55,
May 2007.

6. C. M. Li, F. Manya, and J. Planes. New inference rules faxMbAT. Journal of Atrtificial
Intelligence Resear¢t80:321-359, 2007.

7. V. Manquinho and O. Roussel. Pseudo-Boolean evaluatmmnw.cril.univ-artois.fr/PB07.

8. J. Marques-Silva and J. Planes. On using unsatisfiafilityolving maximum satisfiability.
Computing Research Repositpaps/0712.0097, December 2007.

9. J. Marques-Silva and J. Planes. Algorithms for maximutisf&bility using unsatisfiable
cores. InDesign, Automation and Testing in Europe Confereihtarch 2008.

10. S. D. Prestwich. Variable dependency in local searcive®tion is better than cure. In
International Conference on Theory and Applications ofissiability Testing pages 107—
120, May 2007.

11. S. Safarpour, H. Mangassarian, A. Veneris, M. H. Liffitand K. A. Sakallah. Improved
design debugging using maximum satisfiability.Fsrmal Methods in Computer-Aided De-
sign, pages 13-19, November 2007.

12. L. Zhang and S. Malik. Validating SAT solvers using aneipendent resolution-based
checker: Practical implementations and other applicatibmDesign, Automation and Test-
ing in Europe Conferencgages 10880-10885, March 2003.

