Long-Run Cost Analysis by Approximation of
Linear Operators over Dioids

David Cachera, Thomas Jensen, Arnaud Jobin, and Pascal Sotin

Irisa, Campus de Beaulieu, 35042 Rennes, France

Abstract. We present a static analysis technique for modeling and ap-
proximating the long-run resource usage of programs. The approach is
based on a quantitative semantic framework where programs are repre-
sented as linear operators over dioids. We provide abstraction techniques
for such linear operators which make it feasible to compute safe over-
approximations of the long-run cost of a program. A theorem is proved
stating that such abstractions yield correct approximations of the pro-
gram’s long-run cost. These approximations are effectively computed as
the eigenvalue of the matrix representation of the abstract semantics.
The theoretical developments are illustrated on a concrete example taken
from the analysis of the cache behaviour of a simple bytecode language.

1 Introduction

This article is concerned with the semantics-based program analysis of quantita-
tive properties pertaining to the use of resources (time, memory, ...). Analysis
of such non-functional properties relies on an operational model of program ex-
ecution where the cost of each computational step is made explicit. We take as
starting point a standard small-step operational semantics expressed as a tran-
sition relation o —? ¢’ between states 0,0’ € X extended with costs ¢ € Q
associated to each transition. The set @ of costs is supposed to have two opera-
tions for composing costs: a “product” operator that combines the costs along an
execution path, and a “sum” operator that combines costs coming from different
paths. These operators will give @ a structure of dioid. The sum operator in-
duces a partial order on costs that will serve as a basis for approximating costs.
From such a rule-based semantics, there is a straightforward way to obtain a
transition matrix, which entries represent the cost of passing from one state of
the program to another. This expresses the semantics of a program as a linear
operator on Q(X), the moduloid of vectors of elements of @ indexed over X.
In this paper, we are interested in analysing programs with cyclic behaviour
(such as reactive systems) in which the asymptotic average cost along cycles,
rather than the global cost of the entire execution, is of interest. We define the
notion of long-run cost for a program which provides an over-approximation of
the average cost per transition of long traces. This notion corresponds to the
maximum average of costs accumulated along a cycle of the program semantics
and is computed from the traces of the successive iterates of the cost matrix. The

quantitative operational semantics operates on state spaces that may be large or
even infinite so the computation of quantitative semantic models, like their qual-
itative counterparts, is usually not tractable. Hence, it is necessary to develop
techniques for abstracting this semantics, in order to return an approximation
of the program costs that is feasible to compute.

In line with the semantic machinery used to model programs, abstractions
are also defined as linear operators from the moduloid over the concrete state
space into the moduloid over the abstract one. Given such an abstraction over
the semantic domains, we then have to abstract the transition matrix of the
program itself into a matrix of reduced size. We give a sufficient condition for an
abstraction of the semantics to be correct, i.e. to give an over-approximation of
the real cost, and show how an abstract semantics that is correct by construction
can be derived from the concrete one. The long-run cost of a program is thus
safely approximated by an abstract long-run cost, with respect to the order
relation induced by the summation operator of the dioid.

The framework proposed here covers a number of different costs related to
resource usage (time and memory) of programs. To demonstrate the generality
of the framework, our running example considers the less common (compared to
time and space) analysis of cache behaviour and the number of cache misses in
programs. We illustrate the notions of quantitative semantics, abstraction and
long-run cost on a program written in a simple, intermediate bytecode language
(inspired by Java Card) onto which we impose a particular cache model.

The paper is structured as follows. Section 2 defines the quantitative se-
mantics as a linear operator over a moduloid. We give the general form of this
semantics, and precisely define the notion of cost dioid we use throughout the
paper. Section 3 defines the notion of abstraction together with its correctness,
and shows how we can derive an abstract semantics that is correct by construc-
tion. Section 4 defines the notion of long-run cost, relating it to the asymptotic
behaviour of the trace semantics, and shows how a correct abstraction yields an
over-approximation of the concrete long-run cost of a program. Section 5 lists
related work and Section 6 concludes and discusses future research directions.

2 Linear operator semantics

We give a general framework for expressing quantitative operational semantics.
Transitions of these semantics will be equipped with quantities (or costs) de-
pending on the accessed states. Let P be a program; its semantic domain is the
countable set of states Y. The quantitative operational semantics of P is given
as a transition relation, defined by inference rules of the following form: ¢ —2 ¢’
where 0,0’ are states of X, and ¢ is the cost attached to the transition from o
to o’ (g is function of o and ¢’). The set @ of costs and its structure will be
made precise in the next subsection. We associate to P the transition system
T = (—-,I), where I is the set of initial states of P. The trace semantics of P is
defined as the trace semantics of 7.

[Plir = [T]ir = {00 =% ...0n_1 = Y0, | 0o € I,0; =% 0441}

2.1 Cost dioid

The small-step, quantitative operational semantics induces a labelled transition
system over Y with labels in @ and a transition relation — C X x X — @,
written o —9 ¢’. Such a transition states that a direct (one-step) transition from
o to o’ costs q. These unitary transitions can be combined into big-step transi-
tions, using two operators: ® for accumulating costs and & to get a maximum of
different costs. These operators will form a dioid on @, as explained below. Costs
can be defined in more general ways (for instance, one could use a more general
algebra of costs as in [4]) but the present definition covers a number of different
costs and has interesting computational properties, since it can be used within
a linear operator semantic framework, as presented in the next subsection.

The operator ® on @ defines the global cost of a sequence of transitions,
oc—1 ., =9 g simplyas q=q ®...® q,. This is written o 27 &' where 7
is a sequence of states that has o (resp. o’) as first (resp. last) state.

There may be several ways to reach a state ¢’ from a state o, due to the
presence of loops and non-determinism in the semantics. Let the set of possible
paths be I, o = {7 | o Z o'}. The global cost between o and ¢’ will be

defined, using the operator @ on Q, to be ¢ = @, .y , ¢r. Formally, the two

operators have to fulfill the conditions of a (commutative) dioid.
Definition 1. A commutative dioid is a structure (Q,®,®) such that

1. Operator ® is associative, commutative and has a neutral element e. Quan-
tity e represents a transition that costs nothing.

2. Operator @ is associative, commutative and has L as neutral element. Quan-
tity 1 represents the impossibility of a transition.

3. ® is distributive over @, and L is absorbing element for ® (Vr.x @ L =
lez=1).

4. The preorder defined by @ (a < b < Jc:a P c =0b) is an order relation
(i.e. it satisfies a < b and b<a=a=0»>).

By nature, a dioid cannot be a ring, since there is an inherent contradiction
between the fact that & induces an order relation and the fact that every element
has an inverse for @. The following lemma is a classical result of dioid theory [17].

Lemma 1. & and ® preserve the order <, i.e., for all a,b,c € Q with a < b,
a®Rc<bRecanda®c<bdec.

If several paths go from some state o to a state o’ at the same cost g, we will
require that the global cost is also ¢, i.e. we work with idempotent dioids.

Definition 2. A dioid (Q,®,®) is idempotent if ¢ ® g = q for all q in Q.

For instance, (R,max,+) and (R,min,+) are idempotent dioids, where R
stands for RU{—o00, +00}. The induced orders are, respectively, the orders < and
> over real numbers, extended to R in the usual way. Note that in an idempotent
dioid a < b < a @ b =b. Idempotent dioids are also called tropical semirings in
the literature. The fact that sets of states may be infinite, together with the use
of residuation theory in Section 3 impose that our dioids are complete [7].

Definition 3. An idempotent dioid is complete if it is closed with respect to
infinite sums (where we see the operator ® as a least upper bound), and the
distributivity law holds also for an infinite number of summands.

A complete dioid is naturally equipped with a top element, that we shall write
T, which is the sum of all its elements. Remark that a complete dioid is always a
complete lattice, thus equiped with a meet operator A [6]. The notion of long-run
cost we will define in Section 4 relies on the computation of an average cost along
the transitions of a cycle. This requires the existence of a nth root function.

Definition 4. A dioid (Q,®,®) is equipped with a nth root function if for all
q in Q, equation X™ = q has a unique solution in Q, denoted by 3/q.

A sequence containing n transitions, each costing, on the average, /g, will thus
cost ¢g. Some examples of nth root can be found in Figure 1. To be able to
easily deal with the nth root, we make the assumption that the nth power is
@-lower-semicontinuous (@-Isc for short).

Definition 5. In a complete dioid Q, the nth power is said to be ®-1sc if for all
X - Q; (®x€X I)n = ®IEX "

This assumption and its consequences will be very useful for the theorems re-

lating long-run cost and trace semantics in Section 4. Note that this equality

remains true for finite X (in that case the nth power is said a @-morphism).
The following definition summarizes the required conditions for our structure.

Definition 6 (Cost dioid). A cost dioid is a complete and idempotent com-
mutative dioid, equipped with an nth root operation, where the nth power is ®-lsc.

Proposition 1. In a cost dioid QQ, we have:

(i) The nth root is ®-lsc: VX C Q,¥n > 0, @ = @ Ve,
reX

rzeX

(ii) For all a,b € Q and n,m >0, {/a ® Vb > ""/a®b.

Property (i) immediately follows from the fact that the nth power is ®-lsc
whereas an intermediate lemma is needed to prove property (ii) [10].

Although the definition of cost dioids may seem rather restrictive, we now
show that many classes of dioids found in the literature are indeed cost dioids.
We first recall some standard definitions.

Definition 7. A dioid (Q,®,®) is:

— selective if for all a,b in QQ, a ® b = either a orb.
— double-idempotent if both & and ® are idempotent.
— cancellative if for all a,b,c in Q, a®b=a® c and a # L imply b = c.

Note that in a double-idempotent dioid, ™ = z. Thus, a double-idempotent
dioid is naturally equipped with a nth root, which is the identity function.

Proposition 2. The following dioids are cost dioids.

(1) Complete and selective commutative dioids with an nth root operation.

(2) Complete and double-idempotent commutative dioids.

(8) Complete idempotent commutative dioids satisfying the cancellation condi-
tion, and for which for all q in Q, equation X™ = q has at least one solution.

For dioids of kind (1) and
(2) we only have to prove
that the nth power is ®-lsc.

For dioids of type (3) we also carrier set D | ® |q
have to prove that if equa- Q U {+00, —oo}| min |max| ¢
tion X™ = ¢ has a solution, Double- R U {400, —0c0} |max|min| ¢
this solution is unique [10]. idempotent |P(S) n|uU|gqg
For instance, (R,max,+) P(S) Ul nijg

is a cost dioid that may be Cancellative| R U {+o00} min| + | 2
used for the deﬁmt}on of. the Ry U {400} max| X |gw
Worst Case Execution Time: Selective |QU {+00, —oo}|max| + | £
when two states can be R U {400, —00} |min| + q
) n

joined by several sequences
of transitions which cost dif-
ferent times, the worst time Fig. 1. Some examples of cost dioids

is taken. To compute the

cost of a sequence of transi-

tions, we sum the costs of each transition. Figure 1 lists some examples of cost
dioids.

2.2 Semantics as linear operators over dioids

The upshot of using the adequate cost dioid is that the cost computation can be
defined in terms of matrix operations in this dioid. The set of one-step transitions
can be equivalently represented by a transition matrizc M € M sy x(Q) with

_Jqif o0’
Moor = {J_ otherwise

Here, M sy x(Q) stands for the set of matrices with rows and columns indexed
over Y, and values in (). This set of matrices is naturally equipped with two
operators @& and ® in the classical way: operator @ is extended pointwise, and
operator ® corresponds to the matrix product (note that the iterate M™ embed
the costs for paths of length n). The resulting structure is also an idempotent and
complete dioid. The order induced by @ corresponds to the pointwise extension
of the order over Q: M < M’ & Vi, j.M; ; < M| ;. A transition matrix may also
be seen as a linear operator on the moduloid Q(X), as defined below.

Definition 8. Let (E,®,®) be a commutative dioid. A moduloid over E is a
set V' with an internal operation @ and an external operation @ such that

1. (V,®) is a commutative monoid, with 0 as neutral element;
2. the ® operator ranges from E x 'V to V', and verifies
(a) YA€ EN(z,y) e VZAO (z@y) = Aox)® (AOy),
(b) VA p) € E2NVz e V,(Adp)0rz=N0z)® (LO),
(c) VO p) €PNz e VIAGO (uoz) =A@ p) O,
(d) VxeV,e@zx =z and LOx =0,
(e) VA€ E;,X00=0.

If E' is an idempotent dioid, then any moduloid V over F is also an idempotent
dioid, equipped with a canonical order defined from the @ operation. As for
vector spaces, if n is a given integer, E™, set of vectors with n components in
E, is a moduloid. More generally, a vector u € E(X), with X finite, |X| = n can
be seen as a function §, : [1,n] — E. Since @ is complete, we can generalize
to the infinite (countable) case: §,, becomes a mapping from N to E, and the
same technique applies for matrices. The matrix-vector product is defined by:
(Mu); = j_:f 0 (%,5) ® 6,(7). In this paper, we will keep the matrix notation
for the sake of simplicity, even for an infinite set of indices.

2.3 Running example: quantitative semantics

We illustrate the notions of cost and quantita-
tive semantics on a simple bytecode language,
inspired by the Java Card language. Figure 2

shows part of the factorial program written in Source Bytecode
this language. The quantity we are interested in r=1; 1: push 1
is the number of cache misses related to read , 2: store x

. . for (i=2;... |3: push 2
accesses (read miss behaviour). In order to de- 4: store i
scribe the read miss behaviour of programs, we ...i<=n;...|5: load i
extend the semantics of a simple bytecode lan- 6: load n
guage [19,16] with a cache model and with quan- . 7: if <goto 14
titi . th b ¢ d mi T=x71; 8: load x
ities expressing the number of read misses. 9: load i

The cost dioid considered here is (R, max, +). 10: numop mul

A state contains a heap, a call stack of frames, 11: store x
and within each frame an instruction pointer for -otht) (120 dnc i
h t method f local variabl i goto s
the current method, an array of local variables return 7; |14: load x
and an operand stack. In addition to these stan- 15: return

dard elements, a state contains a set of logical
addresses, representing which values are present
in the cache at this point of the execution. This Fig. 2. Factorial program
set is managed similarly to the cache. For exam-

ple, the maximum size of this set will correspond

to the size of the physical cache, and the replacement policy will model the one
it provides (e.g. LRU, FIFO). The cache description is hidden in a function
C’ = update(C, Laccess]) where C and C’ denote the cache before and after a
transition, respectively, and where [access] is a list of memory accesses. Due to
the lack of space, full descriptions of possible update functions are not given.

Memory is accessed with two operators (a read or write access) which take
two parameters, specifying what volume of data is to be accessed, and where
these data are stored. For example, read,(heap.3.z) means that data of type 7
is read at the address heap.3.z, i.e. field x of the third object in the heap. In the
same way, stack.frameld.n points to the n-nth element in the operand stack
of a given frame, and local. frameld.local points to a local variable in a certain
frame. We give an example of a semantic rule: the load instruction, which loads
a typed local variable, indexed by i, on the top of the operand stack. The first
two hypotheses of the rule correspond to the standard semantics. The third and
fourth hypotheses define how the cache evolves when executing a load. The fifth
hypothesis computes the cost. Some other rule examples can be found in [10].

InstrAt(m,ip) = load 7 i AL[i] =d
S'=d:: S Nsize(S)=t
access = [read,(local.f.i); write,(stack.f.t + 1)]
C' = update(C, access)
q = nbRmiss(C, access)

(H,< f,m,ip,L,S > fr,C) =4 (H,< f,m,ip+1,L, 5" >: fr,C")

The number of read misses depends on the current state of the cache and the
way it is accessed. This is defined precisely by the function nbRmiss(C, access)
that computes the number of read misses generated by the list of memory ac-
cesses access if the cache at the beginning of the instruction is C. Here is the
pseudocode of function nbRmiss.
nbRmiss(c,[]) =0
nbRmiss(c, [alr]) = nbRmiss(update(c, [a]),r) + { Lif a=read m and m ¢ ¢

’ ’ ’ 0 otherwise

3 Abstraction

The transition matrix representing a program is in general of infinite dimen-
sion, so neither transitive closure nor traces can be computed in finite time. To
overcome this problem, we define an abstract matrix that can be used to ap-
proximate the computations of the original matrix. For example, if we compute
the minimum memory needed to run a program, a correct approximation of this
quantity must be greater than the effective minimum. In this section, we give
a sufficient condition for this approximation to be correct with respect to the
ordering induced by the dioid. To prove the correctness of an abstraction, we re-
state the classical abstract interpretation theory [12] in terms of linear operators
over moduloids.

3.1 Galois connections and pseudo-inverses

We first briefly recall the definition of Galois connections that are used in the
classical abstract interpretation theory.

Definition 9. Let (C, <¢) and (D, <p) be two partially ordered sets. Two map-
pings o : C — D (called abstraction function) and v : D +— C (called concretiza-
tion function) form a Galois connection (C,a,~, D) iff:

—VYee OVd € D,c<cv(d) <= alc) <p d, or equivalently

— « and v are monotonic and aoy < Idp and Ide < yo«

In our setting, the partial orders will be the orders induced by the & op-
erators over vectors in a moduloid. The question that naturally arises is that
of the existence of a concretization function, given an abstraction «. In [15],
Di Pierro and Wiklicky describe the framework of Probabilistic Abstract Inter-
pretation, where the abstraction function is a linear operator over the semiring of
probabilities. They obtain a concretization function through the Moore-Penrose
pseudo-inverse. As we will not be able to define an exact inverse in the general
case, nor to apply the Moore-Penrose pseudo-inverse since we do not work in a
field, we will use the theory of residuation to get a kind of inverse for a.

Proposition 3. Let E and F be two complete dioids, f a monotone mapping
from E to F. We call subsolution of equation f(x) = b an element y such that
f(y) <b. The following properties are equivalent.

1. For allb € E, there exists a greatest subsolution to the equation f(x) =b.

2. f(Lg)=1Llp, and f is ®-lsc.

3. There exists a monotone mapping from F into E which is upper' semi-
continuous such that fo fT < Idp and Idg < ffo f.

Consequently, fT is unique. When f satisfies these properties, it is said to be
residuated, and f1 is called its residual.

3.2 Abstraction over cost dioids

We now show how the notions of abstraction and concretization can be recast
in our setting. In the following, ¥ will denote a set of concrete states and X*
a set of abstract states. An abstraction function maps concrete states in X' to
their abstraction in X*. Given an abstraction function a, we can lift it to a linear
abstraction operator a! € My, 5(Q) by setting

o _{eifoz(a)zaﬁ

o%,c — 1 L otherwise

In what follows, o' will be denoted by a when no confusion can arise and < will
stand for the order defined on M54, x4(Q) in Section 2.2.

Recall that the set of linear operators over a complete idempotent moduloid
is itself a complete idempotent dioid. As the abstraction function is linear, it
trivially fulfills requirements 2 of Proposition 3 and we get the following result.

Theorem 1. Let X and X' be the domains of concrete and abstract states, o
a mapping from X to X*, and o € Mxiy(Q) the linear mapping obtained
by lifting . There exists a unique monotonic o such that o o of < Ids: and
Ids < atoal.

! Upper semi-continuity is the analog of lower semi-continuity for the A operator.

3.3 Induced abstract semantics

Let T be a transition system in the concrete domain X, over the cost dioid
(Q,®,®). We now want to define an abstract transition system over the abstract
domain X* that is “compatible” with T, both from the point of view of its traces
and from the costs it will lead to compute. The following definition of a correct
abstraction will ensure that the long-run cost of a program, as defined in the
next section, will be correctly over-approximated during the abstraction process.

Definition 10 (Correct abstraction). Let T = (M,I) a transition system
over the concrete domain, with M € Mxyxs(Q) and I C X. Let T* = (M*, I*)
be a transition system over the abstract domain, with M* € My, 5:(Q) and
I C X% Let a be an abstraction from X to X*. The triple (T, T*,) is a correct
abstraction from X to X% if al o M < M* o' and {a(o) | o € I} C IF.

The classical framework of abstract interpretation gives a way to define a best
correct abstraction for a given concrete semantic operator. In the same way,
given an abstraction « and a concrete semantics linear operator, we can define
an abstract semantics operator that is correct by construction, as expressed by
the following proposition.

Proposition 4. Let o be an abstraction from % to X% and T = (M,I) be
a transition system with M € Myxyx(Q) a linear operator over the concrete
moduloid and I the subset of initial states. We set T* = (M*, I*) with

M =aloMoal and I'={a(o)|oecl}

Then (T,T¥, a) is a correct abstraction from % to X%. Moreover, given T and
a, T* provides the best possible abstraction in the sense that if (T, (M',I'),) is
another correct abstraction, then MY< M and I* CT.

Proof. The proof follows from the facts that Id < atoa and aoaf < Id.

The above definitions and properties deal with the matrix view of the seman-
tics, but what can be said about traces? The following proposition states that
for each program trace, there exists an “abstract” trace of same length which
costs are given by the induced abstract matrix. This property will be useful for
proving the correctness of abstractions in Section 4.

Proposition 5. Let consider the transition system T = (q,I) with I C X its
set of initial states and q : X x X — Q its quantitative transition system in the
cost dioid Q. Let o be an abstraction function from X to X*. Let T* = (¢*, I*)
an abstract transition system defined by:

—If={alo)|oecl}

— a7l X P(X) with a”(of) = {0 | a(o) = 0%}

(X1, X)) = D q(o1,02)
(0'1,0'2)€21><22

- qﬁ(0§>aﬁ) = q*(a_l(og)aa_l(o—g))
then forall t = o9 —% ...0y, € [T]ir,|t| = n, there exists t* = O'g =
[T, |t| = n such that ¢; < ¢, Vi€ [0,n—1] and of = a(o;) Vi e [0,n]. In
addition, M* = a' o M o ol is the transition matriz for ¢*.

3.4 Running example: abstraction

In 2.3, we introduced a quantitative semantics describing the number of cache
misses in read access. M is the matrix describing this quantitative semantics for
the factorial program (see Figure 2 for the code). The exact computation of the
semantics would be too costly, even if we work with bounded numerical domains.
In this subsection, we are using the abstractions techniques in order to compute
an abstract semantics M?* from the matrix M.

We abstract a concrete state by the instruction pointer and the k last data
accessed. Within this abstract domain, the loss of information lies in three points:

— Values (i.e. locals, stack and heap) are forgotten. This prevents us from
determining the value of branching condition.

— The cache size is reduced to k elements. When k grows, precision increase,
and so do the cost of the analysis.

— The method call stack is forgotten. We turn the analysis into an intra-
procedural one, not for efficiency but for clearer notation, as our factorial
function involves only one non-recursive function.

We write the abstract state

as (ip,[v1,...,vk]) where ip

is the instruction pointer and _

[Ul, o ,Uk;] is a list of 1ogica1 ad- ...9, 12,80 ...9,[1.4,1.2,5.0] ...
dresses of the last data accessed, 8; 0 1 n

vk being the most recent. s.0 8, [1.2] 0 1

refers to the bottom element of ¢ — . ?; [g-[i]x} (1) i

the local stack, 1.z refers to the 8, [L.a,5.0] 0 1

local variable called z in the 8,[14,1.a] 1 0
source code. We model the max- 5 [Al‘i] + !

imum number of read misses us-

ing the dioid Q = (R,max, +).

We construct the abstract
matrix associated to our ab-
stract system. Its size is bounded in terms of the cardinality of Z, the set of
all instruction pointers appearing in program P, and the number of up-to-k-
combinations of the different logical data used in this function (which form a
finite set £). A value ¢* of this matrix, standing at row a* and column b* (a* and
bf are two abstract states), is computed in this way: let A and B be the set of
concrete states abstracted by af and b*. Then ¢* = @{q | a —?b,a € A,b € B}.
For example

Fig. 3. Transition matrix

— o= (8[1.2]) =° (9,[1.2,5.0])) = o,
Whatever the concrete state and its precise values, if it is abstracted by o,
then it can turn into a state abstracted by ¢’ for a cost of 0 read miss.

— o= (8,[s.0]) =t (9,[1.2,5.0]) = o,
In the same way, all states abtracted by ¢ can generate up to one read miss
on their next instruction, turning into states abstracted by o”.

Recall that the 1load z instruction at line 8 accesses these memory locations:
[read(local.f.i); write,(stack. f.t[+1])] with ¢ the local variable, ¢ the current
stack height and f the current frame.

A 1-transition denotes an incompatibility between the two abstract states,
either in its control flow or its the cache evolution. Most of the matrix will be
filled by L. This kind of matrix is called sparse matrix, and permits the use
of particularly small representations together with efficient algorithms. Figure 3
gives a submatrix of the abstract matrix. M¥ € M zxqoucucey)z(Q).

4 Long-run cost

So far, we have seen that all single-transition costs can be summarized in a
transition matrix. We now use this matrix and the mathematical results of dioid
algebra to define a notion of long run cost for a whole program. In [20] we
proposed a notion of global cost of a program, representing its cost from initial
to final states. It correctly deals with programs which are meant to terminate,
but in some cases this global cost turns out to be T, in particular when it is
evaluated on a coarse abstraction of the initial system. Getting T as a result for
the global cost is rather unsatisfactory as it does not tell anything about the
concrete cost. For this case and for the case of programs which are not meant
to terminate (as reactive systems), we propose the notion of long-run cost, that
represents a maximal average cost over cycles of transitions. This terminology is
taken from [2,9], in the context of probabilistic processes modelled by Markov
decision processes. Behaviour patterns of interest (described by labelled graphs)
are associated to real numbers representing the success or the duration of the
pattern, and extensions of branching time temporal logics are proposed in order
to measure their long-run average outcome.

The average cost of a finite path is defined as the arithmetical mean (w.r.t. the
® operator) of the costs labelling its transitions. In other words, it is the nth root
of the global cost of the path, where n is its length. We write ¢(7) = '3/q() for
the average cost of path 7, where ¢(7) is the global cost of 7, and |x| its length.
The “maximum” average cost of all cycles in the graph will be the quantity
we are interested in: this quantity will be called long-run cost. The following
example illustrates these notions on a simple graph.

Average cost of path abc = (8+3)/2 =5.5
Cycle bedb average cost = (3+4+5)/3 =4
Cycle cc average cost = 2/1 =2
Long-run cost = max(4,2) =4

By the properties of the dioids we consider, matrix M* sums up the transition
costs of all paths of length k. The diagonal of this matrix thus contains the costs
of all cycles of length k. If we add up all the elements on this diagonal, we get
the trace of the matrix. This observation gives rise to the following definition.

Definition 11. Let P be a program having T = (M,I) for transition system.
Let R be M restricted to the set of states, X, reachable from I. The long-run
cost of program P is defined as the long-run cost of T

|2 ||

p(P)=p(T) = @ VirRF where trR= @Rm-
k=1 1

Note that this definition is valid even for an infinite number of states, since we
work with complete dioids. As an example, if we work in the dioid (Time, max, +),
where Time is isomorphic to R, p(P) is the maximal average of time spent per
instruction, where the average is computed on any cycle by dividing the total
time spent in the cycle by the number of instructions in this cycle. In the case of
a finite set of states, the long-run cost is computable, and we note in the passing
that its definition coincides with the definition of the maximum of eigenvalues of

the matrix, in the case of an irreducible matrix in an idempotent semiring [11].

4.1 Semantics of the long run cost

The following proposition establishes in a more formal manner the link between
this definition of long-run cost and the cycles of the semantics.

Proposition 6. Let I' be the set of cycles in T. Then p(T) = @ . q(c).

The idea of the proof is to show that the cycles of length less than | X| are enough
to know average costs, and that a partition of these cycles is related with the
different iterates of the matrix appearing in Definition 11. The proof becomes
straightforward in the case of an infinite set of states.

As we aim at giving a characterisation of the asymptotic behaviour of a
program, an alternative definition for long-run cost could have been:

lre(T) = lim sup @ q(t)

n—oo

Instead of defining the long-run cost w.r.t. the cycles, this definition considers
arbitrarily long traces. Unlike p(P), lrc(P) is not suitable for computation, even
if the set of states is finite. We will see in Subsection 4.3 that those two notions
coincide in a restricted class of cost dioids and when the set of states is finite.

4.2 Ensuring correctness

The question that naturally arises is to know if the notion of long-run cost is
preserved by abstraction. The following theorem states that a correct abstraction
gives an over-approximation of the concrete long-run cost.

Theorem 2. If (T, T% «) is a correct abstraction, then p(T) <q p(T*).

The proof of theorem relies on the fact that the correctness is preserved when
the concrete and abstract matrices are iterated simultaneously [10].

Recall that Proposition 5 states that for any concrete trace, there exists an
abstract trace which cost is over the concrete one. It follows that the alternative
definition of long-run cost given in Section 4.1 is also preserved by abstraction:

Proposition 7. If (T,T*%,) is a correct abstraction, then

limsup @ (t) <limsup P ¢t
n—oo e[n—oo tuG[[Tﬁ]]f,r
jtl=n %] =n

4.3 Traces meet cycles

We now show that, if X is finite, and for dioids where the carrier set is R and
operator ® is the arithmetical + (so that the nth root operator corresponds
to division by n), the notion of long-run cost defined w.r.t. accessible cycles
coincides with the notion of long-run cost defined as the limit of the maximum
average cost of traces which length tends to infinity. To establish this result, we
have to show that the cost of a prefix of a trace becomes negligible when this
trace becomes arbitrarily long. We thus impose the following hypothesis:

Hypothesis 1 All transitions § which are not in a cycle verify q(d) # +oo.

Hypothesis 1 excludes certain pathological matrices with atomic operations that
have infinite costs. If a cycle contains a +oo transition, the p value indicates it.

Theorem 3. Let T' = (M, I) be a transition system with M € X x X — Q. If
X is finite and Q is a cost dioid where the carrier set is R and operation ® is
the arithmetical +, then with Hypothesis 1, we have

p(T) = 1m D d()

This theorem establishes a link between the semantics and a computable defi-
nition of the long-run cost. The key points of the proof are to ensure that this
limit exist, and to show that a small part of a trace can be neglected for very
long traces. This is proved by bounding €p ¢(¢) [10].

4.4 Running example: long-run cost

To illustrate the use of the long-run cost (p), we will consider a cache which can
contain 4 integers. Such a small size could seem weird to the reader and unreal-
istic for a cache size, but the term cache can be interpreted here as some kind
of registers. The semantics of the factorial program is abstracted as described in
Section 3.4, with k = 4. Using Definition 11, we compute p(M¥) = 2/9, meaning
that in an execution long enough, we observe on average 2 cache misses each 9

instructions. A prototype is under developement for the standard Java bytecode,
that already handles this kind of example. It implements the analysis technique
presented in this paper with the help of an existing Scilab library for max-plus al-
gebra, that offers an efficient ways to compute the long-run cost (sparse matrices
and Howard’s algorithm for eigenvalues [11], handle 20000 accessible states).

If we now consider a FIFO replacement policy for the same 4 integer registers,
we obtain a different long-run cost. The FIFO policy implementation is cheaper
in electronic components than the LRU one, but the analysis of the factorial
function says that p = 4/9, i.e., that we now have on average 4 cache misses for
9 instruction executed. Such a slowdown is coherent with the observations that
small cache memory requires more advanced cache policies.

5 Related work

The present work is inspired by the quantitative abstract interpretation frame-
work developed by Di Pierro and Wiklicky [15]. We have followed their ap-
proach in modeling programs as linear operators over a vector space, with the
notable technical difference that their operators act over a semiring of probabili-
ties whereas ours work with idempotent dioids. Working with idempotent dioids
means that we have been able to exploit known results from Discrete Event
Systems theory which makes intensive use of such structures. Another difference
with respect to [15] lies in the kind of program being analyzed: we have been
considering an intermediate bytecode language rather than declarative languages
(probablistic concurrent constraint programming and the lambda calculus [14]).

In Di Pierro and Wiklicky’s work, the relation with abstract interpretation is
justified by the use of the pseudo-inverse of a linear operator, similar to a Galois
connection mechanism, enforcing the soundness of abstractions. Our approach
can be seen as intermediate between their and classical abstract interpretation:
on one hand, we use residuation theory in order to get a pseudo-inverse for
linear abstraction functions; on the other hand, we benefit from the partially
ordered structure of dioids to give guarantees of soundness under the assumption
ao M <p M¥ o a, which is a classical requirement in abstract interpretation.

Several other works make use of idempotent semiring for describing quantita-
tive aspects of computations, namely under the form of constraint semirings [8].
Recently, these have been used in the field of Quality of Services [13], in par-
ticular with systems modelled by graph rewriting mechanisms [18]. In all these
approaches, the & and ® operators of the constraint semiring are used for com-
bining constraints. In [5], Aziz makes use of semirings in a mobile process cal-
culus derived from the 7-calculus, in order to model the cost of communicating
actions. He also defines a static analysis framework, by abstracting “concrete”
semirings into abstract semirings of reduced cardinality, and defining abstract
semiring operators accordingly. For instance, the (R U{+oc0}, min, +) semiring
can be abstracted by a ({low, medium, high}, min, max) one. Even if dealing with
dioids as we do, none of these approaches make use of a notion of long-run cost
to express an average quantitative behaviour of a system.

In the specific context of Java bytecode, Albert and al. [1] defined a cost
analysis based on the generation of cost relations and recurrence equations. Ap-
proximation of costs is done in two steps: first, a classical abstract interpretation
is used to approximate size relations between variables. Secondly, combining size
relations then gives recurrence equations whose solutions are approximated by
using intervals when no closed form solution has been found. This gives in-
teresting results for a class of simple programs, in particular when arithmetic
operations are restricted to linear ones.

Our running example of estimating cache usage is meant for illustrative pur-
poses and is based on a rather abstract view of cache analysis, compared e.g. to
the detailed modeling and cache abstraction of Wilhelm and al. [3] who propose
in the AbsInt tool a cache behaviour prediction by abstract interpretation. Three
points of their work could be almost directly used in our framework: the various
models of cache (e.g. direct-mapped, A-way) to implement our update function,
their abstract domain, in order to design our quantitative abstractions, and their
observations about caches and writing, in order to develop an accurate model.
Their approach however is not directed toward long-run cost computation.

6 Conclusion

We have shown how to abstract the long-run cost of programs whose operational
semantics is defined as transition systems labelled by costs taken from a partic-
ular kind of dioids. In such cases, we have shown that the semantics is a linear
operator over the moduloid associated to this dioid. We have used a well-known
characterization of the asymptotic behaviour of a discrete event system to de-
fine the notion of long-run cost of such a semantics, and proposed a novel way
of analyzing the long-run behaviour of the program. We have characterized this
long-run cost as being a maximal average cost per transition on very long traces
of the semantics. Computing the exact long-run cost of a program is in general
too expensive, so we have extended the linear operator framework with a notion
of abstraction of the semantics which is also expressed as a linear operator. A
correctness relation between concrete and abstract semantic matrices ensures
that the cost computed from the abstract semantics is an over-approximation
of the concrete one. The notions of dioids, quantitative semantics, abstraction
and long-run cost have been illustrated all along the paper through a cache miss
analysis on a program written in a simple bytecode language.

Future work The examples in the paper have been computed both by hand (for
the abstraction part) and by a prototype analyzer for the computation of long-
run costs themselves. Future work includes improvement of the prototype and
developement of a framework for validating experimental results.

An interesting avenue for further work would be to relax the correctness crite-
rion so that the abstract estimate is “close” to (but not necessarily greater than)
the exact quantity. For certain quantitative measures, a notion of “closeness”
might be of interest, as opposed to the qualitative case where static analyses
must err on the safe side.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In ESOP’07, volume 4421 of Lecture Notes in Computer Science,
pages 157-172. Springer, 2007.

L. D. Alfaro. How to Specify and Verify the Long-Run Average Behavior of Prob-
abilistic Systems. In 13th Symposium on Logic in Computer Science (LICS’98),
pages 174-183. IEEE Computer Society Press, 1998.

M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache Behavior Prediction by
Abstract Interpretation. In Static Analysis Symposium (SAS’96), volume 1145 of
Lecture Notes in Computer Science, pages 51-66, September 1996.

D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program
logic for resources. Theor. Comput. Sci., 389(3):411-445, 2007.

B. Aziz. A Semiring-based Quantitative Analysis of Mobile Systems. Flectronic
Notes in Theoretical Computer Science, 157(1):3-21, 2006.

F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and
Linearity. Wiley, 1992.

S. Bistarelli and F. Gadducci. Enhancing Constraints Manipulation in Semiring-
Based Formalisms. In European Conf. on Artificial Intelligence, pages 63-67, 2006.
S. Bistarelli, U. Montanari, and F. Rossi. Semiring-Based Constraint Satisfaction
and Optimization. Journal of the ACM, 44(2):201-236, 1997.

T. Brazdil, J. Esparza, and A. Kucera. Analysis and Prediction of the Long-
Run Behavior of Probabilistic Sequential Programs with Recursion. In FOCS ’05:
Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, pages 521-530, Washington, DC, USA, 2005. IEEE Computer Society.
D. Cachera, T. Jensen, A. Jobin, and P. Sotin. Long-run cost analysis by approx-
imation of linear operators over dioids. Research Report 6338, INRIA, 2007.

J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. Mc Gettrick, and J.-P. Quadrat.
Numerical Computation of Spectral Elements in Max-Plus Algebra. In Proceedings
of the IFAC Conference on System Structure and Control, 1998.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
4th Symposium on Principles of Programming Languages (POPL’77), 1977.

R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A Basic
Calculus for Modelling Service Level Agreements. In Inter. Conf. on Coordination
Models and Languages, volume 3454 of LNCS, April 2005.

A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic A-calculus and Quantitative
Program Analysis. J. Logic and Computation, 15(2):159-179, 2005.

A. Di Pierro and H. Wiklicky. Concurrent Constraint Programming: Towards
Probabilistic Abstract Interpretation. In PPDP, 2000.

S. N. Freund and J. C. Mitchell. A Formal Framework for the Java Bytecode
Language and Verifier. ACM SIGPLAN Notices, 34(10):147-166, 1999.

M. Gondran and M. Minoux. Graphes, dioides et semi-anneauz. Tec & Doc, 2001.
D. Hirsch and E. Tuosto. SHReQ: Coordinating Application Level QoS. In SEFM
’05: Proceedings of the Third IEEE International Conference on Software Engi-
neering and Formal Methods, pages 425-434, Washington, DC, USA, 2005.

I. Siveroni. Operational Semantics of the Java Card Virtual Machine. J. Logic and
Automated Reasoning, 2004.

P. Sotin, D. Cachera, and T. Jensen. Quantitative Static Analysis over Semirings:
Analysing Cache Behaviour for Java Card. In A. Di Pierro and H. Wiklicky, editors,
QAPLO6, Quantitative Aspects of Programming Languages, 2006.

