
System Demonstration of Spiral: Generator for
High-Performance Linear Transform Libraries

Yevgen Voronenko, Franz Franchetti, Fréd́eric de Mesmay, and Markus Püschel⋆

Department of Electrical and Computer Engineering
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA,
{yvoronen,franzf,fdemesma,pueschel}@ece.cmu.edu

Abstract. We demonstrate Spiral, a domain-specific library generation system.
Spiral generates high performance source code for linear transforms (such as the
discrete Fourier transform and many others) directly from a problem specifica-
tion. The key idea underlying Spiral is to perform automatic reasoning andopti-
mizations at a high abstraction level using the mathematical, declarative domain-
specific languages SPL and

P

-SPL and a rigorous rewriting framework. Opti-
mization includes various forms of parallelization. Even though Spiral provides
complete automation, its generated libraries run often faster than any existing
hand-written code.

Key words: Linear transform, discrete Fourier transform, FFT, domain-specific
language, program generation, rewriting, matrix algebra, automatic performance
tuning, multithreading, SIMD vector instructions

1 Introduction

The advent of mainstream parallel platforms has made the development of high per-
formance numerical libraries extremely difficult. Practically every off-the-shelf com-
puter has multiple processor cores, SIMD vector instruction sets, and a deep memory
hierarchy. Compilers cannot optimize numerical code efficiently, since the necessary
code transformations often require domain knowledge that the compiler does not have.
Consequently, the library developer is forced to write multithreaded code, use vector
instructions through C language extensions or assembly code, and tune the algorithm to
the memory hierarchy. Often, this process is repeated once anew platform is released.
Automating high performance library development is a goal at the core of computer
science.

Some advances have been made towards this goal, in particular in two performance-
critical domains: linear algebra and linear transforms. One example is FFTW [1], a
widely used library for the discrete Fourier transform (DFT). FFTW partially auto-
mates the development process, by using a special “codelet generator” [2] to generate
code for small fixed size transform functions, called “codelets”. However, all top-level
recursive routines are still hand-developed and vectorization and parallelization are also
performed manually.

⋆ This work was supported by NSF through awards 0325687, 0702386,by DARPA through the
DOI grant NBCH1050009 and the ARO grant W911NF0710416, and byan Intel grant.

2 Yevgen Voronenko, Franz Franchetti, Fréd́eric de Mesmay, and Markus Püschel

We demonstrate Spiral, a system which takes domain-specificsource code genera-
tion to the next level, bycompletely automating the library development process. Spiral
enables the generation of theentire library, similar to FFTW, including the necessary
codelet generator, given only a specification (in a domain-specific language) of the re-
cursive algorithms that the library should use. Further, the library is vectorized and
parallelized for highest performance. These capabilitiesextend our earlier work [3].

Even though Spiral achieves complete automation, the runtime performance of its
generated libraries is often faster than any existing human-written code.

The framework underlying Spiral is built on two mathematical domain-specific lan-
guages, called SPL [4] and

∑

-SPL [5]. These languages are derived from matrix al-
gebra and used to represent and manipulate algorithms usingrewriting systems. The
rewriting is used to generate algorithm variants, to automatically parallelize [6] and
vectorize [7] algorithms, and to discover and generate the library structure [8]. The lat-
ter includes the set of mutually recursive functions that comprise the library, and the set
of required codelets.

2 Background

A linear transform is a matrix-vector multiplicationy = Mx, wherex, y are the input
and output vectors, respectively, andM is the fixed transform matrix. For example,
the DFT is given by the matrixM = DFTn =

[

ωkℓ
n

]

0≤k,ℓ<n
, with complexωn =

e−2πi/n.
SPL. Many fast Fourier transform algorithms (FFTs) exist, and can be represented

as factorizations ofDFTn into products of structured sparse matrices [9]. This rep-
resentation forms the core of Spiral’s domain-specific mathematical language SPL [4].
For example, the Cooley-Tukey FFT is a divide-and-conquer algorithm that forn = km

can be written as

DFTn = (DFTk ⊗Im)Dn,m(Ik ⊗ DFTm)Ln
k . (1)

Evaluatingy = DFTn x by successively multiplyingx with factors of (1) reduces
the overall arithmetic cost. Above,In is then × n identity matrix,Dn,m is a diagonal
matrix, andLn

k is a stride permutation matrix, which precise form is irrelevant here.
Most important in this formalism is the tensor (or Kronecker) product⊗ of matrices,
defined as

A ⊗ B = [akℓ · B]k,ℓ , A = [akℓ]k,ℓ.

Tensor products of the formA⊗I andI⊗A are special, because they naturally express
loops with independent iterations and special data layouts.

(1) is called abreakdown rule in Spiral [3], it is best understood by visualizing
the nonzero pattern of the factor matrices, done here fork = m = 4. In the leftmost
factor, all the 1st, 2nd, . . . ,mth, entries of the small diagonals constitute oneDFTk,
respectively.

DFTn DFTk ⊗Im T n

m
Ik⊗DFTm Ln

k

stride k

stride 1

to=
(2)

System Demonstration of Spiral 3

Recursive application of (1) for a two-powern = 2t yields anO(n log(n)) algorithm,
terminated byDFT2, which is computed by definition. For prime sizes other FFT
algorithms are needed. Note that SPL is declarative: only the structure of the algorithm
is described; not how exactly it is computed.

P

-SPL . In order to generate looped code, we developed a lower-levelrepresenta-
tion, called

P

-SPL [5].
P

-SPL like SPL is a structured sparse matrix factorization,
however, it breaks down tensor products into iterative sumsof products of smaller, rect-
angular matrices. Iterative sums serve as explicit representation of loops.

For example, ifA is n × n:

Ik ⊗ A =

[

A
.. .

A

]

=

[

A
]

+ · · · +

[

A

]

= S0 AG0 + · · · + Sk−1 AGk−1 =

k−1
∑

j=0

Sj AGj ,

Gj = [In] (In in jth block), Sj = G⊤
j .

P

-SPL admits several optimizations not possible with SPL, inparticular it enables
the merging of tensor products (loops) with permutations, which converts them into a
readdressing of the input data.

3 Library Generation

The library generation process in Spiral is shown in Fig. 1. The input to the system
is a set of transforms and associated breakdown rules. For example, it could be just
DFTn and (1). The process has two stages, library structure and library target, which
we explain next. The output is the library implemented in C++.

Library structure. One main goal of thelibrary structure stage is to determine the
minimum set of mutually recursive functions that computes the given transforms. We
call this set therecursion step closure, and each function is called arecursion step. Each
recursion step is represented by a

P

-SPL formula. The original transform specification
DFTn is also a (trivial)

P

-SPL formula and a recursion step.
This stage generates formulas and optimizes them using rewrite rules, which among

other things perform loop merging, vectorization and parallelization.
When a breakdown rule is applied to a transform it decomposes the transform into

smaller transforms. Even if the smaller transforms are still DFTs (as in (1)), the
P

-SPL
optimizations will merge these DFTs with additional operations (e.g. strided data loads
and stores, scaling, etc.) thus changing the interface and creating new types of recursion
steps. Breakdown rules applied to these new steps may spawn others. This process is
continued until we find a finite set of mutually recursive recursion steps. This set is the
recursion step closure.

As an example, Fig. 2 shows the recursion step closure generated for the DFT with
breakdown rule (1). Four recursion steps are needed and the arrows capture the associ-
ated call graph.

In addition to the general size implementation of recursionsteps that invoke other
recursion steps, the library structure stage also generates implementations for a number

4 Yevgen Voronenko, Franz Franchetti, Fréd́eric de Mesmay, and Markus Püschel

Fig. 1. Library generation process in Spiral

1: DFT∗

2: S(h∗→∗

∗,1)DFT∗ G(h∗→∗

∗,∗)

3: S(h∗→∗

∗,∗)DFT∗ diag
`

pre(∗∗→C)
´

G(h∗→∗

∗,∗)

4: S(h∗→∗

∗,1)DFT∗ diag
`

pre(∗∗→C)
´

G(h∗→∗

∗,∗)

Fig. 2. Recursion step closure forDFTn, generated from (1), represented as a call graph. For
readability, we replace all parameters of

P

-SPL formulas by “*”.

of small fixed recursion steps. Each suchbase case is equivalent to a codelet in FFTW.
The number of recursion step types with base cases is equivalent to the number of
codelet types in FFTW. As Spiral discovers the codelet typesautomatically, it readily
obtains the codelet generator, which becomes a call to the

P

-SPL compiler on the
appropriate

P

-SPL formula with the known transform size inserted.
Library target. In this stage, the recursion step closure and

P

-SPL implementa-
tions are mapped to the target language C++. This stage must take care of generating

System Demonstration of Spiral 5

auxiliary initialization code, which allocates temporarybuffers, precomputes the nec-
essary constants, and more.

The system can be used to generate code which extends an existing library. In this
case, the auxiliary code must follow the specific library conventions, for example, for
memory management.

After the initial code is generated, it is also optimized using a combination of rewrite
rules and traditional compiler optimizations, such as constant propagation, common
subexpression elimination, and loop unrolling.

Performance.The performance of two example libraries, generated using Spiral,
are shown in Fig. 3 and compared to FFTW and the commercial Intel library IPP. We
observe that together with complete automation, we also achieve the highest perfor-
mance.

4 Demonstration

We will demonstrate several key components of Spiral, including a live run of generat-
ing a fully vectorized and parallelized DCT4 library. In detail, we will show:

– An example of formula generation and formula rewriting;
– Generation of straightline and looped code from a sample

P

-SPL formula;
– An example of code rewriting;
– Generation of the recursion step closure;
– Compilation of the recursion step closure into a library implementation.

5 Conclusions

Automating high performance library development is a problem at the core of computer
science. We demonstrate a system that achieves this goal forthe domain of linear trans-
forms. The system is based on a set of techniques from different disciplines including
linear algebra, algorithms, programming languages, generative programming, rewriting
systems, and compilers. Properly applied, these techniques makes high-performance
library generation feasible, efficient, and rigorous.

References

1. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3.Proceedings of the IEEE
93(2) (2005) 216–231 special issue on ”Program Generation, Optimization, and Adaptation”.

2. Frigo, M.: A fast Fourier transform compiler. In: Proc. Programming Languages Design and
Implementation (PLDI). (1999) 169–180

3. P̈uschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M.,Singer, B.W., Xiong, J.,
Franchetti, F., Gǎcić, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRAL:
Code generation for DSP transforms. Proceedings of the IEEE93(2) (2005) 232–275

4. Xiong, J., Johnson, J., Johnson, R., Padua, D.: SPL: A language and compiler for DSP al-
gorithms. In: Proc. Programming Languages Design and Implementation (PLDI). (2001)
298–308

6 Yevgen Voronenko, Franz Franchetti, Fréd́eric de Mesmay, and Markus Püschel

0

2

4

6

8

10

12

4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k

FFTW 3.2a

Intel IPP 5.2

Generated library

input size

Discrete Fourier transform (DFT)
Performance [Gflop/s]

0

2

4

6

8

4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k

FFTW 3.2a

Generated library

input size

Discrete cosine transform 4 (DCT-4)
Performance [Gflop/s]

Fig. 3. Performance of automatically generated libraries compared to hand-written libraries
(FFTW uses generated code for small fixed size transforms). Doubleprecision, using SSE2 and
up to 2 threads. Platform: dual-core 3 GHz Intel Xeon 5160 processorwith 4 MB of L2 cache
running Linux. Generated libraries are in C++ and are compiled with Intel C/C++ Compiler 10.1.

5. Franchetti, F., Voronenko, Y., Püschel, M.: Loop merging for signal transforms. In: Proc. Pro-
gramming Languages Design and Implementation (PLDI). (2005) 315–326

6. Franchetti, F., Voronenko, Y., Püschel, M.: FFT program generation for shared memory: SMP
and multicore. In: Proc. Supercomputing. (2006)

7. Franchetti, F., Voronenko, Y., Püschel, M.: A rewriting system for the vectorization of signal
transforms. In: Proc. High Perf. Computing for Computational Science (VECPAR). (2006)

8. Voronenko, Y.: General Size Library Generation for Signal Transforms. PhD thesis, Depart-
ment of Electrical and Computer Eng., Carnegie Mellon University (2008) In preparation.

9. Van Loan, C.: Computational Framework of the Fast Fourier Transform. SIAM (1992)

