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Abstract. Feature-Oriented Software Development (FOSD) provides a multitude
of formalisms, methods, languages, and tools for building variable, customizable,
and extensible software. Along different lines of research, different notions of
a feature have been developed. Although these notions have similar goals, no
common basis for evaluation, comparison, and integration exists. We present a
feature algebra that captures the key ideas of feature orientation and provides
a common ground for current and future research in this field, in which also
alternative options can be explored.

1 Introduction

Feature-Oriented Software Development (FOSD) is a paradigm that provides formalisms,
methods, languages, and tools for building variable, customizable, and extensible soft-
ware. The main abstraction mechanism of FOSD is the feature. A feature reflects a
stakeholder’s requirement and is an increment in functionality; features are used to
distinguish between different variants of a program or software system [1]. Feature
composition is the process of composing code associated with features consistently.

Research along different lines has been undertaken to realize the vision of FOSD [1–
5]. While there are the common notions of a feature and feature composition, present
approaches use different techniques, representations, and formalisms. For example,
AspectJ1 and AHEAD2 can both be used to implement features, but they provide different
language constructs: on the one hand pointcuts, advice, and inter-type declarations, and
on the other hand collaborations and refinements [5]. A promising way of integrating
the separate lines of research is to provide an encompassing abstract framework that
captures many of the common ideas like introductions, refinements, or quantification
and hides (what we feel are) distracting differences.

We propose a first step toward such a framework for FOSD: a feature algebra.
Firstly, the feature algebra abstracts from the details of different programming languages
and environments used in FOSD. Secondly, alternative design decisions in the algebra,
e.g., allowing terminal composition or not, reflect variants and alternatives in concrete

1 http://www.eclipse.org/aspectj/
2 http://www.cs.utexas.edu/~schwartz/ATS.html
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programming language mechanisms. Thirdly, the algebra is useful for describing, be-
side composition, also other operations on features formally and independently of the
language, e.g., type checking [6] and interaction analysis [7]. Fourthly, the algebraic
description of a software system can be taken as an architectural view. External tools
can use the algebra as a basis for feature expression optimization [4, 8].

We introduce a uniform representation of features, outline the properties of the
algebra, and explain how the algebra models the key concepts of FOSD.

2 What is a Feature?

Different researchers have been proposing different views of what a feature is or should
be. A definition that is common to most (if not all) work on FOSD is: a feature is a
structure that extends and modifies the structure of a given program in order to satisfy a
stakeholder’s requirement, to implement a design decision, and to offer a configuration
option. This informal definition guides our work on a formal framework of FOSD.

Typically, a series of features is composed to form a final program, which is itself a
feature. This way, a feature can be either a complete program which can be executed or
a program increment which requires further features to form a complete program.

Mathematically, we describe feature composition by the operator •, which is defined
over the set F of features. Typically, a program p (which is itself a feature) is composed
of a series of simpler features:

• : F × F → F p = fn • fn−1 • . . . • f2 • f1 (1)

The order of features in a composition matters since feature composition is not commu-
tative, and parenthesization does not matter since feature composition is associative, as
we will show.

For simplicity, we restrict feature composition such that each single feature can
appear only once in a feature expression. Multiple instances of a single feature would be
possible but do not add anything new.

3 The Structure of Features

We develop our model of features in several steps and – even though the algebra is
language-independent – explain the details of the algebra and its implications by means of
Java code. First, a simple form of features, which we call basic features, are introduced as
trees that describe the collection of elementary components of an artifact, such as classes,
fields, or methods in Java (Sec. 3–5.1). In the next step, we introduce modifications that
act as rewrites on basic features (Sec. 5.2). Finally, full features are defined as tuples,
called quarks, consisting of both, a basic feature and modifications (Sec. 6). Quarks
can be composed to describe complex features in a structured way as compositions of
sequences of simpler features.

A basic feature consists of one or more source code artifacts, each of which can
have an internal structure. We model the structure of a basic feature as a tree, called
feature structure tree (FST), that organizes the feature’s structural elements, e.g., classes,



fields, or methods, hierarchically. Figure 1 depicts an excerpt of the Java implementation
of a feature Base and its representation in form of an FST. One can think of an FST
as a stripped-down abstract syntax tree; however, it contains only the information that
is necessary for the specification of the structure of a basic feature. The nature of this
information depends on the degree of granularity at which software artifacts shall be
composed, as we discuss below.

1 package util;
2 c l a s s Calc {
3 i n t e0=0, e1=0, e2=0;
4 void enter( i n t v) { e2=e1; e1=e0; e0=v; }
5 void clear() { e0=e1=e2=0; }
6 String top() { re turn String.valueOf(e0); }
7 }

enterclear

top
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Fig. 1. Implementation and FST of the feature Base.

For example, the FST we use to represent Java code contains nodes that denote pack-
ages, classes, interfaces, fields, and methods, etc. It does not contain information about
the internal structure of methods, etc. A different granularity would be to represent only
packages and classes but not methods or fields as FST nodes, or to represent statements
or expressions as well [9]. However, this decision does not affect our description of the
algebra.

Furthermore, a name3 and type information is attached to each node of an FST. This
helps to prevent the composition of incompatible nodes during feature composition, e.g.,
the composition of two classes with different names, or of a field with a method of the
same name.

The rightmost child of a node represents the topmost element in the lexical order
of an artifact, e.g., the first member in a class is represented by the rightmost child
node. Note that in the chosen granularity for Java the order could be arbitrary, but this is
different at a finer granularity (the order of statements matters) and may differ in other
languages (the order of XHTML elements matters).

4 Feature Composition

How does the abstract description of a feature composition g • f map to the concrete
composition at the structural level? That is, how are FSTs composed in order to obtain a
new FST? Our answer is by FST superimposition [3, 10–12].

4.1 Tree Superimposition

The basic idea is that two trees are superimposed by superimposing their subtrees,
starting from the root and proceeding recursively. Two nodes are superimposed to form

3 Depending on the language, a name could be a simple identifier, a signature, etc.



a new node (a) when their parents have been superimposed previously or both are
root nodes and (b) when they have the same name and type. If two nodes have been
superimposed, the whole process proceeds with their children. If not, they are added as
separate child nodes to the superimposed parent node. This recurses until all leaves have
been processed.

According to the semantics of FSTs (see Sec. 3), the children are superimposed
beginning with the rightmost node preserving the order in the superimposed FST; nodes
that have not been superimposed are added to the left.

Figure 2 illustrates the process of FST superimposition; our feature Base is superim-
posed with a feature Add. The result is a new feature, which we call AddBase. Note that
the new method add appears to the left in AddBase.
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Fig. 2. An example of FST superimposition (Add • Base = AddCalc).

4.2 Terminal and Non-Terminal Nodes

Independently of any particular language, an FST is made up of two different kinds of
nodes:
Non-terminal nodes are the inner nodes of an FST. The subtree rooted at a non-terminal

node reflects the structure of some implementation artifact of a feature. The artifact
structure is regarded as transparent (substructures are represented by child nodes)
and is subject to the recursive superimposition process. A non-terminal node has
only a name and a type, i.e., no superimposition of additional content is necessary.

Terminal nodes are the leaves of an FST. Conceptually, a terminal node may also be
the root of some structure, but this structure is regarded as opaque in our model
(substructures are not represented by child nodes). The content of a terminal is not
shown in the FST. A terminal node has a name, a type, and usually some content.

While superimposition of two non-terminals continues the recursive descent in the FSTs,
the superimposition of two terminals terminates the recursion and requires a special
treatment that may differ for each type of node.

Let us illustrate these concepts for Java. In Java, packages, classes, and interfaces are
represented by non-terminals. The implementation artifacts they contain are represented
by child nodes, e.g., a package contains several classes and classes contain inner classes,
methods, and fields. Two compatible non-terminals are superimposed by superimposing
their child nodes, e.g., two packages with equal names are merged into one package that
contains the superimposition of the child elements (classes, interfaces, subpackages)



of the two original packages. In contrast, Java methods, fields, imports, modifier lists,
and extends, implements, and throws clauses are represented by terminals (the
leaves of an FST), at which the recursion terminates. For each type of terminal node
there needs to be a language-specific rule for superimposing their content.

4.3 Superimposition of Terminals

In order to superimpose terminals, each terminal type has to provide its own rule for
superimposition. Here are four examples for Java and similar languages:

– Two methods can be superimposed if it is specified how the method bodies are
superimposed (e.g., by overriding and calling the original method by using the
keywords original [13] or Super [3] inside a method body). It is a question of
programming style whether to allow or disallow replacement of method bodies (i.e.,
overriding without calling the original method).

– Two fields are superimposed by replacing one initializing variable declaration with
the other or by requiring that at most one of the fields may have an initial value.

– Two implements, extends, or throws clauses are superimposed by concate-
nating their entries and removing duplicates.

– Two modifier lists are superimposed by a specific algorithm, e.g., public replaces
private, but not vice versa; a modifier list containing static superimposed
with one not containing static is an error; and so on.

Terminal types that do not provide a rule cannot be composed – an error is displayed.

4.4 Discussion

Superimposition of FSTs requires several properties of the language in which the ele-
ments of a feature are expressed:
1. The substructure of a feature must be hierarchical, i.e., a general tree.
2. Every structural element of a feature must have a name and type that become the

name and type of the node in the FST.
3. An element must not contain two or more direct child elements with the same name

and type.
4. Elements that do not have a hierarchical substructure (terminals) must provide

superimposition rules, or cannot be superimposed.
These constraints are usually satisfied by contemporary programming languages. But
also other (non-code) languages align well with them [3, 14]. Languages that do not
satisfy these constraints are not “feature-ready”, since they do not provide sufficient
structural information. However, it may be possible to make them so by extending them
with an overlaying module structure [14].

FST superimposition is associative only if the superimposition of the individual sub-
trees is associative and, to this end, if merging terminal content is associative. In order to
retain associativity, we add a further constraint: superimposition rules of terminals must
be associative. This constraint, too, is typically satisfied by contemporary programming
languages.



5 Feature Algebra

Our feature algebra models features and their composition on top of FSTs. The elements
of an algebraic expression correspond to the elements of an FST. The manipulation of an
expression implies a manipulation of one or more FSTs. The changes of an algebraic
expression are propagated to the associated feature implementations at code level.

An important design decision is that there is a one-to-one correspondence between
an FST and its algebraic expression.4 That is, the expression is a formal means for
reasoning about the FST. Thus, FSTs can be converted, without information loss, to
algebraic expressions and vice versa. Our laws for algebraic expressions describe what
is allowed and disallowed when manipulating FSTs.

5.1 Introductions

For the purpose of expressing basic features and their composition, we use the notion of
an atomic introduction. An atomic introduction is a constituent of the implementation
of a basic feature that corresponds to a node in the FST, e.g., a method, field, class, or
package. When composing two basic features, introductions are the elementary units of
difference of one feature composed with another feature. A basic feature is represented
by the superimposition of all paths / atomic introductions in its FST. We model the
superimposition of FSTs via the operation of introduction sum.

Introduction Sum

Introduction sum ⊕ is a binary operation defined over the set I of introductions. The
result of an introduction sum is again an (non-atomic) introduction. Thus, an FST can be
represented in two ways: by the individual (atomic) summands and by a metavariable
that represents the sum:

⊕ : I × I → I i2 ⊕ i1 = i (2)

During composition, for each metavariable i, the individual atomic summands i2 ⊕ i1
are preserved. That is, introduction sum retains information about the summands, which
is useful for expression manipulation and code generation. Since the nodes of an FST
are unique, the atomic summands of a sum of introductions are unique as well, as we
will explain shortly.

In order to process algebraic expressions of features, we flatten the hierarchical
structure of FSTs. That is, we convert the tree representation of an FST into a set of
atomic introductions, one per FST node. But, in order not to lose information about
which structural elements contain which other elements, we preserve the paths of the
FST nodes.

Specifically, we use a simple prefix notation to identify an atomic introduction,
similar to fully qualified names in Java: the name of the FST node is prefixed with the

4 A one-to-one correspondence for Java was only possible by ordering the children of a node
based on their lexical order (see Sec. 3).



name of all its parent nodes, separated by dots.5 The leftmost prefix contains the name of
the feature an introduction belongs to, followed by an ‘::’, although, for brevity, the prefix
does not appear in the FST. Our feature Base (cf. Fig. 2) is denoted in path notation as
follows:

Prog = Base ::util.Calc.top⊕Base ::util.Calc.clear ⊕Base ::util.Calc.enter
⊕ Base ::util.Calc.e2⊕Base ::util.Calc.e1⊕Base ::util.Calc.e0
⊕ Base ::util.Calc⊕Base ::util

The leftmost leaves of an FST become the leftmost summands of its introduction sum.
Note that not every sum represents a valid FST. A well-formedness rule is, that for every
dot-separated prefix of a summand, there is a summand with the same name, e.g., the
prefix Base ::util of Base ::util.Calc is itself a summand.

Two features are composed by adding their atomic introductions. Since each atomic
introduction preserves the path of the corresponding FST node, it is always known
from which feature an introduction was added during the manipulation of an algebraic
expression, e.g., Base in Base ::util.Calc. Furthermore, we can convert each algebraic
expression (containing a sum of introductions with prefixes) straightforwardly back
to a tree, either to the original FSTs or to a new composed FST. When converting an
introduction sum into a composed FST, it is associated with a new (composed) feature.
Two atomic introductions with the same fully qualified name, that belong to different
features, are composed via superimposition, as explained informally in Section 4.

For example, the introduction sum that represents the non-terminal superimposition
of Figure 2 is as follows:

Add ::util.Calc.add⊕ . . . ⊕ Base ::util.Calc.top⊕Base ::util.Calc.clear ⊕ . . .

It follows that the above sum represents a composed FST consisting of a package util
with a class Calc that contains four methods (including add) and three fields.

For example, the superimposition of the two methods enter is represented in the
corresponding introduction sum as:

Count ::util.Calc.enter ⊕ . . . ⊕ Base ::util.Calc.enter ⊕ . . .

This sum represents a composed FST (only an excerpt is shown) consisting of a package
util with a class Calc that contains three methods and three fields, and the bodies of
the two enter methods are merged (similarly for clear).

Algebraic Properties

Introduction sum ⊕ over the set I of introductions forms a non-commutative idempotent
monoid (I,⊕, ξ):6

5 To be specific, the fully qualified name of an atomic introduction must also include the type of
each path element. For lack of space and because there are no ambiguities in our examples, we
omit the type information here.

6 All standard definitions of algebraic structures and properties are according to Hebisch and
Weinert [15].



Associativity: (k ⊕ j)⊕ i = k ⊕ (j ⊕ i) — Introduction sum is associative because
FST superimposition is associative. This applies for terminals and non-terminals.

Identity: ξ⊕ i = i⊕ ξ = i — ξ is the empty introduction, i.e., an FST without nodes.
Non-commutativity: Since we consider superimposition of terminals, introduction sum

is not generally commutative. We consider the right operand to be introduced first,
the left one is added to it.

Idempotence: i⊕ j ⊕ i = j ⊕ i — Only the rightmost occurrence of an introduction
i is effective in a sum, because it has been introduced first. That is, duplicates of i
have no effect, as stressed at the end of Section 2. We refer to this rule as distant
idempotence. For j = ξ, direct idempotence (i⊕ i = i) follows.

5.2 Modification

Beside superimposition also other techniques for feature composition have been pro-
posed, most notably composition by quantification [5,16]. The idea is that, when express-
ing the changes that a feature causes to another feature, we specify the points at which
the two features are supposed to be composed. This idea has been explored in depth
in work on subject-oriented programming [17] and aspect-oriented programming [18].
The process of determining where two features are to be composed is called quantifi-
cation [19]. In the remainder, we distinguish between two approaches of composition:
composition by superimposition and composition by quantification. Our definition of
feature composition (•) incorporates both (see Sec. 6).

In order to model composition by quantification, we introduce the notion of a
modification. A modification consists of two parts:
1. A specification of the nodes in the FST at which a feature affects another feature

during composition.
2. A specification of how features are composed at these nodes.

In the context of our model, a modification is performed as an FST walk that determines
the nodes which are being modified and applies the necessary changes to these nodes.
The advantage of composition by quantification is that the specification of where a
program is extended is declarative. Querying an FST can return more than one node at a
time. This allows us to specify the modification of a whole set of nodes at once without
having to reiterate it for every set member.

Note that composition by superimposition and composition by quantification are
siblings. Quantification enables us to address parts of a feature more generically than
superimposition. But, once it is known which points have to be changed, the two kinds
of composition become equivalent. We have observed their conceptual duality before,
but at the level of two concrete programming techniques [5]. The feature algebra makes
it explicit at a more abstract level.

Semantics of Modification

A modification m consists of a query q that selects a subset of the atomic introductions
of an introduction sum and a definition of change c that will be used to effect the desired
changes:

m = (q, c) (3)



Query. A simple query can be represented by an FST in which the node names may
contain wildcards.7 For example, the query q with the search expression ‘util.Calc.∗’
applied to our example would return the sum of all introductions that are members of the
class Calc. This motivates the following definition.

Formally, a query applied to an atomic introduction returns either the same introduc-
tion or the empty introduction:

q(i) =

{
i, when i is matched by q
ξ, when i is not matched by q (4)

A query applied to an introduction sum queries each summand:

q(in ⊕ . . .⊕ i2 ⊕ i1) = q(in)⊕ . . .⊕ q(i2)⊕ q(i1) (5)

Definition of change. An introduction i selected by a query is modified according to
the modification’s definition of change c; c is a rewrite that is able to apply two kinds
of changes: (a) it can add a new child to a given non-terminal and (b) it can alter the
content of a terminal; the application of c distributes over introduction sum:

c(in ⊕ . . .⊕ i2 ⊕ i1) = c(in)⊕ . . .⊕ c(i2)⊕ c(i1) c(ij) = τc(ic, ij)⊕ ij (6)

The atomic introduction ic represents a new child or the change applied to a terminal. It
has to be provided by the programmer in the form of a generic piece of code or some
other kind of specification. The function τc takes the generic definition of change ic and
the atomic introduction ij to be changed and generates the final non-generic definition
of change. That is, τc eliminates the genericity of ic by substituting missing parts with
details of the program to which c is applied.

For example, suppose a feature Count applies two modifications m1 and m2 to the
introductions of Base, with c1 adding a new field and c2 altering the method enter:

c1(Base ::util.Calc) = τc1(count, util.Calc)⊕Base ::util.Calc
= Count ::util.Calc.count⊕Base ::util.Calc

c2(Base ::util.Calc.enter) = τc2(enter, util.Calc.enter)⊕Base ::util.Calc.enter
= Count ::util.Calc.enter ⊕Base ::util.Calc.enter

Of course, applying c1 and c2 to a different feature (say Base2) results in a different
program. Since change is expressed as an introduction sum, a modification cannot delete
nodes. The changes a feature can make via modifications are similar to the ones possible
via introduction sum, but expressed differently.

Modification Application and Composition

For simplicity, we usually hide the steps of querying and applying the changes. We
define an operator modification application (�) over the set M of modifications and

7 In practice, queries with regular expressions or queries over types might be useful.



the set I of introductions. A modification applied to an introduction returns either the
introduction again or the introduction that has been changed:

� :M × I → I m� i = (q, c)� i =
{
c(i), q(i) = i ∧ i 6= ξ
i, q(i) = ξ

(7)

A consequence of this definition is that a modification cannot extend the empty introduc-
tion, i.e., the empty program. This is different from introduction sum which we can use
to extend empty programs. While this fact is just a result of our definition, it reflects what
contemporary languages that support quantification are doing, e.g., AspectJ’s advice and
inter-type declarations cannot extend the empty program.

A modification is applied to a sum of introductions by applying it to each introduction
in turn and summing the results:

m� (in ⊕ . . .⊕ i2 ⊕ i1) = (m� in)⊕ . . .⊕ (m� i2)⊕ (m� i1) (8)

The successive application of changes of a modification to an introduction sum implies
the left distributivity of � over ⊕.

Furthermore, the operator � is overloaded.8 With two modifications as arguments, it
denotes the operation modification composition. The semantics of modification composi-
tion is that the right operand is applied to an introduction, and then the left operand to
the result:

� :M ×M →M (m2 �m1)� i = m2 � (m1 � i) (9)

Here, the leftmost of the four occurrences of � is modification composition, all others
are modification application.

A fully precise definition of modification composition requires an elaborate construc-
tion for combining the queries involved. Due to lack of space, we refer the reader to a
technical report [20, pp. 14ff].

Using modification composition, a series of modifications can be applied to an
introduction step by step:

(mn � . . .�m2 �m1)� i = mn � (. . .� (m2 � (m1 � i)) . . .) (10)

Note that the application of a modification may add new introductions that can be
changed subsequently by other modifications. But, as prescribed by Equation 6, it is
not possible to change an introduction sum such that some introductions are removed
and the modifications applied subsequently cannot affect them anymore. This design
decision is justified by the design of current languages that support feature composition,
e.g., AspectJ’s aspects or AHEAD’s refinements [3] cannot remove members or classes.

Algebraic Properties

We define two modifications m1 and m2 as equivalent if they act identically on all
introductions, i.e., if m1 � i = m2 � i for all i. In the following, we write M also for

8 We reuse the symbol� because introduction sum and modification application and composition
become all integrated into one algebraic structure with identical operator symbols for application
and composition (see Sec. 5.3).



the set of equivalence classes of modifications and � for the corresponding induced
operation on them. This induces a non-commutative non-idempotent monoid (M,�, ζ):
Associativity: (o�n)�m = o�(n�m) — Modification composition is associative

by the definition of modification application.
Identity: ζ �m = m� ζ = m — ζ is the equivalence class of empty modifications.

ζ does not change a given introduction.
Non-commutativity: Modification composition is not commutative because introduc-

tion sum is not commutative.
Non-idempotence: Although the changes made by a modification reduce to introduc-

tion sum (cf. Eq. 6), and introduction sum is distantly idempotent, the consecutive
application of several modifications is not idempotent. The reason is that a modifica-
tion m can add an introduction that is selected and changed by itself when applied
repeatedly.

5.3 Introductions and Modifications in Concert

In order to describe feature composition, our algebra integrates our two algebraic struc-
tures (I,⊕, ξ) and (M,�, ζ) by means of the operation of modification application.

(I,⊕, ξ) induces a non-commutative idempotent monoid and (M,�, ζ) induces a
non-commutative non-idempotent monoid. A notable property of (I,⊕, ξ) is that it is a
semimodule over the monoid (M,�, ζ) since the distributive and associative laws (8)
and (9) hold. In fact, the operation of modification application induces the semimodule
on top of the individual operations introduction sum and modification composition.
A semimodule over a monoid is related to a vector space but weaker (modification
application plays the role of the scalar product) [15]. In a vector space, there would
be an operation of modification sum that adds modifications similarly to introduction
sum. In prior work, we have explored and integrated modification sum into the feature
algebra [20] but, due to lack of space, we omit its description here. Moreover, the additive
and multiplicative operations in vector spaces are commutative and there are inverse
elements with respect to addition and multiplication. Nevertheless, the semimodule
property guarantees a pleasant and useful flexibility of feature composition, which is
manifested in the associativity and distributivity laws.

6 The Quark Model

So far, we have introduced two sets (I and M ) and three operations (⊕ : I × I → I ,
� : M ×M → M , and � : M × I → I) for feature composition. Now we integrate
them in a compact and concise notation. This way, we allow full features that involve
both introductions and modifications. Furthermore, we need to distinguish between local
and global modifications. For this purpose, we introduce the quark model.9

9 The idea and name of the quark model are due to Don Batory. Subsequently, the model was
developed further in cooperation with us [20]. The term ‘quark’ was chosen as an analogy to
the physical particles in quantum chromodynamics. Originally, quarks have been considered to
be fundamental, but newer theories, e.g., preon or string theory, predict a further substructure.



A quark is a triple that represents a full feature, which consists of a composition g
of global modifications, a sum i of introductions, and a further composition l of local
modifications:

f = 〈g, i, l〉 = 〈gj � . . .� g1, ik ⊕ . . .⊕ i1, lm � . . .� l1〉 (11)

Here, i is the introduction sum of feature f and represents an FST; l and g contain the
modifications that the feature f can make. A basic feature is represented in the quark
model as a triple 〈ζ, i, ζ〉 where ζ is the empty modification. The application of quark q
to introduction i is defined as the composition q • 〈ζ, i, ζ〉.

When two quarks are composed, a new quark is constructed following certain com-
position rules. The new introduction part of the quark is constructed using modification
application and introduction sum, while the new modification parts result by modification
composition. We distinguish between two kinds of modifications because there are two
options of using modifications when composing quarks: (a) Local modifications (l) can
affect only already present introductions of features. (b) Global modifications (g) can
affect also introductions that are just being constructed during the composition. For
quarks that represent basic features (g and l are empty) both definitions (a) and (b) yield
〈ζ, i2, ζ〉 • 〈ζ, i1, ζ〉 = 〈ζ, i2 ⊕ i1, ζ〉, which in retrospect justifies our use of • also for
FST superimposition in Section 4.

The difference between local and global modifications requires a special treatment
of composition of full quarks. When composing a sequence of quarks, we can apply the
local modifications immediately. We cannot apply the global modifications immediately.
We have to wait until all introductions and local modifications in a series of quarks have
been composed; only then we can apply all global modifications. So, we generalize the
binary operator • to an n-ary one:

fn • . . . • f2 • f1 = 〈gn, in, ln〉 • . . . • 〈g2, i2, l2〉 • 〈g1, i1, l1〉
= 〈gn � . . .� g1, (gn � . . .� g1)�

(in ⊕ (ln � (. . . (i2 ⊕ (l2 � i1))))), ln � . . .� l1〉 (12)

This does not mean that the associativity properties of introduction sum and modification
composition are useless. Associativity is necessary to make the application of local
modifications to sums of introductions work smoothly.

7 Related Work

Lopez-Herrejon, Batory, and Lengauer model features as functions and feature composi-
tion as function composition [7, 21]. They distinguish between introductions and advice,
which correspond roughly to our introductions and modifications. However, in their work
there is no semantic model that defines precisely what introductions and advice are. In
our feature algebra, we define introductions in terms of FSTs and modifications in terms
of tree walks. This enables us to bridge the gap between algebra and implementation.

Möller et al. have developed an algebra for expressing software and hardware vari-
abilities in the form of features [22]. This has recently been extended [23] to express a



limited form of feature interaction. However, their algebra does not consider the structure
and implementation of features.

There are some calculi that support feature-like structures and composition by
superimposition [24–29]. These calculi are typically tailored to Java-like languages and
emphasize the type system. Instead, our feature algebra enables reasoning about feature
composition on a more abstract level. We emphasize the structure of features and their
static composition, independently of a particular language.

Several languages support features and their composition by superimposition [3,
13, 30–32]. Our algebra is a theoretical backbone that underlies and unifies all these
languages. It reveals the properties a language must have in order to be feature-ready.
Several languages exploit the synergistic potential of superimposition and quantifica-
tion [5,16,17,32]. The feature algebra allows us to study their relationship and integration,
independently of a specific language.

Features are implemented not only by source code. Some tools support the feature-
based composition of non-source code artifacts [3,14,33]. Our algebra is general enough
to describe a feature containing these non-code artifacts since all their representations
can be mapped to FSTs.

Finally, we have implemented a tool, called FSTComposer, that implements feature
composition as described by our algebra [34]. With it, we have been able to demonstrate
that such different languages as Java, XML, or Bali can be treated uniformly and
the composition scales to medium-sized software projects. The integration of a new
language requires only marginal effort because most information can be inferred from
the language’s grammar.

8 Conclusions & Perspectives

We have presented a model of FOSD in which features are represented as FSTs and
feature composition is expressed by tree superimposition and tree walks. This reflects the
state of the art in programming languages and composition models that favor superimpo-
sition and quantification. Our algebra describes precisely what their properties are and
how such concepts from FOSD languages like aspects, collaborations, or refinements
can be integrated. Though some of these approaches were integrated before in concrete
languages, e.g., in FeatureC++ [32], aspectual feature modules [5], or Caesar [16], the
algebra integrates these approaches for the first time formally and exposes fundamental
concepts like the distinction of local vs. global modifications that prompted controversial
discussions in earlier work, e.g., [21].

Our feature algebra forms a semimodule over a monoid, which is a weaker form
of a vector space. The flexibility of this algebraic structure suggests that our decisions
regarding the semantics of introductions and modifications and their operations are not
arbitrary. With the presented configuration of our algebra, we achieve a high flexibility
in feature composition, which is manifested in the associativity and distributivity laws.

Although our algebra is quite flexible, we also made several restrictive decisions.
For example, introduction sum is idempotent and modifications are only allowed to add
children and to compose content of terminals. An advantage of an algebraic approach is
that we can evaluate the effects of our and alternative decisions directly by examining the



properties of the resulting algebra. For example, if we forbid superimposition of terminals
we can achieve commutativity of feature composition. Although this design decision
might appear trivial, it is not obvious from contemporary programming languages
but rather appears to be a byproduct of integrating other language constructs. With
our formalization, such consequences become obvious and are helpful for carefully
balancing expressiveness and composition flexibility when designing a new language. In
our algebra, we decided to abandon commutativity in order to increase the expressive
power of introduction sum by including overriding. Likewise, disallowing modifications
to remove nodes from an FST guarantees that the targets of a feature remain present in a
composition. Exploring the implications of our and alternative decisions is a promising
avenue of further work.

Finally, with the feature algebra, we provide a framework for feature composition
that is independent of a concrete language. Based on this framework, we have built the
language-independent composition tool FSTComposer. Uniformity in feature composi-
tion has been a long-standing goal of FOSD [3] but, until now, feature composition tools
for new languages were usually developed ad-hoc. In future work, we will also use the
algebra for reasoning about types [6] and for interaction analysis [7] independently of
concrete language mechanisms, e.g., of AspectJ or AHEAD.
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