
Calculating invariants as coreflexive bisimulations

Luı́s S. Barbosa1, José N. Oliveira1, and Alexandra M. Silva

1 Dep. Informática, Universidade do Minho, 4700-320 Braga,Portugal,
2 Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413,NL-1098 SJ Amsterdam

Abstract. Invariants, bisimulations and assertions are the main ingredients of
coalgebra theory applied to computer systems engineering.In this paper we re-
duce the first to a particular case of the second and show how both together pave
the way to a theory of coalgebras which regards invariant predicates as types. An
outcome of such a theory is a calculus of invariants’ proof obligation discharge,
a fragment of which is presented in the paper.
The approach has two main ingredients: one is that of adopting relations as “first
class citizens” in a pointfree reasoning style; the other lies on a synergy found
between a relational construct, Reynolds’relation on functionsinvolved in the
abstraction theoremon parametric polymorphism and the coalgebraic account of
bisimulation and invariants.
In this process, we provide an elegant proof of the equivalence between two dif-
ferent definitions of bisimulation found in coalgebra literature (due to B. Jacobs
and Aczel & Mendler, respectively) and their instantiationto the classical Park-
Milner definition popular in process algebra.

Keywords: coalgebraic reasoning; proof obligations; pointfree transform; pro-
gram calculation.

1 Introduction

The widest application of computer systems in our days is that of supporting business,
the most dynamic aspect of modern society. This means that computer systems are
subject to the permanent stress of ever changing business rules, which materialize into
(either static or dynamic) properties of the underlying code.

Computer scientists regard business rules as examples of invariant properties. The
word “invariant” captures the idea that such desirable properties are to be maintained
invariant, that is, unharmed across all transactions which are embodied in the system’s
functionality.

Changing business rules has a price: the code needs to be upgraded so as to ensure
that changes are properly taken into account. How does one check this? Testing is the
most widely used technique for this purpose. But (as is well known) it does not ensure
correctness and it is highly costly. Ideally, one should be able toformally verifythat the
new invariants are enforced without running the (new) code at all.

This calls for a general theory of invariant preservation upon which one could base
such an extended static checking mechanism. And this theoryrequires a broad view of
computer systems able to take into account data persistenceand continued interaction.



2 L.S. Barbosa, J.N. Oliveira and A.M. Silva

Coalgebra theory, widely acknowledged as themathematics of state-based systems
[20], provides an adequate modeling framework for such systems. The basic insight in
coalgebraic modelling is that of representing state-basedsystems by functions of type

p : X −→ FX (1)

which, for every statex ∈ X , describe the observable effects of an elementary step in
the evolution of the system (i.e., a state transition). The possible outcomes of such steps
are captured by notationFX , where functorF acts as ashapefor the system’s interface.

Jacobs [10] identifies three cornerstones in the theory of coalgebras:invariants,
bisimilarity andassertions. About the first he writes:an important aspect of formally
establishing the safety of systems is to prove that certain crucial predicates are actually
invariants.

In this paper we develop a theory of invariant preservation whose novelty resides
in explicitly expressing invariants asbisimulations. (See section 3 and its follow up.)
The third cornerstone, assertions, is addressed in section6. Altogether, there is a cal-
culational flavour in the way we state and prove facts, which stems from the explicit
use of relational techniques, a body of knowledge often referred to as thealgebra of
programming[7].

Our starting point is Jacobs definition of an invariant for a given coalgebra [10]:

Definition 1. LetF : Sets→ Sets be a polynomial functor. Aninvariant for a coalge-
bra c : X → F(X) is a predicateP ⊆ X satisfying for allx ∈ X ,

x ∈ P ⇒ c(x) ∈ Pred(F)(P ). (2)

Pred(F)(P ) stands for thelifting of predicateP via functorF. (We will spell out the
meaning of this construct very soon.)

Our approach will be to reason about (2) via the PF-transform[16] — a transforma-
tion of first order predicate formulæ intopointfreebinary relation formulæ [7] which
will enable us to blend the concept of invariant with that of bisimulation in a quite handy
way. (In fact, we will show the former is a particular case of the latter.) Bypointfreewe
mean formulæ which are free of quantifiers and variables (points) such asx above.

Structure of the paper.The paper starts by PF-transforming definition (2), in section
2, to conclude that invariants are a special case of bisimulations (section 3). Section 4
recasts bisimulations in terms of Reynolds’ arrow combinator and resorts to its calcu-
lational power to provide elegant proofs of equivalence between three most common
definitions of bisimulation. The development of (a fragmentof) the theory of invariants
is pursued in section 5, upon a category of “predicates as types”. Moving on, section 6
illustrates how the approach proposed in this paper can be also of use to reason about
modal assertions over coalgebras. Finally, section 7 concludes and gives pointers to
related and future work.

2 Invariants PF-transformed

Our first step is to convert definition (2) into a binary relational formula. The principle
is that of PF-transforming universally quantified formulæ by applying, from right to



Calculating invariants 3

left, the definition of relational inclusion which follows,

R ⊆ S ≡ 〈∀ y, x :: y R x⇒ y S x〉 (3)

for R, S two binary relations3. In the case of (2), this means thatR will have to capture
set (predicate)P andS will have to do the same for setPred(F)(P ). One of the stan-
dard ways of encoding a setX as a binary relation is as follows: one defines a relation
ΦX such that

y ΦX x ≡ y = x ∧ x ∈ X (4)

Relations of this kind are referred to ascoreflexivesbecause they are fragments of
the identity relationid: ΦX ⊆ id. For instance, set{1, 2, 3} is captured by relation
Φ{1,2,3} = {(1, 1), (2, 2), (3, 3)}. We also need to define the binary relation composi-
tion operator

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (5)

(readR · S as ”R afterS”) and to assert a rule which will prove convenient,

(f b)R(g a) ≡ b(f◦ ·R · g)a (6)

wheref andg are functions and◦ denotes relational converse:

a(R◦)b ≡ b R a (7)

In this context, we reason:

〈∀ x :: x ∈ P ⇒ c(x) ∈ Pred(F)(P )〉

≡ { ∀-one point rule}

〈∀ y, x : y = x : x ∈ P ⇒ c(y) = c(x) ∧ c(x) ∈ Pred(F)(P )〉

≡ { ∀-trading }

〈∀ y, x :: y = x ∧ x ∈ P ⇒ c(y) = c(x) ∧ c(x) ∈ Pred(F)(P )〉

≡ { (4) twice }

〈∀ y, x :: y ΦP x ⇒ c(y) ΦPred(F)(P ) c(x)〉

≡ { rule (6) }

〈∀ y, x :: y ΦP x ⇒ y(c◦ · ΦPred(F)(P ) · c)x〉

≡ { rule (3) }

ΦP ⊆ c◦ · ΦPred(F)(P ) · c (8)

3 By y R x we mean the fact that pair(y, x) belongs toR. (Similarly for y S x.)



4 L.S. Barbosa, J.N. Oliveira and A.M. Silva

PredicatePred(F)(P ) is defined in [10] (Def. 4.1.1) by induction on the structure
of polynomialF. RegardingF as a relator4 and representingP by its coreflexiveΦP ,
Pred(F)(P ) coincides with relationFΦP . Thus we resume to (8) and calculate further:

ΦP ⊆ c◦ · FΦP · c

≡ { see (10) below}

c · ΦP ⊆ FΦP · c (9)

where the last step is justified by the first of the following laws of the relational calculus,

f · R ⊆ S ≡ R ⊆ f◦ · S (10)

R · f◦ ⊆ S ≡ R ⊆ S · f (11)

known as theshunting rules[7] 5. Note that coalgebrac complies with this rule because
it is a function.

Altogether, we arrive at (9), a quite compact version of (2).The sections which
follow will give evidence of the advantages of such a transformation.

3 Invariants are bisimulations

We move on to the second cornerstone of coalgebra theory — bisimilarity. This is based
on the concept ofbisimulationwhich is given by Jacobs [10] as follows:

Definition 2. A bisimulation for coalgebrasc : X → F(X) andd : Y → F(Y ) is a
relationR ⊆ X × Y which isclosed underc andd:

(x, y) ∈ R⇒ (c(x), d(y)) ∈ Rel(F)(R). (12)

for all x ∈ X andy ∈ Y .

X

c

��

Y
Roo

d

��
⊆

FX FY
F R

oo

X

c

��

X
ΦPoo

c

��
⊆

FX FX
F ΦP

oo

(a) (b)

This timeRel(F)(R) stands for the
relational lifting of R via functor F

which, in our relational setting, is cap-
tured by notationFR.

An exercise at all similar to the one
carried out in the previous section will
show (12) PF-transformed into

c ·R ⊆ FR · d (13)

(cf. diagram (a) above left) whereX andY are the carriers of coalgebrasc and d,
respectively. By comparing (13) against (9) we conclude that invariants arespecialcases
of bisimulations: exactly those which are coreflexive relations, cf. diagram (b).

4 The concept of arelator [5] extends that of afunctor to relations:F A describes a parametric
type whileFR is a relation fromF A to F B providedR is a relation fromA to B. Relators
are monotone and commute with composition, converse and theidentity.

5 Functions are denoted by lowercase characters (eg.f , g, φ) and function application will be
abbreviated by juxtaposition, eg.f a instead off(a).



Calculating invariants 5

We will see briefly that this conclusion brings about its benefits, as much of the
theory of coalgebraic invariants stems directly from that of bisimulations6. We will
address this one first.

4 Calculating bisimulations

Let us first show how the classical definition of bisimulationused in process algebra
(due to Milner and Park [17]) can be retrieved from (13) simply by instantiatingF to
the powerset relatorPX = {S |S ⊆ X}. We need the universal property of thepower-
transposeisomorphismΛ

f = ΛR ≡ R = ∈ ·f (14)

which converts binary relations to set-valued functions [7, 16], whereA PA
∈oo is

the membership relation. In [7] the powerset relator is defined by

PR = (∈ \(R· ∈)) ∩ (∈ \ (R◦· ∈))◦ (15)

where∩ denotes relation intersection andR \ S denotes relational division,

a(R \ S)c ≡ 〈∀ b : b R a : b S c〉

a relational operator whose semantics is captured by universal property

R ·X ⊆ S ≡ X ⊆ R \ S (16)

The main ingredient of the calculation below is (14), which ensures that every pow-
erset coalgebra uniquely determines a binary relation on its carrier (Λ is a bijection). In
this context, letR be a bisimulation between two powerset coalgebrasΛS andΛU . We
reason:

(ΛS) ·R ⊆ (PR) · (ΛU)

≡ { unfoldingPR (15) }

(ΛS) ·R ⊆ (∈ \(R· ∈)) ∩ (∈ \ (R◦· ∈))◦ · (ΛU)

≡ { distribution (sinceΛU is a function) thanks to (11)}

(ΛS) ·R ⊆ (∈ \(R· ∈)) · (ΛU) ∧ (ΛS) ·R ⊆ (∈ \ (R◦· ∈))◦ · (ΛU)

≡ { propertyR \ (S · f) = (R \ S) · f ; converses}

(ΛS) ·R ⊆ ∈ \ (R· ∈ ·ΛU) ∧ R◦ · (ΛS)◦ ⊆ (ΛU)◦ · (∈ \ (R◦· ∈))

≡ { shunting rules (10,11) and property above}

(ΛS) ·R ⊆ ∈ \ (R· ∈ ·ΛU) ∧ (ΛU) ·R◦ ⊆ ∈ \ (R◦· ∈ ·ΛS)

6 It is interesting to note that Lemma 4.2.2 in [10] proves thatrelation{(x, x) | x ∈ P} is a
bisimulation yielded by invariantP , but no further advantage is taken from this fact.



6 L.S. Barbosa, J.N. Oliveira and A.M. Silva

≡ { (16) twice }

∈ · (ΛS) ·R ⊆ R· ∈ ·ΛU ∧ ∈ · (ΛU) ·R◦ ⊆ R◦· ∈ ·ΛS

≡ { cancellation∈ · (ΛR) = R four times }

S · R ⊆ R · U ∧ U ·R◦ ⊆ R◦ · S

p

S

��

q

U

��

Roo

p′ q′
R

oo

The two conjuncts state thatR and its converse aresimulations
between state transition relationsS andU , which corresponds to the
Park-Milner definition7: a bisimulation is asimulationbetween two
LTS such that its converse is also a simulation, where a simulation
between two LTSS andU is a relationR such that, if(p, q) ∈ R,
then for all p′ such that(p′, p) ∈ S, then there is aq′ such that
(p′, q′) ∈ R and(q′, q) ∈ U — see diagram on the right.

Rπ1

wwppppp π2

''NNNNN

ρ

��
X

c

��

Y

d

��
FRF π1

wwpppp
F π2

''NN
NN

FX FY

Next we want want to check (13) against another (also
coalgebraic) definition of bisimulation due to Aczel &
Mendler [1]: given two coalgebrasc : X → F (X) and
d : Y → F (Y ) an F-bisimulation is a relationR ⊆ X × Y

which can be extended to a coalgebraρ such that projections
π1 andπ2 lift to F-coalgebra morphisms.(See diagram aside.)

Jacobs [10] spends some time in proving the equivalence between the two defi-
nitions. Our proof will be much shorter and calculational thanks to a small trick: we
identify (13) as an instance of Reynolds “arrow combinator”R← S which, givenR

andS, relates two functionsf andg as follows:

f(R← S)g ≡ f · S ⊆ R · g (17)

The fact that we can write

c(FR← R)d (18)

instead ofc ·R ⊆ FR · d (13) to mean thatR is a bisimulation betweenF coalgebrasc
andd is of great notational, conceptual and calculational advantage. As far as notation is
concerned, (18) is very appropriate for telling thatc andd produceFR-related outputs
c y andd x provided their inputs areR-related (y R x). Conceptually,FR← R may
be regarded as a relation involving all coalgebras which areR-bisimilar. But it is the
calculational power implicit in (18) which really justifiesthe recasting of (13) in terms
of Reynolds’ arrow combinator. This has been studied in detail in [2] (if not earlier), a
paper which derives elegant and manageable PF-properties such, for instance

id← id = id (19)

(R← S)◦ = R◦← S◦ (20)

R← S ⊆ V ← U ⇐ R ⊆ V ∧ U ⊆ S (21)

k(f ← g)h ≡ k · g = f · h (22)

7 The pointwise definition of simulation is better preceived onceS ·R ⊆ R ·U is re-written into
R ⊆ S \ (R ·U), recall (16) — similarly for the other conjunct. Matteo Vaccari [21] performs
a calculation similar to the above starting directly from this pointwise definition.



Calculating invariants 7

From property (21) we learn that the combinator is monotonicon the left hand side
— and thus facts

S←R ⊆ (S ∪ V )←R (23)

⊤← S = ⊤ (24)

hold 8 — and anti-monotonic on the right hand side — and thus

R←⊥ = ⊤ (25)

and the two distributive properties which follow:

S← (R1 ∪R2) = (S←R1) ∩ (S←R2) (26)

(S1 ∩ S2)← R = (S1← R) ∩ (S2←R) (27)

Let us see how the properties above explain those of bisimulation by themselves.
Property (20) ensures that the converse of a bisimulation isalso a bisimulation. This
turns out to be an equivalence:

R is a bisimulation

≡ { (18) }

c(FR←R)d

≡ { converse}

d(FR←R)◦c

≡ { (20) }

d((FR)◦←R◦)c

≡ { relatorF }

d(F(R◦)←R◦)c

≡ { (18) }

R◦ is a bisimulation

Next, we recall the definition of a coalgebra morphism:

Definition 3. Let (X, p : X −→ FX) and (Y, q : Y −→ FY ) be coalgebrasfor
functorF. A morphismconnectingp andq is a functionh between their carriers such
thatq · h = Fh · p.

Clearly, property (22) tells immediately that coalgebra morphisms are bisimulations.
The easy calculation ofF id← id = id (19) ensuresid is a bisimulation between

a given coalgebra and itself. On the other side of the spectrum, (25) tells us that⊥ is
a bisimulation forany pair of coalgebrasc andd. (Just introduce points inF⊥ ← ⊥
simplify.)

Let us now see how the fact that bisimulations are closed under union,

c(FR1← R1)d ∧ c(FR2← R2)d⇒ c(F(R1 ∪R2)← (R1 ∪R2))d (28)

stems from properties (21,23) and (26). First we PF-transform (28) to

(FR1← R1) ∩ (FR2←R2) ⊆ F(R1 ∪R2)← (R1 ∪R2)

8 Cf. f · S · g◦ ⊆ ⊤ ≡ TRUE concerning (24).



8 L.S. Barbosa, J.N. Oliveira and A.M. Silva

and reason:

(FR1← R1) ∩ (FR2←R2)

⊆ { (23) (twice) ; monotonicity of∩ }

((FR1 ∪ FR2)← R1) ∩ ((FR1 ∪ FR2)←R2)

= { (26) }

(FR1 ∪ FR2)← (R1 ∪R2)

⊆ { F is monotonic; (21)}

F(R1 ∪R2)← (R1 ∪R2)

Finally, we address the equivalence between Jacobs’s and Aczel-Mendler’s defini-
tions of bisimulation. To the set of known rules about (17) weadd the following law9

(r · s◦)← (f · g◦) = (r← f) · (s← g)◦ ⇐ pairr, s is a tabulation (29)

where a pair of functionsA C
roo s // B form a tabulation iff split function〈r, s〉

is injective, that is, iffr◦ · r ∩ s◦ · s = id holds10.
Below we show that (29) is what matters in proving the equivalence between Jacobs’

definition of bisimulation (once PF-transformed) and that of Aczel & Mendler:

c(FR←R)d

≡ { tabulateR = π1 · π
◦

2 }

c(F(π1 · π
◦
2)← (π1 · π

◦
2))d

≡ { relator commutes with composition and converse}

c(((Fπ1) · (Fπ2)
◦)← (π1 · π

◦
2))d

≡ { new rule (29)}

c((Fπ1← π1) · ((Fπ2)
◦← π◦

2))d

≡ { converse rule (20)}

c((Fπ1← π1) · (Fπ2← π2)
◦)d

≡ { (5) }

〈∃ a :: c(Fπ1← π1)a ∧ d(Fπ2← π2)a〉

cf. X

c

��

Y
Roo

d

��

Z
π1

eeLLLLL π2

99sssss

a��
FZ

F π1

yysss
s F π2

%%KK
KK

FX FY
F R

oo

Clearly, the meaning of the last line above is exactly Aczel-Mendler’s definition (cf. dia-
gram): it states thatthere exists a coalgebraa whose carrier is the ”graph” of bisimula-
tion R and which is such that projectionsπ1 andπ2 lift to the corresponding coalgebra
morphisms.

9 The proof of (29) can be found in [13].
10 It is a standard result that everyR can be factored in a tabulationR = r · s◦ [7]. An obvious

and easy to check tabulation isr, s := π1, π2 [13], which boils down to pairwise equality of
pairs:(b, a) = (d, c) equivalent tob = d ∧ a = c.



Calculating invariants 9

Note how simple the proof is. The elegance of the calculationlies in the synergy
with Reynolds’ arrow combinator. To the best of our knowledge, such a synergy is new
in the literature11.

5 Calculating invariants

Let us write FΦP ΦP
coo to denote the fact thatP is an invariant (9), which we

abbreviate toFΦ Φ
coo since predicates and coreflexives are in one to one corre-

spondence. (We will use uppercase Greek letters to denote such coreflexives and will
refer to them as “invariants” with no further explanation).

This notation suggests a categoryPred of “predicates as objects” as a suitable uni-
verse for describing coalgebraic systems subject to invariants.Pred’s objects are pred-

icates, represented by coreflexives. An arrowΨ Φ
foo in Pred means a function

which ensures propertyΨ on its output whenever propertyΦ holds on its input. Ar-
rows inPred can therefore be seen asproof-obligationsfor the underlying functions12.
Formally:

Ψ Φ
foo ≡ f(Ψ ← Φ)f ≡ f · Φ ⊆ Ψ · f (30)

Clearly, any relator (inRel) restricts to a functor inPred. In particular, the functorial

image of an arrowΨ Φ
foo is well-typed, cf.

FΨ FΦ
F foo

≡ { (30) }

F f · FΦ ⊆ FΨ · F f

≡ { functors }

F (f · Φ) ⊆ F (Ψ · f)

⇐ { F is monotone; (30)}

Ψ Φ
foo

Such a “predicates as types” view carries over universal constructs. AsPred’s hom
sets are included inSet, in order to verify whether a particular universal propertyin

11 For a longer bi-implication proof of this equivalence see Backhouse and Hoogendijk’s work
on finaldialgebras[6]. A proof of the same result is implicit in Corollary 3.1 of[19] which
invokes a result by Carboniet al [8] on extending functors to relators.

12 See [15], where this view of proof obligations is actually extended to arbitrary binary relations.
This is suitable for specification languages such as eg. VDM,wherethe inclusion of a sub-
typing mechanism which allows truth-valued functions forces the type checking here to rely on
proofs[11].



10 L.S. Barbosa, J.N. Oliveira and A.M. Silva

the latter lifts to a universal inPred it is enough to check whether the corresponding
diagram still exists and the universal arrow inSet is still an arrow inPred. The fact that
composition satisfies constraints,

Ψ Φ
g·foo ⇐ Ψ Υ

goo ∧ Υ Φ
foo (31)

stems directly from (30), as does the obvious rule concerning identity:

Ψ Φ
idoo ≡ Φ ⊆ Ψ (32)

From (31) we infer also that exponentialgΦ (which should be such thatgΦ f = g · f )
is well-typed. For a slightly more elaborate example consider, for instance, functional
productsin the new setting:

Ψ Ψ × Υ
π1oo π2 // Υ

Φ

f

ffLLLLLLLLLLLL

〈f,g〉

OO

g

88rrrrrrrrrrrr

(33)

Clearly, the proof-obligations associated to the two projections

π1 · (Ψ × Υ ) ⊆ Ψ · π1 , π2 · (Ψ × Υ ) ⊆ Υ · π2

are instances of Reynolds abstraction theorem [18, 22, 2]:

GA FA
foo is polymorphic≡ 〈∀ R :: f(GR← FR)f〉 (34)

So there is nothing to prove. To show that〈f, g〉 is indeed an arrow inPred we need to
recall the universal property of relational splits [7]

X ⊆ 〈R, S〉 ≡ π1 ·X ⊆ R ∧ π2 ·X ⊆ S (35)

and that×-absorption holds. We reason:

Ψ × Υ Φ
〈f,g〉oo

≡ { definition (30) }

〈f, g〉 · Φ ⊆ (Ψ × Υ ) · 〈f, g〉

≡ { absorption law for relational product}

〈f, g〉 · Φ ⊆ 〈Ψ · f, Υ · g〉

≡ { universal law for relational product (35)}

π1 · 〈f, g〉 · Φ ⊆ Ψ · f ∧ π2 · 〈f, g〉 · Φ ⊆ Υ · g

≡ { cancellation law for functional product}

f · Φ ⊆ Ψ · f ∧ g · Φ ⊆ Υ · g

≡ { definition (30) }

Φ Φ
foo ∧ Υ Φ

goo



Calculating invariants 11

As expected, a coalgebraFΦ Φ
coo in Pred maintains propertyΦ invariant (in

the same way an algebraΥ FΥ
aoo declaresΥ as acompatiblepredicate).

F(νF) νF
outoo

FΦ

F[(c)]

OO

Φ
c

oo

[(c)]

OO
Final coalgebras (and initial algebras) exist and coincide

with the ones inSet. Let us check, in this respect, the diagram
of unfold (aside), whereνF denotes the final coalgebra13 and
[(c)] is the coinductive extension, orunfold, of coalgebrac. We
reason:

νF Φ
[(c)]oo

≡ { definition (30) }

[(c)] · Φ ⊆ [(c)]

⇐ { relational coinduction fusion:[(T )] · S ⊆ [(R)] ⇐ T · S ⊆ F S · R }

c · Φ ⊆ FΦ · c

≡ { definition (30) }

FΦ Φ
coo

We close this section by showing how the “invariants as bisimulations” approach
helps in developing of a number of simple, yet powerful rulesto reason about “invariant-
typed” coalgebras. Our calculations below address three such rules.

Separation rule:

F (Φ · Ψ) Φ · Ψ
coo ⇐ FΦ Φ

coo ∧ FΨ Ψ
coo (36)

This rule enables the decomposition of the proof obligationof a compound invariant
into two separate proof obligations, one per conjunct. Its calculation is as follows:

FΦ Φ
coo ∧ FΨ Ψ

coo

≡ { (30) twice }

c · Φ ⊆ FΦ · c ∧ c · Ψ ⊆ FΨ · c

⇒ { monotonicity of composition (twice)}

c · Φ · Ψ ⊆ FΦ · c · Ψ ∧ FΦ · c · Ψ ⊆ FΦ · FΨ · c

⇒ { transitivity}

c · Φ · Ψ ⊆ FΦ · (FΨ · c)

≡ { relatorF and (30) }

F (Φ · Ψ) Φ · Ψ
coo

13 Since diagrams inPred bear coreflexives on nodes,νF abbreviatesidνF, meaning that no
invariant constrains the carrier of the final coalgebra. Similarly for F(νF).



12 L.S. Barbosa, J.N. Oliveira and A.M. Silva

Interleaving rule:

F (Φ× Ψ) Φ× Ψ
c9doo ⇐ FΦ Φ

coo ∧ FΨ Ψ
coo (37)

where9 is an interleaving operator defined byc 9 d
def
= δ · (c × d) wheneverF has a

distributive lawδ : FΦ× FΨ −→ F (Φ × Ψ) corresponding to the Kleisli composition
of F’s left and right strength (see [12] for details). The calculation of (37) follows:

FΦ Φ
coo ∧ FΨ Ψ

coo

≡ { (30) twice }

c · Φ ⊆ FΦ · c ∧ c · Ψ ⊆ FΨ · c

⇒ { monotonicity of product and composition}

δ · (c · Φ× d · Ψ) ⊆ δ · (FΦ · c× FΨ · d)

⇒ { × relator}

δ · (c× d) · (Φ× Ψ) ⊆ δ · (FΦ× FΨ) · (c× d)

⇒ { δ’s free theorem (34)}

δ · (c× d) · (Φ× Ψ) ⊆ F (Φ× Ψ) · δ · (c× d)

≡ { definition ofc 9 d and (30)}

F (Φ× Ψ) Φ× Ψ
c9doo

Pipeline. ForF a monad,

FΦ Φ
c•doo ⇐ FΦ Φ

coo ∧ FΦ Φ
doo (38)

wherec • d corresponds to the Kleisli composition ofc andd. We calculate:

(c • d) · Φ

= { definition of Kleisli composition}

µ · F c · d · Φ

⊆ { F Φ Φ
doo and monotonicity}

µ · F c · FΦ · d

= { F relator}

µ · F (c · Φ) · d

⊆ { F Φ Φ
coo and monotonicity}



Calculating invariants 13

µ · F (FΦ · c) · d

= { F relator andµ’s free theorem (34)}

FΦ · µ · F c · d

= { definition of Kleisli composition}

FΦ · (c • d)

6 Calculating assertions

As mentioned in the introduction to this paper, the third main ingredient of coalgebraic
reasoning identified in [10] is a language of modalassertionsin which specifications
of the behaviour of systems can be expressed. Clearly, invariants bring about a”next
time” modal operator,

c(FΦ← Φ)c ≡ c · Φ ⊆ FΦ · c

≡ { shunting (10)}

Φ ⊆ c◦ · (FΦ) · c
︸ ︷︷ ︸

©cΦ

(39)

which holds for those states whose all immediate successors, if any, satisfyΦ. From this
a PF-definition of the”next timeΦ holds” modal operator emerges

©cΦ
def
= c◦ · (FΦ) · c (40)

which PF-transforms Def. 4.3.1 of [10]. So, assertionΦ ⊆ ©cΦ is an alternative state-
ment of “Φ in an invariant” for coalgebrac.

This modal operator is easily shown to be the upper adjoint ofGalois connection

πcΦ ⊆ Ψ ≡ Φ ⊆ ©cΨ (41)

whose lower adjoint is theprojectionoperatorπcΦ
def
= c·Φ·c◦ which is central to [14] in

studying the PF-refactoring of data dependency theory (a part of database theory). From
this, one immediately infers that©c is monotonic and distributes over conjunction:
©c(Φ·Ψ) = (©cΦ)·(©cΨ). Note that we express conjunction by composition because
these two operators coincide on coreflexives:

Φ ∩ Ψ = Φ · Ψ (42)

Such properties can then be used to reason about operator©c, as in, for example,

Φ is an invariant

≡ { (39)}

Φ ⊆ ©cΦ



14 L.S. Barbosa, J.N. Oliveira and A.M. Silva

⇒ { monotonicity of©c stemming from (41)}

©cΦ ⊆ ©c(©cΦ)

≡ { (39)}

©cΦ is an invariant

The whole construction of a modal logic relative to a coalgebrac, which is the basis
of assertionreasoning in coalgebra theory, can be pursued along similarlines. Consider,
for example, the definition of2P , thehenceforthP operator of [10, Def. 4.2.8]:

(2P )x
def
= 〈∃ Q : Q is invariant: Q ⊆ P ∧ (Q x)〉

Converting predicatesP andQ to coreflexivesΦ andΨ , respectively, and making ex-
plicit the supremumimplict in the existential quantification one gets,

2Φ = 〈
⋃

Ψ : Ψ ⊆ ©cΨ : Ψ ⊆ Φ〉

= { trading [4] }

〈
⋃

Ψ :: Ψ ⊆ ©cΨ ∧ Ψ ⊆ Φ〉

= { ∩-universal}

〈
⋃

Ψ :: Ψ ⊆ ©cΨ ∩ Φ〉

= { ∩ of coreflexives is composition (42)}

〈
⋃

Ψ : : Ψ ⊆ Φ · ©cΨ〉

which leads to a greatest (post)fixpoint definition:

2Φ = 〈ν Ψ : : Φ · ©cΨ〉 (43)

We end this section by showing how the PF-transform (and in particular the re-
placement of intersection of coreflexives by composition (42)) together with the fix-
point calculus [3] speed up derivation of laws in such a logic. The law we have chosen
to calculate is Lemma 4.2.9(ii) of [10]:2Φ ⊆ 22Φ. We drop subscriptc of©c (for
economy of notation) and calculate:

2Φ ⊆ 22Φ

≡ { (43) }

2Φ ⊆ 〈ν Ψ :: (2Φ) · ©Ψ〉

⇐ { greatest fixed point induction:x ≤ fx ⇒ x ≤ νf [3] }

2Φ ⊆ 2Φ · ©(2Φ)

≡ { 2Φ · Φ = 2Φ thanks to (42), since2Φ ⊆ Φ }



Calculating invariants 15

2Φ ⊆ 2Φ · Φ · ©(2Φ)

≡ { property (forΦ coreflexive)Φ · R ⊆ S ≡ Φ · R ⊆ Φ · S }

2Φ ⊆ Φ · ©(2Φ)

≡ { (43) and fixpoint calculus (νf ⊆ fνf ) }

true

7 Epilogue

Invariants are constraints on the carrier of coalgebras which restrict their behavior in
some desirable way but whose maintenance entails some kind of proof obligation dis-
charge. An approach is put forward in this paper for reasoning about coalgebraic invari-
ants which is bothcompositionalandcalculational: compositional because it is based
on rules which break the complexity of such proof obligations across the structures
involved; calculational because such rules are derived thanks to an algebra of invari-
ants regarded as coreflexive bisimulations, which is what invariants are once encoded
in the language of binary relations. Such calculational capabilities arise, in turn, from
encoding bisimulations as instances of Reynoldsrelation on functions. In this process,
functors which capture coalgebras’ dynamics are generalized to relators and the objects
of the underlying category are generalized to predicates.

The main contribution of the paper is the explicit adoption of such a construc-
tive, calculational style in approaching the problem. Both[19, 6] already suggest a
relational/relator-based approach to bisimulation, [6] actually generalizing from coalge-
bras to dialgebras. However, no relationship is established with the algebra of Reynolds
relation on functionswhich, in close association with Reynolds abstraction theorem,
naturally leads to a category (Pred) whose objects are predicates (invariants).

In a wider context, the explicit adoption of such a category has potential to support
a constructive discipline of extended static checking (ESC) in a coalgebraic view of
computer systems, but surely there is much work to be done before this becomes of
practical use. On the theory side, the authors are aware of a connection between the
“predicates as objects” approach andFrege structures[9] 14. Quoting this reference:

A Frege structure is a lambda structureF on the setA together with a desig-
nated subset ofA whose elements are called propositions (...) the propositional
connectives are required to yield propositions as values only when they operate
on propositions as arguments.

Further investigating this connection is surely an interesting topic for future research.

References

1. Peter Aczel and Nax Mendler. A final coalgebra theorem. InCategory Theory and Computer
Science, pages 357–365, London, UK, 1989. Springer-Verlag.

14 They thank Peter Dybjer for pointing out this connection.



16 L.S. Barbosa, J.N. Oliveira and A.M. Silva

2. K. Backhouse and R.C. Backhouse. Safety of abstract interpretations for free, via logical
relations and Galois connections.SCP, 15(1–2):153–196, 2004.

3. R. Backhouse. Galois connections and fixed point calculus. In R. Crole, R. Backhouse,
and J. Gibbons, editors,Algebraic and Coalgebraic Methods in the Mathematics of Program
Constuction, pages 89–148. Springer Lect. Notes Comp. Sci. (2297), 2002.

4. R. Backhouse and D. Michaelis. Exercises in quantifier manipulation. InMPC’06, pages
70–81. Springer LNCS (4014), 2006.

5. R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and J. van der
Woude. Polynomial relators. InAMAST’91, pages 303–362. Springer, 1992.

6. R.C. Backhouse and P.F. Hoogendijk. Final dialgebras: From categories to allegories.Infor-
matique Theorique et Applications, 33(4/5):401–426, 1999.

7. R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-
Hall International, 1997. C.A.R. Hoare, series editor.

8. A. Carboni, G. Kelly, and R. Wood. A 2-categorical approach to change of base and geomet-
ric morphisms I. Technical Report 90-1, Dept. of Pure Maths,Univ. Sydney, 1990.

9. William S. Hatcher. Review: Peter Aczel. Frege structures and the notions of proposition,
truth and set.The Journal of Symbolic Logic, 51(1):244–246, 1986.

10. Bart Jacobs. Introduction to Coalgebra. Towards Mathematics of States and Observations.
Draft Copy. Institute for Computing and Information Sciences, Radboud University Ni-
jmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

11. C.B. Jones.Systematic Software Development Using VDM. Prentice-Hall Int., 1986.
12. A. Kock. Strong functors and monoidal monads.Archiv für Mathematik, 23:113–120, 1972.
13. J.N. Oliveira.Invariants as coreflexive bisimulations — in a coalgebraic setting, Dec. 2006.

Presentation at theIFIP WG 2.1 #62 Meeting, Namur.
14. J.N. Oliveira. Pointfree foundations for (generic) lossless decomposition, 2007. (submitted).
15. J.N. Oliveira. Theory and applications of the PF-transform, Feb. 2008. Tutorial at Ler-

NET’08, Piriápolis, Uruguay (slides available from the author’s website).
16. J.N. Oliveira and C.J. Rodrigues. Transposing relations: fromMaybefunctions to hash tables.

In MPC’04, volume 3125 ofLNCS, pages 334–356. Springer, 2004.
17. D. Park. Concurrency and automata on infinite sequences.pages 561–572. Springer LNCS

(104), 1981.
18. J.C. Reynolds. Types, abstraction and parametric polymorphism. Information Processing

83, pages 513–523, 1983.
19. Jan J.M.M. Rutten. Relators and metric bisimulations.ENTCS, 11:1–7, 1998.
20. J.J.M.M. Rutten. Coalgebraic foundations of linear systems (an exercise in stream calculus),

2007. Proceedings CALCO 2007, LNCS, Springer, to appear.
21. M. Vaccari. Calculational derivation of circuits, 1998. PhD thesis, Univ. S. Milano.
22. P.L. Wadler. Theorems for free! In4th Int. Symp. on FPLCA, London, Sep. 1989. ACM.


