Calculating invariants as coreflexive bisimulations

Luis S. Barbosh José N. Oliveirg, and Alexandra M. Silva

! Dep. Informatica, Universidade do Minho, 4700-320 Braggrtugal,
2 Centrum voor Wiskunde en Informatica (CWI), Kruislaan 4118-1098 SJ Amsterdam

Abstract. Invariants, bisimulations and assertions are the maireitignts of
coalgebra theory applied to computer systems enginedrirthis paper we re-
duce the first to a particular case of the second and show htwtdgether pave
the way to a theory of coalgebras which regards invariarttipages as types. An
outcome of such a theory is a calculus of invariants’ prodigaltion discharge,
a fragment of which is presented in the paper.

The approach has two main ingredients: one is that of adppéiations as “first
class citizens” in a pointfree reasoning style; the othes thn a synergy found
between a relational construct, Reynoldsfation on functionsnvolved in the
abstraction theorenon parametric polymorphism and the coalgebraic account of
bisimulation and invariants.

In this process, we provide an elegant proof of the equicadietween two dif-
ferent definitions of bisimulation found in coalgebra lggrre (due to B. Jacobs
and Aczel & Mendler, respectively) and their instantiattorthe classical Park-
Milner definition popular in process algebra.

Keywords: coalgebraic reasoning; proof obligations; pointfree $fam; pro-
gram calculation.

1 Introduction

The widest application of computer systems in our days isdhaupporting business,
the most dynamic aspect of modern society. This means thapueter systems are
subject to the permanent stress of ever changing businkess which materialize into
(either static or dynamic) properties of the underlyingecod

Computer scientists regard business rules as examplegasfant properties. The
word “invariant” captures the idea that such desirable ertigs are to be maintained
invariant, that is, unharmed across all transactions which are eradaddithe system’s
functionality.

Changing business rules has a price: the code needs to bedepiggo as to ensure
that changes are properly taken into account. How does aeekchis? Testing is the
most widely used technique for this purpose. But (as is wathkn) it does not ensure
correctness and it is highly costly. Ideally, one shouldlile gEoformally verifythat the
new invariants are enforced without running the (new) cddsla

This calls for a general theory of invariant preservationmugrhich one could base
such an extended static checking mechanism. And this threqujires a broad view of
computer systems able to take into account data persiséenbeontinued interaction.

2 L.S. Barbosa, J.N. Oliveira and A.M. Silva

Coalgebra theory, widely acknowledged as thethematics of state-based systems
[20], provides an adequate modeling framework for suchesyst The basic insight in
coalgebraic modelling is that of representing state-bagstéms by functions of type

p: X —FX (1)

which, for every state € X, describe the observable effects of an elementary step in
the evolution of the system €., a state transition). The possible outcomes of such steps
are captured by notatidh.X, where functoF acts as ahapefor the system’s interface.

Jacobs [10] identifies three cornerstones in the theory afgebrasinvariants
bisimilarity andassertions About the first he writesan important aspect of formally
establishing the safety of systems is to prove that certaicial predicates are actually
invariants.

In this paper we develop a theory of invariant preservatitilwse novelty resides
in explicitly expressing invariants dssimulations (See section 3 and its follow up.)
The third cornerstone, assertions, is addressed in segtidtiogether, there is a cal-
culational flavour in the way we state and prove facts, whielms from the explicit
use of relational techniques, a body of knowledge oftenrrefeto as thealgebra of
programming7].

Our starting point is Jacobs definition of an invariant foinaeg coalgebra [10]:

Definition 1. LetF : Sets — Sets be a polynomial functor. Amvariant for a coalge-
brac: X — F(X) is a predicateP C X satisfying for allz € X,

x € P = ¢(z) € Pred(F)(P). (2)

Pred(F)(P) stands for théifting of predicateP via functorF. (We will spell out the
meaning of this construct very soon.)

Our approach will be to reason about (2) via the PF-transfaé6ir— a transforma-
tion of first order predicate formulee infmintfreebinary relation formulee [7] which
will enable us to blend the concept of invariant with thatisfiaulation in a quite handy
way. (In fact, we will show the former is a particular casetd tatter.) Bypointfreewe
mean formulae which are free of quantifiers and variablesi(ppsuch as: above.

Structure of the paperThe paper starts by PF-transforming definition (2), in secti

2, to conclude that invariants are a special case of bisiiouak (section 3). Section 4
recasts bisimulations in terms of Reynolds’ arrow comhinand resorts to its calcu-
lational power to provide elegant proofs of equivalencevieen three most common
definitions of bisimulation. The development of (a fragmef)the theory of invariants

is pursued in section 5, upon a category of “predicates asstypoving on, section 6

illustrates how the approach proposed in this paper candeeddluse to reason about
modal assertions over coalgebras. Finally, section 7 cdlesl and gives pointers to
related and future work.

2 Invariants PF-transformed

Ouir first step is to convert definition (2) into a binary redatl formula. The principle
is that of PF-transforming universally quantified formulseapplying, from right to

Calculating invariants 3

left, the definition of relational inclusion which follows,

RCS = (Vy,x = yRex=ySuzx) 3)
for R, S two binary relations. In the case of (2), this means thawill have to capture
set (predicatef andS will have to do the same for s@tred(F)(P). One of the stan-

dard ways of encoding a s&t as a binary relation is as follows: one defines a relation
&y such that

yPxxr = y=x NzeX 4)
Relations of this kind are referred to aereflexivesbecause they are fragments of
the identity relationid: $x C id. For instance, sefl, 2,3} is captured by relation
D123y = {(1,1),(2,2),(3,3)}. We also need to define the binary relation composi-
tion operator
b(R-S)c={(3a :: bRa N aSc) (5)
(readR - S as "R afterS”) and to assert a rule which will prove convenient,
(fO)R(ga)=b(f°-R-g)a (6)
wheref andg are functions and® denotes relational converse:
a(R°)Yb=bRa (7
In this context, we reason:

(Va ©: x € P = c(x) € Pred(F)(P))

{ Vv-one point rule}
NVy,z : y=x: 2€P = c(y) =c(x) A c(z) € Pred(F)(P))
= { V-trading }
NVy,x = y=ax ANxe€P = cly)=clx) A c(x) € Pred(F)(P))
= { (4) twice }

Vy,z :: yPpax = c(y) P pred(F)(P) c(x))

= { rule (6) }
(Vy,z 2 y®@px = y(c® - Pprea(ry(p) - €)T)
= { rule (3) }
Pp C - PpreaFyp) - C (8)

3 By y R x we mean the fact that pafy,) belongs taR. (Similarly fory S z.)

4 L.S. Barbosa, J.N. Oliveira and A.M. Silva

PredicatePred(F)(P) is defined in [10] (Def. 4.1.1) by induction on the structure
of polynomialF. Regarding- as a relatof and representing® by its coreflexivedp,
Pred(F)(P) coincides with relatioir # p. Thus we resume to (8) and calculate further:

(Zsp g CO . F@p - C
{ see (10) below}
C'@p gF(lY)p'C (9)

where the last step is justified by the first of the following4eof the relational calculus,
f-RCS = RCf°-S (20)
R-f°CS = RCS-f (112)
known as theshunting ruleg7] °. Note that coalgebracomplies with this rule because
it is a function.

Altogether, we arrive at (9), a quite compact version of e sections which
follow will give evidence of the advantages of such a transfation.

3 Invariants are bisimulations

We move on to the second cornerstone of coalgebra theory imilzigty. This is based
on the concept dbisimulationwhich is given by Jacobs [10] as follows:

Definition 2. A bisimulation for coalgebras : X — F(X)andd : Y — F(Y)isa
relation R C X x Y which isclosed undee andd:

(z,y) € R = (c(z),d(y)) € Rel(F)(R). 12)

forallz € X andy € Y.
This time Rel(F)(R) stands for the

X R Yy X ®p X relgtion_al lifting of_ R via f_unct_or F
which, in our relational setting, is cap-
CJ/ < J/d CJ/ < J{C tured by notatiorF R.
EX FYy EX EX An exer<_:ise at all s!milar to the one
FR Fop carried out in the previous section will
(a) (b) show (12) PF-transformed into
c-R CFR-d (13)

(cf. diagram (a) above left) wher& andY are the carriers of coalgebrasandd,
respectively. By comparing (13) against (9) we concludeitivariants arspecialcases
of bisimulations: exactly those which are coreflexive rielas, cf. diagram (b).

4 The concept of aelator [5] extends that of &unctorto relations:F A describes a parametric
type whileF R is a relation fromF A to F B providedR is a relation fromA to B. Relators
are monotone and commute with composition, converse andénéty.

5 Functions are denoted by lowercase charactersf{eg. ¢) and function application will be
abbreviated by juxtaposition, ed.a instead off (a).

Calculating invariants 5

We will see briefly that this conclusion brings about its féagas much of the
theory of coalgebraic invariants stems directly from thfabisimulations®. We will
address this one first.

4 Calculating bisimulations

Let us first show how the classical definition of bisimulatissed in process algebra
(due to Milner and Park [17]) can be retrieved from (13) siynipy instantiatingF to
the powerset relatdp X = {S|S C X}. We need the universal property of thewer-
transposd@somorphismA

f=AR=R=cf (14)

which converts binary relations to set-valued functiond f, where A <S pais
the membership relation. In [7] the powerset relator is definy

PR=(e\(R-€))n(e\ (R €))° (15)
wheren denotes relation intersection afd\ S denotes relational division,
a(R\ S)e = (Vb :bRa: bSc)
a relational operator whose semantics is captured by wsa@lproperty
R-XCS=XCR\S (16)

The main ingredient of the calculation below is (14), whicis@res that every pow-
erset coalgebra uniquely determines a binary relationsoesitrier (1 is a bijection). In
this context, letR be a bisimulation between two powerset coalgebrsiandAU. We
reason:

(AS)- R C (PR) - (AU)

= { unfoldingPR (15) }

(AS) - R C (€ \(R- €))N(e\ (R €))° - (AU)
{ distribution (sinceAU is a function) thanks to (11}

(AS) - R C (€ \(R- €))- (AU) A (AS)-RC (€\ (R €))° - (AU)
{ propertyR\ (S - f) = (R\ S) - f ; converses}

(AS)-RC e\ (R €-AU) AN R°-(AS)° C(AU)° - (e \ (R®- €))
{ shunting rules (10,11) and property aboye

(AS)-RC e\ (R- € -AU) A (AU)-R° C €\ (R°- € -AS)

® It is interesting to note that Lemma 4.2.2 in [10] proves tredation {(z,z) | 2 € P} is a
bisimulation yielded by invarianP, but no further advantage is taken from this fact.

6 L.S. Barbosa, J.N. Oliveira and A.M. Silva

{ (16) twice }
€-(AS)-RCR-€-AU N €-(AU)-R°C R°- € -AS
{ cancellatiore - (AR) = R four times }
S-RCR-UANU-R°CR°-S

The two conjuncts state thdt and its converse ar@mulations "
between state transition relatioSsandU, which corresponds to the P <——4¢
Park-Milner definition’: a bisimulation is asimulationbetween two
LTS such that its converse is also a simulation, where a sitioul v
between two LTS and U is a relation R such that, if(p,q) € R, p' <—¢
then for all p’ such that(p’,p) € S, then there is &’ such that R
(p',¢') € Rand(¢, q) € U — see diagram on the right.
R Next we want want to check (13) against another (also
P I coalgebraic) definition of bisimulation due to Aczel &
X pl Y Mendler [1]: given two coalgebrag : X — F(X) and
Cl f FR ¢ ld d :Y — F(Y) anF-bisimulation is a relationk C X x Y
7 & which can be extended to a coalgebrauch that projections
FX FY 7, andnm, lift to F-coalgebra morphismgSee diagram aside.)
Jacobs [10] spends some time in proving the equivalencedagtvthe two defi-
nitions. Our proof will be much shorter and calculationalriks to a small trick: we
identify (13) as an instance of Reynolds “arrow combinatBr— S which, givenR
andSs, relates two functiong andg as follows:

f(R=S)g = f-SCR-yg (17)
The fact that we can write
¢(FR — R)d (18)

instead of:- R C F R-d (13) to mean thaR is a bisimulation betweeh coalgebrasg
andd is of great notational, conceptual and calculational athgas As far as notation is
concerned, (18) is very appropriate for telling thandd producer R-related outputs
¢ y andd x provided their inputs ar&-related ¢ R). ConceptuallyF R — R may
be regarded as a relation involving all coalgebras whichfatasimilar. But it is the
calculational power implicit in (18) which really justifi¢se recasting of (13) in terms
of Reynolds’ arrow combinator. This has been studied inibiet§2] (if not earlier), a
paper which derives elegant and manageable PF-propartiesfer instance

id —id = id (19)
(R—S)° =R°«5° (20)
R—SCV—U<«<RCV ANUCS (21)
k(f—gh=k-g=f-h (22)

" The pointwise definition of simulation is better preceived®S - R C R- U is re-written into
R C S\ (R-U),recall (16) — similarly for the other conjunct. Matteo Vaci21] performs
a calculation similar to the above starting directly froristhointwise definition.

Calculating invariants 7

From property (21) we learn that the combinator is monotonithe left hand side
— and thus facts

S—RC(SUV)—R (23)
T«—S=T (24)

hold® — and anti-monotonic on the right hand side — and thus
R—1=T (25)
and the two distributive properties which follow:

S<—(R1UR2)=(S<—R1)Q(S<—R2) (26)
(Sl N SQ) — R = (Sl — R) n (SQ — R) (27)

Let us see how the properties above explain those of bistronlay themselves.
Property (20) ensures that the converse of a bisimulatiabsis a bisimulation. This
turns out to be an equivalence:

R is a bisimulation

= {a®y} d((F R)® — R°)c
¢(FR < R)d = { relatorF }

= { converse} d(F(R°) < R°)c
d(FR — R)°c = { @8}

= { (20) } R° is a bisimulation

Next, we recall the definition of a coalgebra morphism:

Definition 3. Let (X,p : X — FX) and(Y,q : Y — FY’) be coalgebragor
functorF. A morphismconnectingy and g is a functioni between their carriers such
thatg-h =Fh - p.

Clearly, property (22) tells immediately that coalgebrarpiisms are bisimulations.
The easy calculation df id < id = id (19) ensuresd is a bisimulation between
a given coalgebra and itself. On the other side of the sp@gt(®5) tells us thatl is
a bisimulation forany pair of coalgebrag andd. (Just introduce points if L « L
simplify.)
Let us now see how the fact that bisimulations are closedrunden,

C(F Ry — Rl)d A\ C(F Ry — Rg)d = C(F(Rl U Rg) — (Rl U Rg))d (28)
stems from properties (21,23) and (26). First we PF-trans{@8) to
(F Ry — Rl) M (FRQ — Rg) - F(Rl U Rg) — (Rl U Rg)

8Cf. f.5-¢° C T = TRUE concerning (24).

8 L.S. Barbosa, J.N. Oliveira and A.M. Silva

and reason:

(FRy — Ry) N (FRy — Ry)
- { (23) (twice) ; monotonicity of }
((FRiUFRy) — Ry)N((FRy UF Ry) < Ry)
= {@8}
(FRLUF Ry) — (R, URy)
C { Fis monotonic; (21)}
F(Ry URz) « (R1 UR3)

Finally, we address the equivalence between Jacobs'’s apel-Mendler’s defini-
tions of bisimulation. To the set of known rules about (17)adel the following law?

(r-s°)—(f-g°)=(r<f) (s<g)° < pairr, s is a tabulation (29)

where a pair of functions4 <'— ¢ —= B form a tabulation iff split functior{r, s)
is injective, that is, iffr® - » N s° - s = id holds?°.

Below we show that (29) is what matters in proving the eqeinaé between Jacobs’
definition of bisimulation (once PF-transformed) and tHahczel & Mendler:

¢(FR— R)d

{ tabulateR = m; - 75 }
c(F(my - m3) — (m1 - 73))d

{ relator commutes with composition and convefse
c(((Fmi) - (Fm2)®) = (m1 - m3))d

R

= { new rule (29) } cf. X=———YVY
((Fr =) (Fra)® — m5)d ™

= { converse rule (20)} ¢ ya d
c((Fmy —m) - (Fmp —m2)°)d Fr FZ Fm

= {6} FXAQ FY

(Fa = ¢(Fry —m)a A d(Fmy — m2)a) PR

Clearly, the meaning of the last line above is exactly Addelrdler’s definition (cf. dia-
gram): it states thahere exists a coalgebrawhose carrier is the "graph” of bisimula-
tion R and which is such that projections ands lift to the corresponding coalgebra
morphisms.

® The proof of (29) can be found in [13].

01t is a standard result that eveRycan be factored in a tabulatidi = r - s° [7]. An obvious
and easy to check tabulationriss := 71, w2 [13], which boils down to pairwise equality of
pairs:(b,a) = (d, c) equivalenttb =d A a =c.

Calculating invariants 9

Note how simple the proof is. The elegance of the calculdiEmin the synergy
with Reynolds’ arrow combinator. To the best of our knowledguich a synergy is new
in the literature'®.

5 Calculating invariants

Let us write F$p <~— &p to denote the fact thaP is an invariant (9), which we

abbreviate toF # <~— & since predicates and coreflexives are in one to one corre-
spondence. (We will use uppercase Greek letters to denotecsweflexives and will
refer to them as “invariants” with no further explanation).

This notation suggests a categéed of “predicates as objects” as a suitable uni-
verse for describing coalgebraic systems subject to iaugsiPred’s objects are pred-

icates, represented by coreflexives. An arr@mkL @ in Pred means a function
which ensures property on its output whenever property holds on its input. Ar-
rows inPred can therefore be seen pmof-obligationsor the underlying function®.
Formally:

vl ¢ = W) = f.BCW.f (30)

Clearly, any relator (irRel) restricts to a functor ifPred. In particular, the functorial

image of an arromy SR @ is well-typed, cf.

Fr
FO<—F@

{ B0) }
Ff-FOCFW-Ff
{ functors }
F(f-@)CFW-f)

= { Fis monotone; (30}

!

V<—-9

Such a “predicates as types” view carries over universastcoats. AsPred’s hom
sets are included ifet, in order to verify whether a particular universal propdrty

11 For a longer bi-implication proof of this equivalence seeBwuse and Hoogendijk's work
on final dialgebras[6]. A proof of the same result is implicit in Corollary 3.1 {9] which
invokes a result by Carboet al[8] on extending functors to relators.

12 see [15], where this view of proof obligations is actuallyemded to arbitrary binary relations.
This is suitable for specification languages such as eg. Vi@Merethe inclusion of a sub-
typing mechanism which allows truth-valued functionsderthe type checking here to rely on
proofs[11].

10 L.S. Barbosa, J.N. Oliveira and A.M. Silva

the latter lifts to a universal iPred it is enough to check whether the corresponding
diagram still exists and the universal arrowsit is still an arrow inPred. The fact that
composition satisfies constraints,
g-f g f
V" < UV=—"7T N T <=—9 (31)

stems directly from (30), as does the obvious rule concgridi@ntity:
v<4 5 = dCw (32)

From (31) we infer also that exponentigl (which should be such thgf® f = g - f)
is well-typed. For a slightly more elaborate example comsitbr instance, functional
productsin the new setting:

"1 yxr—2 7 (33)

; (fmT A

Clearly, the proof-obligations associated to the two prtpms
wl-(!PxT)QW-m R Fg-(!pXT)gT'ﬂ'g

are instances of Reynolds abstraction theorem [18, 22, 2]:

GA<L—F A ispolymorphic= (VR :: f(GR—FR)f) (34)

So there is nothing to prove. To show thdt g) is indeed an arrow iffred we need to
recall the universal property of relational splits [7]

and thatx -absorption holds. We reason:

vx 1< 5

{ definition (30) }
(f,9)-2< (@ xT)-(f,9)
{ absorption law for relational produgt
(frg)- 2 (¥ f,T-g)
{ universal law for relational product (35)
T (f,9) PCW-f A m(fig) ®CT g
{ cancellation law for functional produc}
[-eCV-f N g-PCT-yg
= { definition (30) }

o<l—0 A T 5

Calculating invariants 11

As expected, a coalgebrad <—— @& in Pred maintains property invariant (in

the same way an algebra <~— F T declare€” as acompatiblepredicate).
Final coalgebras (and initial algebras) exist and coincidg(,F) < F

with the ones irbet. Let us check, in this respect, the diagram

of unfold (aside), where’F denotes the final coalgebtaand FKC)]T TKC]

[(c] is the coinductive extension, anfold, of coalgebra:. We

FO<~——9
reason: ¢

UF () e

= { definition (30) }
(] - @ <[]
= { relational coinduction fusior{T")] - S C [R)] <« T-SCFS-R}

c-PCFP-c

{ definition (30) }
FO <&

We close this section by showing how the “invariants as hiations” approach
helps in developing of a number of simple, yet powerful rideeason about “invariant-
typed” coalgebras. Our calculations below address threle sues.

Separation rule:
F@ V) <"—0.¥ <« FO<~——0& N FU<~—W (36)

This rule enables the decomposition of the proof obligatiba compound invariant
into two separate proof obligations, one per conjunct.dtswlation is as follows:

Fo<—d A FU<~—u
{ (30) twice }
c-PCFP-c N c-WCFI.-c
= { monotonicity of composition (twice)
c- P UVCFP-c-W NFP-c-WCFP-F¥-¢
= { transitivity }
c-®-UWCFP- (F¥-c)
{ relatorF and (30) }

F(@ ¥)<—ao.w

13 Since diagrams iPred bear coreflexives on nodesF abbreviatesid, s, meaning that no
invariant constrains the carrier of the final coalgebra.iity for F(vF).

12 L.S. Barbosa, J.N. Oliveira and A.M. Silva

Interleaving rule:

cl|ld c c
Fox?) <Y o650 « Fo<0 A FU<w (37)

wherel|| is an interleaving operator defined byj| d s (¢ x d) wheneverF has a

distributive lawé : F® x F¥ — F (¢ x ¥) corresponding to the Kleisli composition
of F's left and right strength (see [12] for details). The cadtign of (37) follows:

Fo<—0 N FU<~—U
= { (30) twice }
c-PCFDP-c N c-WCFV-¢

= { monotonicity of product and compositign
§-(c-®xd W)C5-(F-cx FU-d)
= { x relator}

- (exd)- (Px¥)Cd- (FEXxF¥)-(cxd)
= { &'s free theorem (34)}

- (exd)- (PxU)CF(PxW)-§-(cxd)
= { definition ofc || d and (30) }

cllid
F(@OXxP)<—dxV¥

Pipeline. ForF a monad,

F6<"" ¢ « Fo<"—0 A FO<21-0o (38)
wherec e d corresponds to the Kleisli composition @andd. We calculate:

(ced) -

= { definition of Kleisli composition}
pw-Fe-d-®

- { Fo <2— ¢ and monotonicity}
w-Fe-Fo-d

= { Frelator}
w-Fc-®)-d

- { F® <<— @ and monotonicity}

Calculating invariants 13

w-F(FP-¢c)-d

{ F relator andu’s free theorem (34)}
Fé&-pu-Fc-d
= { definition of Kleisli composition}

Fo-(ced)

6 Calculating assertions

As mentioned in the introduction to this paper, the thirdmagredient of coalgebraic
reasoning identified in [10] is a language of modasertionsn which specifications
of the behaviour of systems can be expressed. Clearly,iamtarbring about dnext
time” modal operator,
A(F®—P)c = ¢c-PCFP-c
{ shunting (10)}
dCc® - (FP)-c (39)
————
Oc‘p

which holds for those states whose all immediate succestany, satisfy®. From this
a PF-definition of thénext time ® holds” modal operator emerges

def o

Ob=c"-(FP)-c (40)

which PF-transforms Def. 4.3.1 of [10]. So, assertioa (). is an alternative state-
ment of “® in an invariant” for coalgebra.
This modal operator is easily shown to be the upper adjoi@albis connection

TP CV=0C OV (41)
whose lower adjoint is thprojectionoperatorr . ® 4f .¢.c° which s central to [14]in
studying the PF-refactoring of data dependency theoryrfaopdatabase theory). From
this, one immediately infers th&b). is monotonic and distributes over conjunction:

Oc(@9) = (O:P)-(OP). Note that we express conjunction by composition because
these two operators coincide on coreflexives:

SN =0¢-¥ (42)
Such properties can then be used to reason about opépat@s in, for example,

@ is an invariant
= { 39}
& C OO0

14 L.S. Barbosa, J.N. Oliveira and A.M. Silva

= { monotonicity ofO. stemming from (41)}

Oc® € Oc(OcP)
{ G9}

P is an invariant

The whole construction of a modal logic relative to a coatgebwhich is the basis
of assertiorreasoning in coalgebra theory, can be pursued along silinigr. Consider,
for example, the definition afi P, thehenceforthP operator of [10, Def. 4.2.8]:

(OP)x def (3Q : Qisinvariant: Q C P A (Q x))

Converting predicate® and(@ to coreflexivesb and¥, respectively, and making ex-
plicit the supremunimplict in the existential quantification one gets,

0b=(v : vCOF: ¥
= { trading [4] }
(Jw o7 CcOw A wCa)
= { N-universal}
(v =vcOrna)
{ N of coreflexives is composition (42)

(Jw::vco-Ow)

which leads to a greatest (post)fixpoint definition:
0P =wv¥ :: &-OP) (43)

We end this section by showing how the PF-transform (and ntiqoeéar the re-
placement of intersection of coreflexives by compositioR))4ogether with the fix-
point calculus [3] speed up derivation of laws in such a loglee law we have chosen
to calculate is Lemma 4.2.9(ii) of [10p¢ C OO¢. We drop subscript of O, (for
economy of notation) and calculate:

O¢ C 00d

{ @3}
0O¢ C (vV¥ : (O9)- QW)

= { greatest fixed point induction: < fz = = < vf[3] }
O¢ C O O(0d)
{ 0O¢ - & = O thanks to (42), sinceld C & }

Calculating invariants 15

0O¢ C 0@ -¢-O(0OP)

{ property (for® coreflexive}p- RC S = - RC®-S }
0@ C ¢-O(09)
= { (43) and fixpoint calculusf; C fvy) }

true

7 Epilogue

Invariants are constraints on the carrier of coalgebraghvhestrict their behavior in
some desirable way but whose maintenance entails some kproaf obligation dis-
charge. An approach is put forward in this paper for reagpabout coalgebraic invari-
ants which is botltompositionabndcalculational compositional because it is based
on rules which break the complexity of such proof obligasi@tross the structures
involved; calculational because such rules are derivedkth#o an algebra of invari-
ants regarded as coreflexive bisimulations, which is whatriants are once encoded
in the language of binary relations. Such calculationahbidljties arise, in turn, from
encoding bisimulations as instances of Reynaoddigtion on functionsin this process,
functors which capture coalgebras’ dynamics are geneghtizrelators and the objects
of the underlying category are generalized to predicates.

The main contribution of the paper is the explicit adoptidnsoch a construc-
tive, calculational style in approaching the problem. BfitB, 6] already suggest a
relational/relator-based approach to bisimulation, f@lially generalizing from coalge-
bras to dialgebras. However, no relationship is estaldistith the algebra of Reynolds
relation on functionsvhich, in close association with Reynolds abstraction thenp
naturally leads to a categori?(ed) whose objects are predicates (invariants).

In a wider context, the explicit adoption of such a categay potential to support
a constructive discipline of extended static checking (EBCa coalgebraic view of
computer systems, but surely there is much work to be donerddiiis becomes of
practical use. On the theory side, the authors are aware ohmaection between the
“predicates as objects” approach dfrdge structure$9] 1*. Quoting this reference:

A Frege structure is a lambda structus€ on the setd together with a desig-
nated subset ol whose elements are called propositions (...) the propmsati
connectives are required to yield propositions as valudg when they operate
on propaositions as arguments.

Further investigating this connection is surely an inténggopic for future research.

References

1. Peter Aczel and Nax Mendler. A final coalgebra theorenCdtegory Theory and Computer
Sciencepages 357-365, London, UK, 1989. Springer-Verlag.

1 They thank Peter Dybjer for pointing out this connection.

16

10.

11.
12.
13.

14.
15.

16.

17.

18.

19.
20.

21.
22.

L.S. Barbosa, J.N. Oliveira and A.M. Silva

K. Backhouse and R.C. Backhouse. Safety of abstracipitiations for free, via logical
relations and Galois connectiorSCP, 15(1-2):153-196, 2004.

. R. Backhouse. Galois connections and fixed point calculasR. Crole, R. Backhouse,

and J. Gibbons, editor8lgebraic and Coalgebraic Methods in the Mathematics ofgfam
Constuction pages 89-148. Springer Lect. Notes Comp. Sci. (2297),.2002

. R. Backhouse and D. Michaelis. Exercises in quantifieripudation. InMPC’06, pages

70-81. Springer LNCS (4014), 2006.

. R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcoln$. Moermans, and J. van der

Woude. Polynomial relators. IAMAST'91 pages 303-362. Springer, 1992.

. R.C. Backhouse and P.F. Hoogendijk. Final dialgebrasmkrategories to allegoriegfor-

matique Theorique et Application33(4/5):401-426, 1999.

. R. Bird and O. de Moor. Algebra of Programming. Series im@oter Science. Prentice-

Hall International, 1997. C.A.R. Hoare, series editor.

. A. Carboni, G. Kelly, and R. Wood. A 2-categorical apptoszchange of base and geomet-

ric morphisms |. Technical Report 90-1, Dept. of Pure Mathsiy. Sydney, 1990.

. William S. Hatcher. Review: Peter Aczel. Frege strudlard the notions of proposition,

truth and setThe Journal of Symbolic Logi&1(1):244-246, 1986.

Bart Jacobs. Introduction to Coalgebra. Towards Matties of States and Observations.
Draft Copy. Institute for Computing and Information Scieagc Radboud University Ni-
jmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

C.B. JonesSystematic Software Development Using \V.[Rventice-Hall Int., 1986.

A. Kock. Strong functors and monoidal monadschiv fur Mathematik23:113-120, 1972.
J.N. Oliveira.Invariants as coreflexive bisimulations — in a coalgebraittiag Dec. 2006.
Presentation at théFIP WG 2.1 #62 MeetingNamur.

J.N. Oliveira. Pointfree foundations for (generickless decomposition, 2007. (submitted).
J.N. Oliveira. Theory and applications of the PF-transf Feb. 2008. Tutorial at Ler-
NET’'08, Piriapolis, Uruguay (slides available from thetaar's website).

J.N. Oliveira and C.J. Rodrigues. Transposing relatifstomMaybefunctions to hash tables.
In MPC’04, volume 3125 of. NCS pages 334—-356. Springer, 2004.

D. Park. Concurrency and automata on infinite sequemaages 561-572. Springer LNCS
(104), 1981.

J.C. Reynolds. Types, abstraction and parametric pmiyhism. Information Processing
83, pages 513-523, 1983.

Jan J.M.M. Rutten. Relators and metric bisimulatideNTCS 11:1-7, 1998.

J.J.M.M. Rutten. Coalgebraic foundations of lineatays (an exercise in stream calculus),
2007. Proceedings CALCO 2007, LNCS, Springer, to appear.

M. Vaccari. Calculational derivation of circuits, 1993hD thesis, Univ. S. Milano.

P.L. Wadler. Theorems for free! #th Int. Symp. on FPLCA.ondon, Sep. 1989. ACM.

