Skip to main content

Source Localization of Subtopographies Decomposed by Radial Basis Functions

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5128))

Included in the following conference series:

  • 2003 Accesses

Abstract

Functional neuroimaging methods give the opportunity of investigating human brain functioning. Mostly used functional neuroimaging techniques include Electroencephalogram (EEG), functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and optical imaging. Among these techniques EEG has the best time resolution, while fMRI has the best spatial resolution. High temporal resolution of EEG is an attractive property for neuroimaging studies. EEG inverse problem is needed to be solved in order to identify the locations and the strength of the electrical sources forming EEG/ERP topographies. Low spatial resolution of the scalp topography causes this localization problem more complicated. In this paper, a spatial preprocessing method, which separates a topography into two or more subtopographies is proposed. The decomposition procedure is based on defining a spatial map with radial basis functions which forms the subtopographies. A simulated data is used to exhibit the advantage of using this decomposition technique prior to EEG source localization. It is shown that the accuracy of the source localization problem is improved by using the subtopographies instead of using the raw topography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scherg, M., Von Cramon, D.: Evoked dipole source potentials of the human auditory cortex. Electroencephalography and Clinical Neurophysiology 65, 344–360 (1986)

    Article  Google Scholar 

  2. Koles, Z.J.: Trends in EEG source localization. Electroencephalography and Clinical Neurophysiology 106, 127–137 (1998)

    Article  Google Scholar 

  3. Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic brain mapping. IEEE Signal Processing magazine 1, 14–30 (2001)

    Article  Google Scholar 

  4. Michela, C.M., Murraya, M.M., Lantza, G., Gonzaleza, S., Spinellib, L., Grave de Peraltaa, R.: EEG source imaging. Clinical Neurophysiology 115, 2195–2222 (2004)

    Article  Google Scholar 

  5. Mosher, J.C., Lewis, P.S., Leahy, R.M.: Multiple Dipole Modeling and Localization from Spatio-Temporal MEG Data. IEEE Trans. On Biomedical Engineering 39(6), 541–557 (1992)

    Article  Google Scholar 

  6. Pascual-Marqui, R.D., Michel, C.M., Lehmann, D.: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18, 49–65 (1994)

    Article  Google Scholar 

  7. Koenig, T., Marti-Lopez, F., Valdes-Sosa, P.A.: Topographic timefrequency decomposition of the EEG. NeuroImage 14, 383–390 (2001)

    Article  Google Scholar 

  8. Gonzalez Andino, S.L., Grave de Peralta Menendez, R., Lantz, C.M., Blank, O., Michel, C.M., Landis, T.: Non-Stationary Distributed Source Approximation: An Alternative to Improve Localization Procedures. Human Brain Mapping 14, 81–95 (2001)

    Article  Google Scholar 

  9. Miwakeichi, F., Martinez-Montes, E., Valdes-Sosa, P.A., Nishiyama, N., Mizuhara, H., Yamaguchia, Y.: Decomposing EEG data into space time frequency components using Parallel Factor Analysis. NeuroImage 22, 1035–1045 (2004)

    Article  Google Scholar 

  10. Wang, K., Begleiter, H., Porjesz, B.: Spatial enhancement of eventrelated potentials using multiresolution analysis. Brain Topography 10(3), 191–200 (1998)

    Article  Google Scholar 

  11. Lorensen, W.E.: Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics 21(4), 163–169 (1987)

    Article  Google Scholar 

  12. Hamalainen, S.M., Sarvas, J.: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. On Biomedical Eng. 36(2), 165–171 (1989)

    Article  Google Scholar 

  13. Pascual-Marqui, R.D.: Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1:exact, zero error localization. arXi:0710.3341 [math-ph] (October 17, 2007), http://arxiv.org/pdf/0710.3341

  14. Wagner, M., Fuchs, M., Kastner, J.: Evaluation of sLORETA in the Presence of Noise and Multiple Sources  16(4), 277–280 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takeyoshi Dohi Ichiro Sakuma Hongen Liao

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duru, A.D., Ademoglu, A. (2008). Source Localization of Subtopographies Decomposed by Radial Basis Functions. In: Dohi, T., Sakuma, I., Liao, H. (eds) Medical Imaging and Augmented Reality. MIAR 2008. Lecture Notes in Computer Science, vol 5128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79982-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79982-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79981-8

  • Online ISBN: 978-3-540-79982-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics