Skip to main content

Quick Energy Drop in Stochastic 2D Minority

  • Conference paper
  • 1614 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5191))

Abstract

Cellular automata are usually updated synchronously and thus deterministically. The question of stochastic dynamics arises in the development of cellular automata resistant to noise [1] and in simulation of real life systems [2]. Synchronous updates may not be a valid hypothesis for such simulations and most of these studies use stochastic versions of cellular automata.

In [3,4,5,6], the authors study different classes of cellular automata under fully asynchronous dynamics (only one random cell fires at each time step) and α-asynchronous dynamics (each cell has a probability α to fire at each time step). They develop tools and methods to ease the study of other cellular automata. In [4,6], they analyze 2D Minority under fully asynchronous dynamics for Von Neumann and Moore neighborhoods. The behavior of this cellular automaton under these dynamics is surprisingly rich. The energy of a configuration is an useful information. In [4], it is proved that configurations of energy greater than \(\frac{5mn}{3}\) (where m and n are the length and the width of the configuration) will not appear in the long range behavior of 2D minority for Von Neumann neighborhood. In this paper we improve this bound to \(18\lceil \frac{m}{4} \rceil \lceil \frac{n}{4} \rceil\). The proof is based on an enumeration of cases made by computer. This method could be easily tuned for other cellular automata or neighborhoods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gács, P.: Reliable computation with cellular automata. Journal of Computer andSystem Sciences 32(1), 15–78 (1986)

    Article  MATH  Google Scholar 

  2. Ermentrout, G.B., Edlestein-Keshet, L.: Cellular automata approaches to biological modelling. Journal of Theoretical Biology 160, 97–133 (1993)

    Article  Google Scholar 

  3. Fatés, N., Morvan, M., Schabanel, N., Thierry, E.: Asynchronous behaviour of double-quiescent elementary cellular automata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 316–327. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Regnault, D., Schabanel, N., Thierry, E.: Progresses in the analysis of stochastic 2d cellular automata: A study of asynchronous 2d minority. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 320–332. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Fatés, N., Regnault, D., Schabanel, N., Thierry, E.: Asynchronous behaviour of double-quiescent elementary cellular automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887. Springer, Heidelberg (2006)

    Google Scholar 

  6. Regnault, D., Schabanel, N., Thierry, E.: On the analysis of ”simple” 2d stochastic cellular automata. In: Proc. of LATA 2008. Springer, Heidelberg (Volume to appear, 2008)

    Google Scholar 

  7. Demongeot, J., Aracena, J., Thuderoz, F., Baum, T.P., Cohen, O.: Genetic regulation networks: circuits, regulons and attractors. C.R. Biologies 326, 171–188 (2003)

    Article  Google Scholar 

  8. Bersini, H., Detours, V.: Asynchrony induces stability in cellular automata based models. In: Proceedings of Articial Life IV, pp. 382–387. MIT Press, Cambridge (1994)

    Google Scholar 

  9. Fatés, N., Morvan, M.: An experimental study of robustness to asynchronism for elementary cellular automata. Complex Systems 16(1), 1–27 (2005)

    MathSciNet  Google Scholar 

  10. Schónsch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. BioSystems 51, 123–143 (1999)

    Article  Google Scholar 

  11. Fukś, H.: Probabilistic cellular automata with conserved quantities. Nonlinearity  17(1), 159–173 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Balister, P., Bollobás, B., Kozma, R.: Large deviations for mean fields models of probabilistic cellular automata. Random Structures & Algorithms 29, 399–415 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rojas, R.: Neural Networks: A Systematic Introduction, ch. 13 - The Hopfield Model. Springer, Heidelberg (1996)

    Google Scholar 

  14. Goles, E., Martinez, S.: Neural and automata networks, dynamical behavior and applications. Maths and Applications, vol. 58. Kluwer Academic Publishers, Dordrecht (1990)

    MATH  Google Scholar 

  15. McCoy, B., Wu, T.T.: The Two-Dimensional Ising Model. Harvard University Press (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hiroshi Umeo Shin Morishita Katsuhiro Nishinari Toshihiko Komatsuzaki Stefania Bandini

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Regnault, D. (2008). Quick Energy Drop in Stochastic 2D Minority. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds) Cellular Automata. ACRI 2008. Lecture Notes in Computer Science, vol 5191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79992-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79992-4_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79991-7

  • Online ISBN: 978-3-540-79992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics