Skip to main content

A Meta-analysis of Timbre Perception Using Nonlinear Extensions to CLASCAL

  • Conference paper
Computer Music Modeling and Retrieval. Sense of Sounds (CMMR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4969))

Included in the following conference series:

Abstract

Seeking to identify the constituent parts of the multidimensional auditory attribute that musicians know as timbre, music psychologists have made extensive use of multidimensional scaling (mds), a statistical technique for visualising the geometric spaces implied by perceived dissimilarity. mds is also well known in the machine learning community, where it is used as a basic technique for dimensionality reduction. We adapt a nonlinear variant of mds that is popular in machine learning, Isomap, for use in analysing psychological data and re-analyse three earlier experiments on human perception of timbre. Isomap is designed to eliminate undesirable nonlinearities in the input data in order to reduce the overall dimensionality; our results show that it succeeds in these goals for timbre spaces, compressing the output onto well-known dimensions of timbre and highlighting the challenges inherent in quantifying differences in spectral shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitkin, M., Anderson, D., Hinde, J.: Statistical modelling of data on teaching styles. Journal of the Royal Statistical Society, Series A (General) 144(4), 419–461 (1981)

    Article  Google Scholar 

  2. Bismarck, G., von, G.: Sharpness as an attribute of the timbre of steady sounds. Acustica 30, 159–172 (1974)

    Google Scholar 

  3. Burgoyne, J.A., Saul, L.K.: Visualization of low-dimensional structure in tonal pitch space. In: Proceedings of the International Computer Music Conference, pp. 243–246 (2005)

    Google Scholar 

  4. Caclin, A., McAdams, S., Smith, B.K., Winsberg, S.: Acoustic correlates of timbre space dimensions: A confirmatory study using synthetic tones. Journal of the Acoustical Society of America 118(1), 471–482 (2005)

    Article  Google Scholar 

  5. Carroll, J.D., Chang, J.-J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  MATH  Google Scholar 

  6. Gabriel, K.R., Sokal, R.R.: A new statistical appraoch to geographic variation analysis. Systematic Zoology 18, 259–270 (1969)

    Article  Google Scholar 

  7. Grey, J.M.: Multidimensional perceptual scaling of musical timbre. Journal of the Acoustical Society of America 61, 1270–1277 (1977)

    Article  Google Scholar 

  8. Grey, J.M., Gordon, J.W.: Perceptual effects of spectral modifications on musical timbres. Journal of the Acoustical Society of America 63(5), 1493–1500 (1978)

    Article  Google Scholar 

  9. Hope, A.C.A.: A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society, Series B (Methodological) 30(3), 582–598 (1968)

    MATH  Google Scholar 

  10. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proceedings of the IEEE 80(9), 1502–1517 (1992)

    Article  Google Scholar 

  11. Krumhansl, C.L.: Why is musical timbre so hard to understand? In: Nielzen, S., Olsson, O. (eds.) Structure and Perception of Electroacoustic Sound and Music. Excerpta Medica, vol. 846, Elsevier, Amsterdam (1989)

    Google Scholar 

  12. McAdams, S., Winsberg, S., Donnadieu, S., Soete, G.D., Krimphoof, J.: Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes. Psychological Research 58, 177–192 (1995)

    Article  Google Scholar 

  13. Peeters, G., McAdams, S., Herrera, P.: Instrument sound description in the context of MPEG-7. In: Proceedings of the International Computer Music Conference (2000)

    Google Scholar 

  14. Tennenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  15. Torgerson, W.S.: Theory and Methods of Scaling. Wiley, Chichester (1958)

    Google Scholar 

  16. Weinberger, K.Q.: Unsupervised learning of image manifolds by semidefinite programming. In: Proceeding of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  17. Weinberger, K.Q., Saul, L.K.: An introduction to nonlinear dimensionality reduction by maximum variance unfolding. In: Proceedings of the National Conference on Artificial Intelligence (AAAI) (2006)

    Google Scholar 

  18. Wessel, D.L., Bristow, D., Settel, Z.: Control of phrasing and articulation in synthesis. In: Proceedings of the International Computer Music Conference, pp. 108–116 (1987)

    Google Scholar 

  19. Winsberg, S., Carroll, J.D.: A quasi-nonmetric method for multidimensional scaling via an extended Euclidean model. Psychometrika 54(2), 217–229 (1989)

    Article  MathSciNet  Google Scholar 

  20. Winsberg, S., De Soete, G.: A latent class approach to fitting the weighted Euclidean model, CLASCAL. Psychometrika 58(2), 315–330 (1993)

    Article  Google Scholar 

  21. Winsberg, S., De Soete, G.: Multidimensional scaling with constrained dimensions: CONSCAL. British Journal of Mathematical and Statistical Psychology 50, 55–72 (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Richard Kronland-Martinet Sølvi Ystad Kristoffer Jensen

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burgoyne, J.A., McAdams, S. (2008). A Meta-analysis of Timbre Perception Using Nonlinear Extensions to CLASCAL. In: Kronland-Martinet, R., Ystad, S., Jensen, K. (eds) Computer Music Modeling and Retrieval. Sense of Sounds. CMMR 2007. Lecture Notes in Computer Science, vol 4969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85035-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85035-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85034-2

  • Online ISBN: 978-3-540-85035-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics