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ABSTRACT

This paper proposes attributes of a living computer
music, the product of a live algorithm. It illustrates how
these attributes can inform creative design with reference
to a real-time system for solo performer-machine
collaboration, Neural Network Music, and the PQƒ
framework proposed for live algorithms. Improvisation
is treated as a classification problem at a high level of
musical behaviour which can be measured statistically
and train a multilayer perceptron neural network.
Network outputs shape a stochastic-based synthesis
engine. Mappings are covertly assigned, revisited by
both player and machine as a performance develops. As
the timing and choice of mapping is unknown, both
participants are invited to learn and adapt to a
responsive sonic environment which is created afresh on
each performance. This offers a novel real-time
application of feed-forward neural networks and a
challenging, creative technological platform for freely
improvised music.

1. INTRODUCTION

A live algorithm (LA)1 is the function of an ideal
autonomous system able to engage in performance with
abilities analogous (if not identical) to a human
musician, and produce a living computer music [3]. A
true LA would employ methods distinct from
established AI techniques to generate music from a rule-
base, whether invented or derived from existing genres.
Rather, a LA is relevant to creative, improvised
performance where structure and character – in so far that
they are evident – are emergent properties, and products
of interaction within a heterarchical group. The
emergence of mutually cooperative behaviours within
improvising groups, and music events and structures
which result, has been studied in Sawyer [13]. This
phenomenon provides aspiration for living computer
music.

An autonomous system, by definition, does not rely on
human agency, so differs from the established practice
of ‘live electronics’ by rejecting the notion of the
computer as musical instrument. Any explicit a priori
knowledge, agreement, or stated compositional design
(with or without notation) would cast doubt on true
autonomy. Any inference, whether in design or during
live performance that a system is reliant on human input
suggests only reactive, or only weakly interactive

                                                
1 Live Algorithms for Music Research Network, Established in 2004
by Dr T. Blackwell and the author. UK EPSRC Grant no.
GR/T21479/01.

behaviour, which cannot be compared readily to the
strong interactions evident within successful human
group music-making.

1.1. Properties of a living computer music

The following proposed properties are integral to the
idea of autonomous machine improvisation:
adaptability, empowerment, immersion, opacity, and
the unimagined.  [17].

Adaptability is the ability to acclimatise to a shared
audio environment, demonstrable in changes of musical
behaviour. Lewis’s term emotional transduction,
defined as a “bi-directional transfer of intentionality
through sound” [9], establishes the essential criterion
that musical interaction should occur principally
through the medium itself, rather than via control
information. An alternative analogy, proposed by
Blackwell and the author [4], is stigmergy, the process
by which self-organising, structured behaviours of insect
populations result from the interaction by individuals
with their environment, not directly with each other.
Musical performance, between players or players and
machine can be regarded as similarly self-organising.
Collaboration within a human/social environment
involves a continuous assuming and casting of roles,
and the development of a mutual history during music-
making [7]. Such contextual contingency can be
modelled with adaptable parameter mapping,
optimization and machine learning.

Empowerment entails control over decisions that impact
upon future experience.  Decisions (or at least non-
arbitrary changes in state) can be instigated by chaotic or
complex systems: cellular automata, particle swarms [4]
or neural networks [16]. These processes are not design-
led, and evidence self-organising properties that can
modify the audio environment and necessitate response
from both human and machine participants.

Immersion occurs if there is an intimate, binding
understanding shared by performers through informed
listening and observation. Emulation of this should
attend to nuance and broader musical states, realised as
sound, rather than production techniques (lip pressure,
gestural information), however intimate the control. A
truly immersive, intimate relationship – as experienced
by the performer – suggests optimal flow ; a goal-
orientated, mental state that explores the limits of
experience and expectation, obtaining pleasure in
meeting these challenges with appropriate skills [5].



Opacity is a prerequisite for this flow; an avoidance of
naïve processes of cause and effect, via either direct
control or a shared audio environment.  The system
ought to offer an ambiguous and shifting balance
between the interactive and proactive, and across the
threshold of the apparently chaotic and the readily
predictable.

A fifth attribute of living computer music is suggested;
an unimagined  music, the unresolved ‘work in
movement’ offered by collaboration of machine and
human musicians on a would-be equal footing. If
computers might extend, not copy, human behaviour
through autonomous and prosthetic capabilities,
machine music need not model established styles or
practices. All contributions may have equal significance,
but may not necessarily be equivalent; as a “musique
informalle”, such music is unfettered by external or
inflexible influence, “free of anything irreducibly alien
to itself or superimposed on it” [1], seeking its own
means of emergent coherence.

2. A PERFORMANCE SYSTEM

These goals are addressed in the design of a system
Neural Network Music (NN Music) in Max/MSP. It has
been deployed with a number of instrumental
combinations under the titles au(or)a, piano_prosthesis
and cello_prosthesis.2 All musical instances of NN
Music bring together a solo player with computer, who
mutually interact by proxy in the sonic environment. In
this system, audio analysis and synthesis are mapped
via a feed-forward neural network at the heart of the
system.  The network adapts to attributes of the
performance, and outputs synthesis parameters
accordingly.

Analysis focuses on underlying harmonic characteristics
of the improvisation (rather than its step-by-step note
progression) and extends it logically to provide a related
and wider source of musical material. This approach is
stylistically neutral and seems best suited to  “non-
idiomatic” free improvisation, as described by Bailey
[2]. There is further analysis to identify other attributes
of the performance together as a single musical
‘behaviour’ (for instance, a tendency to play loudly,
intermittently, and in a high register) and then be
learned by the network.  Synthesis comprises the
iteration of  sound events based on a stochastic method;
each iteration has its own parameter profile, and
depending on the rate of iteration, the sound world can
develop a “laminal” (textural) character or be more
definitively note-based or “atomized” [11].  Stochastic
techniques are well established in notated music and
audio synthesis; for NN Music it offers the possibility
of complex, mutable musical behaviours that only exist
in an “interpretative state” [15].  This is well suited to
the contingencies of the neural network outputs.

In the modular PQƒ  architecture proposed for live
algorithms [4], P  is an analysis function, Q  is a
                                                
2 Audio recordings are available at the author’s website,
www.myoungmusic.com

synthesis function and ƒ is a hidden algorithm; any
complex generative system, mapping function or AI
learning mechanism (as in this case). P and Q interpret,
and interface with the sonic environment, relaying
parameters to and from the algorithm ƒ  respectively;
this is analogous to the processes of listening, playing
and creative thinking practiced by a human performer.

2.1. Analysis and Classification

P comprises two independent analysis functions that
provide representations of the player’s improvisation.
The first function, P1, parameterises pitch characteristics,
and the second, P2, offers a statistical representation of
musical behaviour.

 P1 produces a dynamic state Schord which comprises a
list {x1, x2, …, xn} of the last pitches identified from the
performer and approximated to the nearest quartertone
sharp/flat. In current versions, n = 6. This analysis is
refined by a statistical filter that determines the
attentiveness of the system; the probability that an
identified pitch will be allowed to update Schord. In its
most attentive mode, all pitches are admitted, and when
least attentive, there is only a small probability that one
will be successful. The filter is deployed dynamically,
mapped from the mean onset density detected over an
adjustable time ∆ t , so relative inactivity on the
performer’s part fosters more attentive machine
‘listening’.

As pitches are admitted, a generative function
recalculates ten transposition tables by cross-
multiplying each pitch within the primary set of six (see
Figure 1).

ƒ: Schord Schord_set

This method emulates the post-serial technique of chord
multiplication, devised by Boulez as, for example,
identified in the “L’artisanat Furieux” cycle of Le
Marteau sans Maitre. [8].  The obvious difference is
that this function continuously updates Schord_set in real
time, as new pitches are admitted. Schord_set is a dynamic
pitch corpus, deployed as a resource for qpitch , explained
below.

The second function, P2, creates a dynamic performance
state Saudio,. This is a statistical representation, measured
over  time, ∆t, of a number of audio descriptors {p1, p2,
…, p n} measured in 50ms windows. Familiar
descriptors are used: pitch, loudness, onset density,
sustained-ness (ratio of sound to silence). Other
descriptors are included when relevant, depending on the
solo instrument used: brightness (spectral centroid)
audio periodicity and roughness. In all versions, the
performance state Saudio comprises the normalised mean
and normalised standard deviation of the parameters
involved, measured over ∆t and updated continuously,
where 5s < ∆t > 30s.  

.



Figure 1. An example chord set. The primary set is the central chord.

These performance states offer a classification
problem, which is well suited to the multilayer
perceptron neural network.  This is trained using a
back-propagation error algorithm that minimises the
error between required and actual outputs by gradient
descent [16], given a set of pre-defined input and
output conditions.

As noted by Toivianen [16], this network type
benefits from its capacity for generalisation and
tolerance to apparently unpredictable or contradictory
data; consequently it is well suited to audio analysis
of improvised musical material. This implementation
involves two connected neural networks, A and B , in
which A  learns new input conditions from the
performance and maps these to B. Two networks
offer greater transparency for classification in the
modular process of analysis-synthesis explained
below. In parameter mapping [12] the networks
implement convergent and divergent strategies,
respectively, and the number of input/output nodes
varies. Both have three hidden node layers.
Implementation is with op.fann.mlp3 for Max/MSP.

Classification problems match one input training
pattern to a single output neuron.  This is applied by
taking Saudio states as inputs to neural network A.
This network retrains using the back-propagation
method each time a new input state is received. The
output of the network is an expanding truth table that
represents each learned state. This could be described
as a special form of adaptive convergent mapping, in
which several inputs are mapped to a simple output
in a perpetually expanding data space. The exact
number of input and output nodes has varied in
different instances of the system – 8-20 input nodes
are typical – and the number of output nodes
increases during performance.

It is not possible nor desirable for retraining to occur
at the analysis rate: the aim of the process is to
identify musical ‘behaviours’ that are well-defined
and contrasting, so the network can be trained to
respond effectively to a broad range of subsequent
activity. To achieve this, the dynamic state Saudio is
considered for relearning only if fit: the fitness
function ƒfit is a measure of the similarity of the
current state to all those previously learned. The
function used, found through experimentation, is the
sum of the mean and standard deviation of the
absolute difference between the new state under
consideration and each of the previously admitted
                                                
3 An implementation of FANN,  Fast Artificial Neural Network by
Olivier Pasquet.

states. This produces a list of values, {a1, a2, …, as},
where s is the number of already admitted states. If
any value of a  is greater than a predetermined
threshold z, the new state is allowed to update the
network, which is retrained on the fly; otherwise it is
discarded. In the current implementation the
threshold is set by the user, as to be most useful it
must adjust to characteristic behaviours of the
instrument and performer.

ƒfit : Saudio  {a1, a2, …, as+1}

Once the musician begins, the network is trained
with several new states – usually within the first few
seconds, depending on the threshold value z. There is
then a tendency for the time interval between
retraining to increase, depending upon the character
and structure of the improvisation and the consequent
variance of Saudio over time. As the performance
develops, new analysis states will approximate one
or, more often, several of those previously obtained.
The network is continually queried to evaluate how
far the current state Saudio approximates any of those
previously learned.  This evaluation is mapped to the
network B  for synthesis, and is the first step of
generative/synthesis Q.

2.2. Sound Generation

A function ƒmap relays outputs of network A  to
network B, randomly re-sorting the indices of the
data. This jumbling up of output and input nodes
provides genuine opacity; it is covert, challenging the
player to adapt to the system as its behaviour widens.

Network B creates new input nodes as s increases; in
the versions of the system 60–100 output nodes are
typical. They constitute a probability distribution for
a stochastic synthesis function. Each synthesis state
Ssynth comprises a probability distribution of a large
number of output parameters q  {qduration, qpitch,
qamplitude, q density, q sample, q filter, q stereo…}. A higher-
level parameter determines the probability of
parameter-choice looping. Synthesis comprises the
iteration of sound events; each iteration generates its
own parameter profile according to the probability
distribution. Events are MIDI-based in aur(or)a for
solo instrument and disklavier. An instrument-
specific sound corpus is used in piano_  and
cello_prosthesis comprising recordings of each
individual note across the entire tessitura, with a
number of playing techniques. The sound materials
are also processed with filtering and ring modulation,
according to the relevant parameters q. The advantage
of this approach is its generality; new materials,



Figure 2. An examples of stochastic distributions for synthesis.

instrumental sounds and playing techniques can be
added with ease to further expand the timbral
vocabulary of the system. A library of stochastic
distributions constitutes the knowledge base of the
system; pre-composed material, albeit of highly
mutable kind. Each version of the system has its own
library of distributions. Figure 2 shows an example.
In practice, the behaviour of network B is entirely
dependent on the classifications made by network A.
If a player suggests two previously learned
behaviours (e.g., in reference to the earlier example,
improvising quietly,  intermittently, but in the low
register) this will be reflected in a fusion of two
output synthesis states. The choice of actual pitches
is related to both the player’s recent activity and the
internal chord multiplication process.

3. CONCLUSION

The system NN Music developed for aur(or)a  and
piano_ and cello_prosthesis functions on two levels;
it contributes to the sonic environment in which the
player is immersed and must adapt, and it is a sonic
or gestural prosthetic. This is more evident in
_prosthesis by use of sound materials related to the
piano and ‘cello. The reaction of the entire system,
computer and resultant sonic environment, is
prosthetic in effect; it aims to provide a technological
augmentation of the performance capabilities of the
musician and his/her musical expression. Even brief,
‘low-key’ interventions from the player can have
substantial effects on the system and the resulting
sound. Such a correspondence between performer and
machine illustrates a shift in the user-computer
relationship proposed by Stojanov and Stojanoski, in
which the ‘conversation’ paradigm has been
supplanted by the metaphor of prosthesis [14]. It is
hoped the attributes proposed for living computer
music, evidenced to some extent by NN Music, offer
avenues for further research.
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