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Abstract. In this paper, two efficient multiple-differential methods to
detect collisions in the presence of strong noise are proposed - binary and
ternary voting. After collisions have been detected, the cryptographic key
can be recovered from these collisions using such recent cryptanalytic
techniques as linear [I] and algebraic [2] collision attacks. We refer to
this combination of the collision detection methods and cryptanalytic
techniques as multiple-differential collision attacks (MDCA).

When applied to AES, MDCA using binary voting without profiling
requires about 2.7 to 13.2 times less traces than the Hamming-weight
based CPA for the same implementation. MDCA on AES using ternary
voting with profiling and linear key recovery clearly outperforms CPA
by requiring only about 6 online measurements for the range of noise
amplitudes where CPA requires from 163 to 6912 measurements. These
attacks do not need the S-box to be known. Moreover, neither key nor
plaintexts have to be known to the attacker in the profiling stage.

Keywords: side-channel attacks, collision detection, multiple-differential
collision attacks, AES, DPA.

1 Introduction

Side-channel attacks have become mainstream since their first publication in [3].
Differential power analysis (DPA) [4] and correlation power analysis (CPA) [5],
a generalization of DPA, are probably the most wide-spread practical attacks
on numerous cryptographic embedded systems such as smart-card microcon-
trollers [6] and dedicated lightweight ASICs [1].

Collision attacks represent another class of side-channel attack techniques
being essentially based on the cryptanalytic properties of attacked cryptographic
algorithms. Collision attacks on block ciphers were proposed in [§] for DES. The
idea is due to Hans Dobbertin and was also discussed in the early work [9]. Since
then there has been quite a bit of research in this area: [I0] improves the collision
attack on DES, [I1] applies the technique to AES, [12] suggests a collision attack
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on an AES-based MAC construction, [I3] combines collision attacks on AES with
differential cryptanalysis to overcome several masked rounds.

Recently such improvements as linear collision attacks [I] and algebraic col-
lision attacks [2] for AES have been proposed which require a very low number
of measurements for the key recovery procedure to succeed with a high proba-
bility and within a feasible time span. However, these attacks as well as those in
[11] and [I2] are rather theoretical being substantially based on the assumption
that the implementation allows the attacker to reliably detect if two given S-box
instances process the same value.

The contribution of this paper is two-fold. On the theoretical side, two col-
lision detection techniques are proposed called binary and ternary voting. We
refer to the combination of the statistical collision detection methods and crypt-
analytic collision attacks as multiple-differential collision attacks (MDCA). On
the practical side, we apply MDCA to a hardware implementation of AES for a
wide range of noise amplitudes using advanced power consumption simulation.

MDCA works in the two scenarios: where profiling is either allowed (ternary
voting) or not allowed (ternary voting without profiling and binary voting).
Note that the notion of profiling for our collision detection techniques is different
from that for template attacks [14], [I5]. While template attacks require detailed
knowledge of the implementation in the profiling stage, the only information
needed in the profiling stage of the collision detection methods is the time interval
when the S-boxes are executed.

MDCA based on the binary voting method for the given AES implementa-
tion needs about 2.7 to 13.2 times less traces than Hamming-weight based CPA
in the range of noise levels we studied. While MDCA based on ternary vot-
ing without profiling does not exhibit any advantages over CPA, the required
number of online measurements for ternary voting with profiling is considerably
lower than that for CPA for all noise amplitudes we investigated. For instance,
if < 10% profiling measurements are allowed, MDCA based on ternary voting
with profiling and linear key recovery requires only 6 online measurements in
the noise amplitude range where the standard CPA would require from 163
to 6912 measurements. A further advantage of the proposed collision detection
techniques combined with the linear collision attacks is that they work with se-
cret S-bozes. Moreover, ternary voting with profiling also requires neither keys
nor inputs/outputs to be known in the profiling stage. However, as already men-
tioned, the attacker has to know when the S-boxes are executed within the
implementation.

The remainder of the paper is organized as follows. Section 2 discusses the at-
tack scenarios, introduces some notation and briefly mentions the linear collision
attacks. Section [3] presents the multiple-differential collision detection techniques
and theoretically investigates some of their properties. Section Hl characterizes
the underlying least-square based binary comparison test for an AES implemen-
tation, applies MDCA to this implementation and compares the results to CPA.
We conclude in Section
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2 Preliminaries

2.1 Attack Flows

There are two basic attack scenarios we consider: collision attacks without pro-
filing and collision attacks with profiling. A collision attack without profiling
consists of an online stage and an offline stage, while a collision attack with
profiling additionally contains a profiling stage.

In the online stage, some random known 16-byte plaintexts P; = {p; 16

j=1
pi € GF(2®), are sent to the attacked device implementing AES, where they
are added with the first 16-byte subkey K = {k;}1%,, k; € GF(2%). Then each
of the 16 values a§- = p§- @ kj, a; € GF(2%), is processed by the AES S-box.
The online traces T; = {7'JZ ;21, T; = (7';717 . 77';71) € R, corresponding to these
S-box calculations are acquired by the measurement equipment (e.g. they can
contain such side-channel parameters as power consumption or electromagnetic
radiation).

In the optional profiling stage, the device is triggered to perform a number of
cryptographic operations with some unknown profiling inputs for some unknown
keys. The profiling traces are acquired by the measurement equipment. The
profiling stage takes place before the online stage and can be reused by several
attacks on the same implementation.

The offline stage recovers the key. This occurs in two steps. First, collisions
are detected in the online traces T; by means of signal processing. The collision
detection with profiling additionally uses the profiling traces. Second, an AES
key candidate is obtained using the detected collisions and the corresponding
inputs P;. Note that one or several plaintext-ciphertext pairs produced with the
attacked key may be needed to identify the correct key candidate in the offline
stage.

If averaging is applied, the attacker has to be able to send several unknown
equal inputs to the device and to fix some unknown key for these measurements
in the profiling stage. Additionally, he has to be able to send several copies of
the known random plaintexts to the implementation in the online stage.

The attack complexity is defined by three parameters. Cprofiling is the number
of inputs to AES for which measurements have to be performed in the profiling
stage (number of profiling measurements). Obviously, Cprofiing = 0 for colli-
sion attacks without profiling. Copline is the number of inputs to AES for which
measurements have to be performed in the online stage (number of online mea-
surements). Comine 1S the computational complexity of the key recovery, that
is, the number of operations needed to solve the resulting systems of linear or
nonlinear equations and to identify the most probable solution.

2.2 Key Recovery from S-Box Collisions

AES-128 performs 160 S-box operations in the data path for each run, which are
different for different inputs, and 40 additional S-box computations in the key
schedule, which remain the same for a given key. If two of these S-box instances
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in one or two distinct runs process the same value, there is a generalized internal
collision. The power of the improved collision attacks [I] on AES origins from
the fact that the number of generalized collisions grows quadratically with the
linear increase of the number of unique inputs considered. So, even if the key
schedule is ignored, there are about 40.9 colliding S-boxes for just one input and
already about 555.2 collisions for 5 inputs.

When collisions have been detected, the AES key has to be recovered. In this
paper we use the linear collision attacks [I] for this purpose. A linear collision
in AES is a generalized collision within the first AES round. Given such a linear
collision, the attacker obtains a binomial linear equation over G F' (28) of the form
kj1 @ ij = p;ll EB;DE for j1 75 j2.

Let v be the number of different random inputs P; to the algorithm for which
collisions have to be detected in order for the key to be recovered with probability
7 within Comine operations. In this paper, we apply the variant of linear collision
attacks with v = 6, 7 = 0.854 and Comine equal to 237-1° encryptions, see [I] for
details and [2] for some more advanced techniques.

3 Multiple-Differential Collision Detection

The goal of the collision detection is to decide if two S-box instances in AES
have had equal inputs based on side-channel traces.

For the direct binary comparison of S-box instances, the least-square based
test was used in the original collision attack on AES in [T1], which is essentially
a computation of the Euclidean distance between two real-valued traces. Its
resolution can be increased by suppressing noise through averaging.

However, there are other collision detection methods substantially using the
simple binary comparison, two of which - binary voting and ternary voting - we
propose in this section. Both methods can be combined with averaging. Addi-
tionally, the ternary voting test enables performance gains through profiling.

3.1 Binary Comparison

Deﬁnition Given two traces Til = (" ,,...,m2 ) e R and TZZ = (ri2,...,
Ji,1 J1 l J2,1
Tis, 2) € R!, respectively correspondlng to S-box j; for plaintext le and to S-box

jo for plaintext P;,, the binary comparison test T8¢ can be defined as:

TBC (i1 i) = 0 (no collision), if B (7!
T Tia) = 1 (collision), if GBC( ’7-‘2) < yBC,

YBC

where is a decision threshold and

l
BC 2
6 Jl’ ]2 Z ]17 327 ) )

r=1
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which can be seen as a correlation characteristic of two reduced templates. Let
TBC be characterized by the following type I and II error probabilities:

o = Pr{TBC(T;1 i) = O\aéll =a®

17 "2 o Tg2de
g = Pr{TBC(Tﬁ,T;j) = 1aj}, #ajl}.

Note that «; and oy depend on the implementation and the value of Y B¢,
Of course, there is a strong dependency on the noise as well. See Section €l for
estimations of as with a given «; for one implementation example and a wide

range of noise amplitudes.

Combination with Averaging. To increase the resolution of the collision
detection one can use averaging. That is, each plaintext is sent ¢ times to the
device. Respectively, t measurements are performed for each plaintext. Then the
obtained traces for each distinct plaintext are averaged. If the noise is due to
normal distribution with the zero mean value and a standard deviation o, then
the noise amplitude of the trace averaged t times will be o /v/t.

3.2 Binary Voting Test

In this subsection we propose a more efficient method to suppress noise which
is called binary voting. Like in averaging, traces for multiple copies of the same
plaintexts are first obtained. However, instead of averaging, the attacker tries to
detect collisions using binary comparison for each pair of the traces and applies
voting to filter for correct ones.

Definition. We have to reliably detect collisions for v different plaintexts. Then
each of these plaintexts is sent MZY times to the device. So we have a group
= {r" MPY pim e RL of traces for each S-box instance and each plaintext.
That is, the direct application of binary voting requires Copline = v - M BV
measurements.

The binary voting test is based on the following statistic which uses a binary

comparison test (for instance, the least-square based one as defined above):

MBV
BV (~i1 ~i2\ __ BC/_t1,m _iz,m
S (leaTjZ)_ Zs (Tj1 Ty )a
m=1

where the multiple traces for two S-box instances are pairwisely compared to
each other. The test TEV to decide if there has been a collision is then defined
as

7 J1

TBY (7 Fi2) = 0 (no collision), if GBV(%?H%;,;) <YBV
72 1 (collision), if GBV(%;H%”) >YBV,
1 J2
where Y2V is a decision threshold. The idea is that the distribution of statistic

BV : i _ o i i
&7" will be different for a;) = a;} and for aj} # a3’.
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Properties. As the individual binary comparisons are independent, the distri-
bution of G5V is due to the binomial law with M5V experiments and success
probability p. If a;?l = a}i, the success probability is p = p. = 1 —a1. If a}ll * a;ff;,
it is p = ppe = ag. For sufficiently large group sizes MBY, the distribution of
&8V can be approximated by a normal distribution N'(MZVp, MBVp(1 — p)).
That is, the problem of collision detection is reduced to the problem of distin-
guishing between two normal distributions in this case. Thus, the required value
of M BV can be obtained using

Proposition 1. Let oy and as be type I and II error probabilities, respectively,
for BC. Then the number of S-box traces in each group needed to distinguish

between aé»ll = aéi and aé»ll #+ aéi using binary voting test T8V can be estimated
as
BV & (W5 Vor(l —ar) +uig,/az(1l — az))?
(1 — ] — 0&2)2 ’
where:

— 1 and By are the required type I and II error probabilities for TPV,
— ui_p, and ui_g, are quantiles of the standard normal distribution N(0,1).

Combination with Averaging. The required value of M2V depends on ay
and as which in turn can be seen as functions of the noise amplitude o. For this
reason we will write M BV (o) where this dependency is important.

The binary voting technique can be combined with averaging. The traces are
first averaged ¢ times. Then the statistic 8V is computed. That is, one deals
with MBV (o /+/t) instead of MBV (o).

Since each plaintext P; is sent t-M BV (o/+/t) times to the device, binary voting
with averaging requires Copiine = v-t- MBY (0/+/t) measurements. Depending on
the concrete implementation and on the range of o, the measurement complexity
can be reduced, if -t - MBV (a/\/t) < v- MPV (o) for some t. In the sequel, we
will refer to binary voting with averaging simply as binary voting, since binary
voting with averaging for ¢ = 1 corresponds to the basic binary voting.

3.3 Ternary Voting Test

Ternary voting is another statistical technique we propose to reliably detect colli-
sions. It is based on indirect comparisons of traces, where two given S-box traces
(target traces, a subset of online traces) are compared through a pool of other ones
(reference traces, profiling traces if any and possibly a subset of online traces).
While the ternary voting test is less efficient than the binary voting one in
terms of the overall number of traces needed, it allows for profiling. That is,
the reference traces can be acquired in the profiling stage and shared by several
attacks, which can significantly amplify the performance of the online stage.

Definition. Let N7V be the number of S-box instances whose (reference) traces
{Tm}ff;‘;, 7m € R!, are available to the attacker for some random unknown
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inputs {am N2}, am € GF(28). Let T;f and Ti2 be the traces for two further
S-box instances for which we have to decide if a; = a . Then the ternary voting
test can be defined as follows:
TTV (i iz — 0 (no collision), if &7V (77!, 72) < YTV
1 (collision), if &™V(r;!,7;2) > YTV,

11’ J2
j2
where -
N o
GTV( ]1 I 7]122) = Zm:l F(szll ’ T;‘jaTm)
with
F(T;ll7 st’Tm) ‘ZBC( Tjro T ) QBC( ]27Tm)
and YTV is some decision threshold. The key idea of ternary voting is similar to
that of binary voting: The distributions of GTV( e ]2) for a“ = a;’; and for
0 # aéi will be different. Typically, &Y (72! i 7']’2) will be hlgher for a“ = a]2

than for ajll # aj’f‘z. To decide if there has been a collision, the attacker needb to
statistically distinguish between these two cases.

Properties. To explore the behaviour of F, it is not sufficient to know the
type I and II error probabilities for the binary comparison test. Let T8C be
characterized by the simultaneous distribution of the test results depending on

the relations between a}ll, a}’f‘z and a,,:

BC 110 _
Pr{TBC( Ji )= Bc(sz,Tm) = 1\ag1 = az2 = am},
X2 = Pr{TB (7)1, Tm) = 1 EB (75, 7m) = 1aj, = a} # am},
X3 = PT{TBC(TE,Tm) = I,ZBC(TE,Tm) = 1‘&}11 # a;i7a]1 m, @ Jz 7& am}
X4 = Pr{TP(T}} ) = 1, TPC(732, ) = Laj, # 032, am # ), am # 0
Then the probabilities
pe = Pr{F (1 T Tis,Tm) = laj, = af
and
ne = Pr{F(r}}, 72, 7)) = 1]a} #a}?

can be computed using

Proposition 2. Ifa

G 32, am € GF(2)8 are uniformly distributed and mutually
independent, then

8
Pe = 218X1 + 22g1X2
and

2 282
DPne = 28 X3 T "9 " X4-
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Proof. 1f a;?l = a;i, two cases are possible for F(T;ll , T;;,Tm) =1:
— a;ll = aéz = a,, which happens with probability of 1/28, and
. . 8
— a¥, = a3 # a,, which happens with probability et

If a;ll #+ a;f‘;, there are three cases leading to F(lel1 , T;j,?’m) =1:
— d = ap, a?‘; # a,, with probability 1/28,
— a? = am, ajll # a,, with probability 1/28 and

—a’t # an, a?‘; # a,, with probability (2% — 2)/28.
The claims of the proposition follow. ([
For the sake of simplicity, we first study the properties of 7V under the assump-
tion that all applications of F' to compute &”" are mutually independent. Under
this assumption, &V (7!, 7;2) would have a binomial distribution with N7 be-
ing the number of experiments and success probability p = pe, if ajll = aéi, or
D = Pne, if ajll £ aj’f‘z. Thus, for sufficiently large values of N7V, GTV(T;;,T;;))
could be approximated by normal distribution N'(NTVp, NTVp(1 — p)). Thus,
similarly to binary voting, the number N*V of S-box reference instances needed
to distinguish between a}} = a}2 and a}} # a}? could be estimated as

NTV ~ (u1-g, \/pe(l —Dpe) tui1—p, \/pne(l — Pne))?
(pe - pne)2

)

where 31 and (35 are the required type I and II error probabilities for TV

and u;_g, are quantiles of the standard normal distribution A/(0,1).
However, the applications of F' are dependent and this result can be only used
to obtain a rough estimation of N7V,

, Ul—p4

Procedure, Complexity, Averaging. Now we can describe the basic pro-
cedure of ternary voting in the case that the target key is fixed in the device
and the plaintexts are random and known. This is what we call ternary voting
without profiling.

The number N7V of S-box reference instances as well as the number M7TY
of different inputs for which reference traces have to be acquired depend on
the noise level 0. We will write N7V (¢) and MTY (5), when this dependency is
crucial for understanding.

First, the attacker obtains traces for M7V (¢) random plaintexts. This yields
Ty for NTV () = 160- MTV (o) different S-box instances for AES-128, if the key
schedule is not considered and all the 16-10 S-box traces within each AES run are
acquired at a time. Then, if M7V (¢) > v, no further measurements are needed.
Otherwise, the attacker acquires traces for further v — M7V (o) plaintexts. Note
that some of the reference traces can be interpreted as target traces (16 S-box
traces corresponding to the first round in each of some «y executions of AES).
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This yields the complexity of Cypine = max(y, M*V (o)) measurements, where

=[]

Like binary voting, ternary voting can be combined with averaging to achieve
better resolution. In this case each trace has to be averaged ¢ times. Thus, the
complexity of ternary voting with averaging is Coptine = t -max(y, MTV (o /\/t)).
In the sequel we refer to ternary voting both with and without averaging simply
as ternary voting.

Profiling. Now we are ready to describe what we refer to as ternary voting with
profiling. Unlike binary voting, the method of ternary voting allows for profiling.
In the profiling stage, reference traces are acquired only, for which the attacker
has to know neither the key used nor the plaintexts. Moreover, this also works if
keys are changed between blocks of ¢ executions. The target traces are obtained
in the online phase and compared based on the pre-measured reference traces.

Thus, Cprofiting = ¢ - M7V (c/1/(t)) measurements have to be performed in
the profiling stage, each measurement comprising all 10 rounds of AES-128.
Then only Conline = t - v measurements are needed in the online stage, each
measurement comprising only the first round for the linear key recovery. For the
latter measurements we do have to know inputs. Moreover, they all have to be
performed with the key to be recovered.

3.4 Required Error Probabilities of Collision Detection

The measurement complexity of the binary and ternary voting methods depends
on the success probability to be achieved. Let us take ¢ as a desirable success
probability of the whole attack and estimate the required type II error proba-
bilities By for binary and ternary voting. Recall that 7 is the success probability
of the cryptanalytic collision attack used to recover the key after the collisions
have been detected.

In the linear key recovery, there are 16y S-box instances between which a

collision can occur. That is, the voting has to be performed w = (127> times.

Then (2 can computed as
By =1~ (q/m)"/®.

For instance, if ¥ = 6 and ¢ = 0.5, one obtains 33 ~ 1.174-10~%. Additionally, 3,
has to be low enough to enable the detection of a sufficient number of collisions.

4 MDCA and AES: A Case Study

The purpose of this section is to estimate the real-world efficiency of different
MDCA variants based on an AES implementation example and to compare
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the methods to the standard Hamming-weight based CPA for the same AES
implementation. In order to be able to perform this comparison for different
noise levels o, we carefully simulated the deterministic power consumption in
Nanosim using dedicated power simulation libraries and added Gaussian noise

of different amplitudes to it. The main results of the section are summarized in
Table [l

4.1 Implementation and Simulated Traces

The characteristics of T2 strongly depend on the signal-to-noise ratio of the
implementation. To perform the estimations for a variety of noise levels, a serial
VHDL implementation of the AES S-box has been performed (that is, only one
S-box is calculated at a time). The deterministic power consumption for all 2% in-
puts was simulated using Synopsys Nanosim with the Dolphin Integration power
consumption library SESAME-LP2 based on a 250nm technology by THP [I6].
The design was clocked at 10 MHz. The sampling rate was set to 10 Gsamples/s.

The S-box was implemented as combinatorial logic on the basis of an 8-bit
register. Each S-box calculation y = S(x) occurs in two clocks. In the first clock,
the input z is read from the register and the output y is computed. In the second
clock, the register is set to zero and the calculated output y is written to the
register.

The simulated deterministic power traces obtained are noise-free. That is,
there is neither electronic noise (power supply noise, clock generator noise, con-
ducted emissions, radiated emissions, etc.) nor algorithmic noise (since only the
relevant part of the circuit is considered) in these traces. To model noise we
added random values due to univariate normal distributior] with the zero mean
value and a standard deviation ¢ whose value characterizes the noise amplitude.

Note also that the simulated signal was not subject to a low-pass filter as it
would have been the case for the real-world measurements of power consump-
tion due to the presence of capacitances within the chip as well as on the circuit
board where the power consumption measurements are performed. This would
have cut off the high-frequency contribution to the signal reducing the advan-
tage of high-resolution measurements. However, the effect of this circumstance
is rather limited for the measurements of the electromagnetic radiation. A major
limitation in this case is the bandwidth of the oscilloscope. Thus, we believe that
the simulated traces with added Gaussian noise can be used for an initial anal-
ysis of the efficiency of our collision detection techniques. The main advantage
of using the simulated power consumption is that one can add noise of different
amplitudes to model the behaviour of attack methods for different devices and
physical conditions.

To evaluate ao for this implementation, we chose YB¢ in TBY so that oy
becomes sufficiently low by shifting Y2 to the right. For this value of a, the

! Normal distribution is a sound noise model [I7]. As a matter of fact, the noise is often
distributed due to the multivariate normal distribution [I7], [I8]. However, only a
few co-variances in the co-variance matrix of this multivariate normal distribution
significantly differ from zero [18] for many implementations.
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Fig. 1. Type II error probability a2 for as a function o

type II error probability ap was estimated experimentally by executing T2 for
random equal and unequal inputs to the S-box. We performed that for several
noise amplitudes o. The results can be found in Figure [[l Though this cannot
be seen as a complete characterization of T2, the figure is meant to illustrate
the intuition behind the multiple-differential collision detection methods.

4.2 Reference Figures for CPA

We compared the efficiency of MDCA with binary and ternary voting to the
Hamming-weight based CPA [5]. The Hamming-weight power consumption model
is sound for the implementation in question, since the register is first set to zero
and then re-written with the target byte value. CPA was applied to the same sim-
ulated traces with the same noise amplitudes as MDCA. The number of measure-
ments needed by CPA is denoted by Ccpa .

For our comparison, it was assumed that traces for all 16 S-boxes in the first
round are acquired within one measurement. This is very similar to MDCA based
on linear key recovery considered in this paper: The traces corresponding to the
16 S-box calculations in the first round are acquired at a time in the online stage
for binary voting and ternary voting with profiling.

The number of measurements needed for CPA can be potentially reduced if
guessing entropy is allowed in the offline stage of CPA. To treat this point, we
agssumed that CPA is successful, if it returns a correct 8-bit key chunk with
probability 0.5. At the same time, it was assumed for all collision attacks that
the needed success probability of the complete attack is ¢ = 0.5. That is, a
collision attack on AES is successful, iff it returns the correct 16-byte key with
probability 0.5.

Note that power consumption models are also important for collision attacks.
The right choice of a power consumption model allows the attacker to perform
binary comparison more efficiently. In this paper, the consideration was restricted
to the Euclidean distance of two vectors. However, other binary comparison
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tests can turn out to be more consistent with the power consumption of other
implementations.

4.3 Online and Profiling Complexity of MDCA

In this subsection, Conline and Cprofiling for MDCA based on binary voting and
ternary voting both with and without profiling are experimentally derived for the
given implementation. The estimations are performed for the linear key recovery
method with v = 6.

Table 1. Conline against different values of o for B V, TV without profiling, gtV
with profiling and Ccpa
1030 0.46 0.93 2.32 3.25 4.65 6.97 9.30 11.62 13.95
Contine, T2V 60 192 276 468 960 1290 1872 2976 4242

Conline, TV w/o profiling 80 390 2605 5200 10640 23840 42320 66080 95200
Conline; TV with profiling 6 6 6 6 6 18 30 60 120
Copa, HW based CPA 163 349 1645 4192 6912 15676 26341 39348 56025

Binary Voting. Figure Pl and Table [l give experimental values of Copine for
the binary voting test in a range of noise amplitudes. The values of ¢ have been
chosen that minimize the resulting number of traces needed. If ¢’ is the noise
amplitude to be attained by averaging and o is the given noise level, then one has
to average about t = (0/0’)? times. Thus, Conline ~ 7(‘7’,2; MPEBV (5"). The results
demonstrate that binary voting is well-suited for our implementation providing
an advantage of factor 2.7 to 13.2 for a wide range of o.

Ternary Voting without Profiling. Figure[Band Table[l give concrete values
of Conline in this case for a range of noise amplitudes. Values of ¢ were chosen that
minimize Copline. The performance of the ternary voting test without profiling is
comparable to CPA. However, ternary voting without profiling does not exhibit
any advantages over CPA in terms of measurement complexity.

Ternary Voting with Profiling. For a given o, the attacker can reduce ¢ which
leads to a linear decrease of Coniine and to a considerable growth of Cproiling due
to the slope of MTV as a function of the noise amplitude (see Figure 3] for this
dependency). We assumed that < 10° measurements in the profiling stage are
feasible. To obtain the lowest possible online complexity within this bound on
the profiling complexity, we chose ¢ that minimizes Contine With Cprofiling < 106
for each interesting value of 0. The resulting values of Conline and Chprofiling are
depicted in Figure The values of Cyyjine can be also found in Table[Il Note
that there is a wide spectrum of parameter choices: If there are more severe limits
on Chrofiling, then ¢ and Conline increase. And the other way round: If the attack
scenario admits for higher values of Clofiling, Conline can be further reduced.
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Fig. 2. Binary voting test against CPA: Conline (black line) and Ccpa (grey line) as
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Fig. 3. Ternary voting test without profiling against CPA: MV (¢) (on the left, black
line) and Copnline (on the right, black line) as well as Ccpa (both graphics, grey lines)
as functions of o

The complexity estimations for ternary voting were performed under the as-
sumption that the attacker is able to acquire the reference traces for all S-boxes
in each of the 10 AES rounds at a time. If one deals with a short-memory os-
cilloscope, Chprofiling increases in a linear way with respect to the decrease of the
available memory volume. However, only measurements for the first round are
needed for the target traces, if the linear key recovery is used.
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5 Conclusions and Outlooks

In this paper two statistical techniques - binary and ternary voting - allow-
ing to safely detect collisions even in the presence of considerable noise have
been proposed. An AES hardware implementation with its accurately simu-
lated power consumption has been taken as an example to demonstrate the
power of the methods. This also enables us to obtain a clear dependency of
the attack efficiency from the noise amplitude in a wide range of values and
to soundly compare the multiple-differential techniques with CPA for the same
implementation.

The binary voting method combined with linear key recovery is well applicable
to AES being 2.7 to 13.2 times more efficient than CPA in terms of measurement
complexity for our implementation in the explored range of noise amplitudes.
Ternary voting combined with linear key recovery and profiling needs only about
6 online measurements for the range of noise amplitudes where CPA requires
from 163 to 6912 measurements for the same implementation.

Techniques similar to the ones described in this work might turn out applicable
to other symmetric constructions such as stream ciphers or message authenti-
cation codes and asymmetric constructions such as digital signature schemes.
There can be also some potential in using MDCA-like methods to overcome
certain random masking schemes for block ciphers.
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