Skip to main content

Perfectly Reliable and Secure Communication Tolerating Static and Mobile Mixed Adversary

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5155))

Abstract

In this paper, we study the problem of perfectly reliable message transmission (PRMT) and perfectly secure message transmission (PSMT) between a sender S and a receiver R in an undirected synchronous network, tolerating a mixed adversary, where the adversary can be either static or mobile. The connectivity requirement, phase complexity and communication complexity are three important parameters of any interactive PRMT/PSMT protocol and are well studied in the literature in the presence of a static/mobile Byzantine adversary. However, in the presence of a mixed adversary, we encounter several surprising consequences. In this paper, we prove that even though the connectivity requirement for PRMT is same against both static and mobile mixed adversary, the lower bound on communication complexity for PRMT tolerating a mobile mixed adversary is more than its static mixed counterpart. This is interesting because against a ”Byzantine adversary”, the connectivity requirement and the lower bound on the communication complexity of PRMT protocols are same for both static and mobile case. Thus our result shows that for PRMT, a mobile mixed adversary is more powerful than its static counterpart. As our second contribution, we design a four phase communication optimal PSMT protocol tolerating a ”static mixed adversary”. Comparing this with the existing three phase communication optimal PSMT protocol against a ”static Byzantine adversary”, we find that additional one phase is enough to design communication optimal protocol against a static mixed adversary. Finally, we show that the connectivity requirement and lower bound on communication complexity of any PSMT protocol is same against both static and mobile mixed adversary, thus proving that mobility of the adversary has no effect on PSMT. To show that our bound is tight, we also present a worst case nine phase communication optimal PSMT protocol tolerating a mobile mixed adversary which is first of it’s kind. This also shows that the mobility of the adversary does not hinder to design constant phase communication optimal PSMT protocol. In our protocols, we have used new techniques which can be effectively used against both static and mobile mixed adversary and are of independent interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S., Cramer, R., de Haan, R.: Asymptotically optimal two-round perfectly secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 394–408. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. of 20th ACM STOC, pp. 1–10 (1988)

    Google Scholar 

  3. Choudhary, A., Patra, A., Ashwinkumar, B.V., Srinathan, K., Pandu Rangan, C.: Perfectly reliable and secure communication tolerating static and mobile mixed adversary. Cryptology ePrint Archive, Report 2008/232 (2008)

    Google Scholar 

  4. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. JACM 40(1), 17–47 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Franklin, M., Wright, R.: Secure communication in minimal connectivity models. Journal of Cryptology 13(1), 9–30 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proc. of 19th ACM STOC, pp. 218–229 (1987)

    Google Scholar 

  8. Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Rangan, C.P.: On perfectly secure communication over arbitrary networks. In: Proc. of 21st PODC, pp. 193–202. ACM Press, New York (2002)

    Google Scholar 

  9. Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message transmission scheme. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 324–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland Publishing Company, Amsterdam (1978)

    Google Scholar 

  11. Patra, A., Choudhary, A., Gayatri, M., Pandu Rangan, C.: Efficient perfectly reliable and secure communication tolerating mobile adversary. In: Proc. of ACISP 2008. Cryptology ePrint Archive, Report 2008/086 (to appear, 2008)

    Google Scholar 

  12. Patra, A., Choudhary, A., Srinathan, K., Rangan, C.P.: Constant phase bit optimal protocols for perfectly reliable and secure message transmission. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 221–235. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proc. of 21st ACM STOC, pp. 73–85 (1989)

    Google Scholar 

  14. Sayeed, H., Abu-Amara, H.: Efficient perfectly secure message transmission in synchronous networks. Information and Computation 126(1), 53–61 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Srinathan, K.: Secure distributed communication. PhD Thesis, IIT Madras (2006)

    Google Scholar 

  16. Srinathan, K., Narayanan, A., Pandu Rangan, C.: Optimal perfectly secure message transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004)

    Google Scholar 

  17. Srinathan, K., Patra, A., Choudhary, A., Rangan, C.P.: Probabilistic perfectly reliable and secure message transmission - possibility, feasibility and optimality. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 101–122. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Srinathan, K., Prasad, N.R., Pandu Rangan, C.: On the optimal communication complexity of multiphase protocols for perfect communication. In: IEEE Symposium on Security and Privacy, pp. 311–320 (2007)

    Google Scholar 

  19. Srinathan, K., Raghavendra, P., Pandu Rangan, C.: On proactive perfectly secure message transmission. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 461–473. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. AshwinKumar, B.V., Patra, A., Choudhary, A., Srinathan, K., Pandu Rangan, C.: On tradeoff between network connectivity, phase complexity and communication complexity of reliable communication tolerating mixed adversary. In: Proc. of ACM PODC (to appear, 2008)

    Google Scholar 

  21. Yao, A.C.: Protocols for secure computations. In: Proc. of 23rd IEEE FOCS, pp. 160–164 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reihaneh Safavi-Naini

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choudhary, A., Patra, A., Ashwinkumar, B.V., Srinathan, K., Rangan, C.P. (2008). Perfectly Reliable and Secure Communication Tolerating Static and Mobile Mixed Adversary. In: Safavi-Naini, R. (eds) Information Theoretic Security. ICITS 2008. Lecture Notes in Computer Science, vol 5155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85093-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85093-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85092-2

  • Online ISBN: 978-3-540-85093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics