Skip to main content

Revisiting the Karnin, Greene and Hellman Bounds

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5155))

Abstract

The algebraic setting for threshold secret sharing scheme can vary, dependent on the application. This algebraic setting can limit the number of participants of an ideal secret sharing scheme. Thus it is important to know for which thresholds one could utilize an ideal threshold sharing scheme and for which thresholds one would have to use non-ideal schemes. The implication is that more than one share may have to be dealt to some or all parties. Karnin, Greene and Hellman constructed several bounds concerning the maximal number of participants in threshold sharing scheme. There has been a number of researchers who have noted the relationship between k-arcs in projective spaces and ideal linear threshold secret schemes, as well as between MDS codes and ideal linear threshold secret sharing schemes. Further, researchers have constructed optimal bounds concerning the size of k-arcs in projective spaces, MDS codes, etc. for various finite fields. Unfortunately, the application of these results on the Karnin, Greene and Hellamn bounds has not been widely disseminated. Our contribution in this paper is revisiting and updating the Karnin, Greene, and Hellman bounds, providing optimal bounds on the number of participants in ideal linear threshold secret sharing schemes for various finite fields, and constructing these bounds using the same tools that Karnin, Greene, and Hellman introduced in their seminal paper. We provide optimal bounds for the maximal number of players for a t out of n ideal linear threshold scheme when t = 3, for all possible finite fields. We also provide bounds for infinitely many t and infinitely many fields and a unifying relationship between this problem and the MDS (maximum distance separable) codes that shows that any improvement on bounds for ideal linear threshold secret sharing scheme will impact bounds on MDS codes, for which there is a number of conjectured (but open) problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, 1979, American Federation of Information Processing Societies Proceedings, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  2. Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. Cryptology 4, 123–134 (1991)

    MATH  Google Scholar 

  3. Brickell, E.F., Stinson, D.R.: Some improved bounds on the information rate of perfect secret sharing schemes. Journal of Cryptology 5, 153–166 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bach, E., Shallit, J.: Algorthmic Number Theory, vol. 1. MIT Press, Cambridge (1996)

    Google Scholar 

  5. Bush, K.A.: Orthogonal Arrays of Index Unity. The Annals of Mathematical Statistics 23(3), 426–434 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dawson, E., Mahmoodian, E.S., Rahilly, A.: Orthogonal arrays and ordered threshold schemes. Australasian Journal of Combinatorics 8, 27–44 (1993)

    MATH  MathSciNet  Google Scholar 

  7. Capocelli, R.M., De Santis, A., Gargana, L., Vaccaro, U.: On the Size of shares for secret sharing schemes. Journal of Cryptology 6, 157–167 (1993)

    Article  MATH  Google Scholar 

  8. Charnes, C., Pieprzyk, J.: Generalized cumulative arrays and their applications to secret sharing schemes. Proceeding of the 18th Australasian Computer Science Conference, Australasian Computer Science Communications 17(1), 61–65 (1995)

    Google Scholar 

  9. Cramer, R., Fehr, S., Stam, M.: Primitive Sets over Number Fields and Black-Box Secret Sharing. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 344–360. Springer, Heidelberg (2005)

    Google Scholar 

  10. Cramer, R., Fehr, S.: Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 272–287. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Hirschfeld, J.W.P., Storme, L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Blokhuis, A., Hirschfeld, J.W.P., Jungnickel, D., Thas, J.A. (eds.) Finite Geometries: Proceedings of the Fourth Isle of Thorns Conference (Chelwood Gate, 2000), July 16–21, 2001. Developments in Mathematics, vol. 3, pp. 201–246. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  12. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structures. In: Proc. IEEE Global Telecommunications Conf., Globecom 1987, pp. 99–102. IEEE Communications Soc. Press, Los Alamitos (1987)

    Google Scholar 

  13. Jackson, W., Martin, K., O’Keefe, C.: Geometrical contributions to secret sharing theory. Journal of Geometry 79, 102–133 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Transactions on Information Theory 29, 35–41 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kounias, S., Petros, C.I.: Orthogonal arrays of strength three and four with index unity. Sankhya: The Indian Journal of Statistics 37, 228–240 (1975)

    MATH  MathSciNet  Google Scholar 

  16. McEliece, R.J., Sarwate, D.V.: On Sharing Secrets and Reed-Solomon Codes. Comm. ACM 24(9), 583–584 (1981)

    Article  MathSciNet  Google Scholar 

  17. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    Google Scholar 

  18. Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamantals of Computer Security. Springer, Heidelberg (2003)

    Google Scholar 

  19. Pieprzyk, J., Zhang, X.: Characterisations of Ideal Threshold Schemes. Journal of Descrete Mathematics and Theoretical Computer Science (DMTCS) 6(2), 471–482 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Roth, R.: Introduction to Coding Theory. Cambridge Press, NY (2006)

    MATH  Google Scholar 

  21. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stinson, D.R.: Cryptography: Theory and Practice. CRC, Boca Raton (1995)

    MATH  Google Scholar 

  23. Bound for OAs with Index Unity, http://mint.sbg.ac.at/desc_CBoundT0.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reihaneh Safavi-Naini

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Desmedt, Y., King, B., Schoenmakers, B. (2008). Revisiting the Karnin, Greene and Hellman Bounds. In: Safavi-Naini, R. (eds) Information Theoretic Security. ICITS 2008. Lecture Notes in Computer Science, vol 5155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85093-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85093-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85092-2

  • Online ISBN: 978-3-540-85093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics