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Abstract. Cryptography often meets the problem of distinguishing dis-
tributions. In this paper we review techniques from hypothesis testing to
express the advantage of the best distinguisher limited to a given num-
ber of samples. We link it with the Chernoff information and provide a
useful approximation based on the squared Euclidean distance. We use
it to extend linear cryptanalysis to groups with order larger than 2.1

1 Preliminaries

1.1 Best Distinguisher

The hypothesis testing problem can be considered as a simple game in
which a first player uses a source to generate independent random sam-
ples in some given finite set Z with a distribution P which follows either
a null hypothesis H0 or an alternate hypothesis H1. The second player,
often called distinguisher, must determine which hypothesis was used by
using the samples. In the simplest testing problem, the source follows a
distribution P ∈ {P0, P1} chosen among two distributions, both being
known to the distinguisher. He faces two hypotheses, namely H0 : P = P0

and H1 : P = P1. This situation is commonly referred to as the simple
hypothesis testing problem since both alternatives fully determine the dis-
tribution. A more complex situation arises when one of the two hypotheses
is composite, i.e., when the distinguisher has to guess whether the distri-
bution followed by the source is one particular distribution (H0 : P = P0)
or if it belongs to a set of several distributions (H1 : P ∈ {P1, . . . ,Pd}).
Finally, the difficulty of the game can be increased from the point of view
of the distinguisher if the exact description of the alternate hypothesis
is not available. In that case, it shall guess whether the source follows a
specific (known) distribution (H0 : P = P0) or not (H1 : P 6= P0).
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1 These results will be part of [1].



In all cases, the adversary is assumed to be computationally un-
bounded2 and to be only limited by the number q of samples available, so
that we will referred to it as a q-limited distinguisher and denote it Aq.
If Zq = Z1, . . . , Zq are the q samples available to Aq, we define the type I
error α and the type II error β by:

α = PrH0 [Aq(Zq) = 1] β = 1− PrH1 [Aq(Zq) = 1]

For composite hypotheses, these probabilities make sense when distribu-
tions are assigned weights (following the Bayesian approach). We measure
the ability to distinguish between hypothesis H0 and H1 by the advantage
defined as

AdvAq(H0, H1) = |PrH0 [Aq(Zq) = 1]− PrH1 [Aq(Zq) = 1]| = |1− α− β| .

In the simple hypothesis case we denote the advantage by AdvAq(P0, P1).
We let

PZq [z] =
nz

q
,

be the relative proportion of occurrences of each symbol of Z (PZq is also
called type of Zq [4]), where nz is the number of occurrences of the symbol
z in the sequence Zq = Z1, . . . , Zq. Since the samples are assumed to be
mutually independent, their particular order must be irrelevant. Conse-
quently, the final distinguishing decision can be solely based on the type
PZq of the sequence. Denoting P the set of all probability distributions
over Z, we can completely describe any distinguisher by an acceptance
region Π ⊂ P such that

Aq(Zq) = 1 ⇔ PZq ∈ Π.

For q = 1 we can easily show (see [2]) that AdvAq(P0,P1) reaches a
maximum equal to

BestAdv1(P0, P1) =
1
2
‖P0 − P1‖1

where the norm ‖ · ‖1 of a function f is defined by ‖f‖1 =
∑

x |f(x)|. We
can apply this result to the probability distribution of Zq. By using the
equality

2(aa′ − bb′) = (a− b)(a′ + b′) + (a′ − b′)(a + b)

2 So that we can assume w.l.o.g. that the adversary is fully deterministic.
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we deduce that

BestAdvq(P0,P1) ≤ q

2
‖P0 − P1‖1

The first concern of the present paper is to obtain a more precise expres-
sion for BestAdvq(P0, P1).

Notations. The natural logarithm is denoted ln while log refers to basis
2 logarithm. The support of a distribution P is the set Supp(P) of all z for
which P[z] > 0. In this paper, P0 and P1 will be two distinct distributions
on a finite set Z such that Supp(P0) ∪ Supp(P1) = Z. We will denote
Z ′ = Supp(P0) ∩ Supp(P1). In the case where both P0 and P1 are of full
support we have Z = Z ′, otherwise Z ′ ( Z. The Chernoff information3

between P0 and P1 is

C(P0,P1) = − inf
0<λ<1

log
∑

z∈Z′
P0[z]1−λP1[z]λ.

The Kullback-Leibler divergence between P0 and P1 is

D(P0‖P1) =
∑

z∈Supp(P0)

P0[z] log
P0[z]
P1[z]

with the convention that D(P0‖P1) = +∞ when Supp(P0) 6⊆ Supp(P1).
The notation f(q) .= g(q) for q → +∞ means that f(q) = g(q)eo(q) or
equivalently that

lim
q→+∞

1
q

log
f(q)
g(q)

= 0.

We denote f(q) ∼ g(q) for f(q) = g(q)(1 + o(1)).

1.2 Neyman-Pearson

Given 3 distributions P0,P1, P, let us define

L(P) =
∑

z∈Supp(P)

P[z] log
P0[z]
P1[z]

with the natural convention that log 0 = −∞ and 1
0 = +∞. (Note that

if P has a support either included in the one of P0 or in the one of
3 Note that our definition differs from that sometimes given (e.g., in [4, p.314]), namely

C(P0, P1) = −min0≤λ≤1 log
P

z∈Z P0[z]1−λP1[z]λ, since the latter is not well defined
when Supp(P0) 6= Supp(P1).
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P1 then we never encounter an illegal operation such as 0
0 or ∞ −∞.)

The best distinguisher between P0 and P1 can be expressed as follows.
Given a sample vector Zq we compute L(PZq) (which is nothing but the
logarithmic likelihood ratio). The distinguisher is defined by a threshold
τ and outputs 1 iff L(PZq) ≤ log τ . The Neyman-Pearson Lemma [6] says
that for any distinguisher achieving error probabilities α and β, there
exists τ such that the above distinguisher has error probabilities not larger
than α and β respectively. This means that for any distinguisher there
exists one based on the likelihood ratio which is at least as good in terms
of error probabilities.

If one is concerned with maximizing the advantage (or equivalently in
minimizing α + β) then the best distinguisher is defined by τ = 1. It can
be defined by the acceptance region

Π = {P ∈ P : L(P) ≤ 0}.
A classical result (see [4, Section 12.9]) gives a precise asymptotic expres-
sion for α and β when P0 and P1 have the same support.

Theorem 1. Let P0 and P1 be two distributions of finite support Z. Let
BestAdvq(P0, P1) denote the best advantage for distinguishing P0 from P1

with q samples and α and β the type I and type II errors of the distin-
guisher, respectively. We have

1− BestAdvq(P0, P1)
.= α

.= β
.= 2−qC(P0,P1).

Unfortunately, this expression of α and β is not correct if the supports
do not match as the following example shows.

Example 2. We can consider Z = {1, 2, 3} and

P0 =
(

1
3

1
3

1
3

)
P1 =

(
a b 0

)

with a + b = 1, 1
3 > a > 1

7 . We have

L(P) =
{

P[1] log 1
3a + P[2] log 1

3b if P[3] = 0
+∞ if P[3] 6= 0

The Chernoff information is computed from the minimum over ]0, 1[ of

F (λ) =
1
3
(3a)λ +

1
3
(3b)λ.

This is a convex function such that F (0) = 2
3 and F (1) = 1. Assuming

that a ∈]13 , 1
7 [, since a + b = 1 we have 9ab > 1 thus F ′(0) > 0. We
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deduce that F is increasing over ]0, 1[ so the minimum is F (0) = 2
3 :

we have C(P0,P1) = − log 2
3 . Since F (λ) → +∞ when λ → −∞ the

minimum of F is reached for some λ < 0 which we call λ0. We have
2−qC(P0,P1) =

(
2
3

)q. The type I error α is the probability that L(PZq) ≤ 0
under distribution P0 which mandates that 3 never occurs. This holds
with probability

(
2
3

)q. When this happens, the number of occurrences of
1 and 2 are roughly similar so L(PZq) ≤ 0. We can indeed show that
α

.=
(

2
3

)q, which matches the result of Theorem 1. However, the type II
error β is the probability that L(PZq) > 0 under distribution P1 which
is the probability that n1 log 3a + n2 log 3b < 0. This means that 2 must
occur much less than 1 although its probability b is higher than a. As a
consequence of Theorem 3 below we can show that β

.= F (λ0)q which does
not match Theorem 1. The expression is thus correct for α but incorrect
for β. In what follows we show that the expression is always correct for
max(α, β) so it is still correct for the advantage.

2 Best Advantage for Simple Hypothesis Testing

2.1 Result

Theorem 3. Let P0 and P1 be two distributions of finite supports with
union Z and intersection Z ′. Given a distribution P over Z we define

L(P) =
∑

z∈Supp(P)

P[z] log
P0[z]
P1[z]

and F (λ) =
∑

z∈Z′
P0[z]1−λP1[z]λ.

Let Π = {P ∈ P : L(P) ≤ 0} be the acceptance region of the best
distinguisher. Its type I error α satisfies

α
.=

(
inf
λ>0

F (λ)
)q

.

If there exists z ∈ Z ′ such that 0 < P1[z] < P0[z] then

β
.=

(
inf
λ<1

F (λ)
)q

.

Otherwise, β = 0.

If for all z ∈ Z ′ we have P1[z] ≥ P0[z] then β is clearly zero and
infλ>0 F (λ) = F (0) so max(α, β) = α

.= 2−qC(P0,P1). Otherwise, we note
that

max
(

inf
]0,+∞[

F, inf
]−∞,1[

F

)
= inf

]0,1[
F
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because F is a convex function. Hence, we still have

max(α, β) .= 2−qC(P0,P1).

We deduce the following result.

Corollary 4. Let P0 and P1 be two distributions of finite support with
intersection Z ′. We have

1− BestAdvq(P0,P1)
.= 2−qC(P0,P1) =

(
inf

0<λ<1

∑

z∈Z′
P0[z]1−λP1[z]λ

)q

.

2.2 Proof of Theorem 3

We first recall Sanov’s theorem. To do this, we recall some notions of
topology. The set of all functions from the finite set Z to R is a vector
space of finite dimension thus all norms ‖ · ‖ define the same topology.
An open set is a union of open balls, i.e. a set of functions f satisfying
‖f−f0‖ < r for a given function f0 and a given radius r ∈ R. The interior

of a set Π is the union
◦
Π of all open sets included in Π. A closed set is

an intersection of closed balls. The closure of a set Π is the intersection
Π of all closed sets containing Π.

Theorem 5 (Sanov [7]). Let P0 be a distribution over a finite set Z and
Zq = Z1, . . . , Zq be q mutually independent random variables following

distribution P0. Let Π be a set of distributions over Z such that
◦
Π = Π.

We have
Pr[PZq ∈ Π] .= 2−qD(Π‖P0)

where D(Π‖P0) = infP∈Π D(P‖P0).

Intuitively, the
◦
Π = Π assumption means that Π has no isolated point

which could substantially influence D(P‖P0) but would exceptionally (if
ever) be reached by PZq .

Lemma 6. Let P0 be a distribution of finite support Z. Let g be a func-
tion such that g(z) > 0 for all z ∈ Z. Given a distribution P over Z we
define

L(P) =
∑

z∈Supp(P)

P[z] log
P0[z]
g(z)

and F (λ) =
∑

z∈Z
P0[z]1−λg(z)λ.

6



Let Π be the set of distributions over Z such that L(P) ≤ 0 and consider
the distinguisher Aq who accepts Zq (i.e., returns 1) iff PZq ∈ Π. We
have

Pr[Aq(Zq) = 1] = Pr[PZq ∈ Π] .=
(

inf
λ>0

F (λ)
)q

.

If Π is now the set of all distributions such that L(P) < 0 and there
exists z such that 0 < P0[z] < g(z) the result still holds. Otherwise, the
probability is zero.

Proof. We first assume that P0[z] ≥ g(z) for all z. If Π is defined by
L(P) ≤ 0, the probability is P0(Z ′′)q where Z ′′ is the set of all z’s such
that P0[z] = g(z), and the result easily comes. If Π is defined by L(P) < 0,
the probability is clearly zero.

We now assume that we have 0 < P0[z] < g(z) for some z. Clearly,
the distribution P such that P(z) = 1 verifies L(P) < 0 so Π is nonempty.
Considering the topology of distributions over Z, we notice that L is
continuous. Since L(P) < 0 for some P ∈ Π, for ε > 0 small enough all
distributions within a distance to P smaller than ε are in Π as well. This
means that the interior of Π is nonempty. We note that Π is a convex

set. Consequently, we have
◦
Π = Π so that Sanov’s theorem applies and

we have
Pr[PZq ∈ Π] .= 2−qD(Π‖P0).

What remains to be shown is that D(Π‖P0) is equal to − infλ>0 log F (λ)
for both possible definitions of Π.

The set Π is bounded and topologically closed in a real vector space
of finite dimension and therefore compact. We notice that P 7→ D(P‖P0)
is continuous on Π. We deduce that D(Π‖P0) = D(P‖P0) for some P in
Π: we do have global minima for this function in Π. Furthermore, the
function P 7→ D(P‖P0) is convex since

D((1− t)P + tP′‖P0) ≤ (1− t)D(P‖P0) + tD(P′‖P0)

so we deduce that there is no local minimum which is not global as well.
Since the set of P’s such that D(P‖P0) ≤ r is a convex set for any radius
r, the set of global minima is indeed a convex set as well. Finally, if P
reaches a minimum, then the segment between P0 and P except P contains
distributions “closer” (in the sense of D) to P0 which must then be outside
of Π. Thus their L value are positive. So, either the segment is reduced
to P0 (meaning that L(P0) ≤ 0) or we must have L(P) = 0 due to the
continuity of L. Hence, the closest P in Π is either P0 (if P0 ∈ Π) or some
P such that L(P) = 0.
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We consider the differentiable function P 7→ D(P‖P0) over the open
space {P : Z −→ R∗

+} with constraints N(P) = 1 and L(P) = cste where
N(P) =

∑
z P(z). By looking at the differentials, we have

∂D(P‖P0)
∂P(a)

= log
P(a)
P0[a]

+
1

ln 2

so ∂2D(P‖P0)
∂P(a)∂P(b) = 0 for a 6= b and is strictly positive otherwise. Hence the

second differential of D(P‖P0) is a strictly positive quadratic form. Thus,
P is a local minimum for D(·‖P0) over the distributions whose L value
is constant iff the first differential is a linear combination of dN and dL.
This is the case iff P is of form Pλ for some λ where

Pλ[z] =
P0[z]1−λg(z)λ

∑
a P0[a]1−λg(a)λ

.

We deduce that for all λ ∈ R, Pλ is the closest (in the sense of D)
distribution to P0 with this L(Pλ) value. We look for the one for which
this is zero.

We observe that F is a convex function such that F (0) = 1 and
F ′(0) = −L(P0) ln 2. More precisely, we have F ′(λ) = −L(Pλ)F (λ) ln 2.
Since there exists z such that P0[z] < g(z) the limit of F at +∞ is +∞.
We note that

D(Pλ‖P0) = −λL(Pλ)− log F (λ).

If the closest P is not P0 we have L(P0) ≥ 0 hence F ′(0) ≤ 0, so there
must be a λ ≥ 0 such that F ′(λ) = 0 and for which F (λ) is minimal.
Clearly, this minimum is infλ>0 F (λ). We deduce L(Pλ) = 0 thus Pλ is
the closest distribution to P0 in Π. The above expression of the distance
yields the announced result in this case.

When P0 is in Π we have L(P0) ≤ 0 thus F ′(0) ≥ 0. Since F is convex,
F is increasing on [0, +∞[ so infλ>0 F (λ) = F (0) = 1. Since 0 = D(Π‖P0)
the result holds in this case as well. ut

Proof (of Theorem 3). Let P̃0[z] = P0[z]/P0(Z ′) for z ∈ Z ′ and P̃0[z] = 0
otherwise. Let g(z) = P1[z]/P0(Z ′) for z ∈ Z ′ and g(z) = 0 otherwise.
Applying Lemma 6 to P̃0 and g over Z ′ defines two functions L̃ and F̃
and a set Π̃ of distributions over Z ′ satisfying L̃(P) ≤ 0. Clearly, we have
L̃(P) = L(P) for any distribution over Z ′. Indeed, Π consists of Π̃ plus all
the distributions of support included in the one of P1 but not in Z ′. The
probability to reach one of these latter distributions when sampling z’s
following P0 is clearly zero. Hence, the probability of accepting Zq is the
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probability that PZq ∈ Π̃, under H0. It is P0(Z ′)q times the probability
that PZq ∈ Π̃ when sampling the Zi’s according to P̃0. By applying The-
orem 1 we immediately obtain the result. ut

3 Approximations for “Close” Distributions

We assume in this section that P1 is close to P0 of full support Z. More
precisely, we assume that P0 is fixed of support Z and that P1 tends
towards P0. Eventually, both distributions have the same support Z, and
for all z ∈ Z we have xz = o(1) as P1 → P0 where

xz =
P1[z]− P0[z]

P0[z]
.

3.1 Computing the Chernoff Information

Theorem 7. Let P0 be a distribution of support Z. If the distribution P1

over Z tends towards P0, then

C(P0,P1) ∼ 1
8 ln 2

∑

z∈Z

(P1[z]− P0[z])2

P0[z]
.

Proof. We let x = (xz)z∈Z and consider

F (λ, x) =
∑

z∈Z
P0[z](1 + xz)λ

g(λ, x) =
∑

z∈Z
P0[z](1 + xz)λ ln(1 + xz).

We define λ∗ ∈ [0, 1] as the value verifying g(λ∗, x) = 0. In terms of
λ, F (λ, x) is strictly convex of derivative g(λ, x). Clearly, C(P0, P1) =
− log F (λ∗, x). We will approximate F (λ∗, x) when x is small and subject
to

∑
z P0[z]xz = 0. We first have

g(λ, x) =
∑

z

P0[z](1 + λxz + o(xz))
(

xz − x2
z

2
+ o(x2

z)
)

=
∑

z

P0[z]
(

λ− 1
2

)
x2

z + o
(‖x‖2

2

)

since
∑

z P0[z]xz is zero. As g(λ∗, x) = 0 we deduce that λ∗ tends towards
1
2 as x tends towards 0. We now let

F (λ∗, x) = F

(
1
2
, x

)
+

(
λ∗ − 1

2

)
F ′

λ

(
1
2
, x

)
+

1
2

(
λ∗ − 1

2

)2

R
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with |R| ≤ maxλ F ′′
λ (λ, x) for λ ∈ [0, 1]. As F ′

λ(λ, x) = g(λ, x), previous
computations immediately lead to F ′

λ(1
2 , x) = g(1

2 , x) = o(‖x‖2
2). Similarly

we have

F ′′
λ (λ, x) =

∑

z∈Z
P0[z](1 + xz)λ (ln(1 + xz))

2

=
∑

z∈Z
P0[z](1 + o(1)) (xz + o(xz))

2

=
∑

z∈Z
P0[z]x2

z + o(‖x‖2)

which is a O(‖x‖2), hence

F (λ∗, x) = F

(
1
2
, x

)
+ o(‖x‖2).

Now, we have

F

(
1
2
, x

)
=

∑

z∈Z
P0[z]

√
1 + xz

=
∑

z∈Z
P0[z]

(
1 +

1
2
xz − 1

8
x2

z + o(x2
z)

)

= 1− 1
8

∑

z∈Z
P0[z]x2

z + o(‖x‖2
2)

and therefore

F (λ∗, x) = 1− 1
8

∑

z∈Z
P0[z]x2

z + o(‖x‖2
2),

which can be written

F (λ∗, x) = 1− 1
8

∑

z∈Z

(P1[z]− P0[z])2

P0[z]
+ o

(∑

z∈Z

(
P1[z]− P0[z]

P0[z]

)2
)

.

ut

Our computations were based on the assumption that xz = o(1) for all z.
In practice however, both distribution are fixed. Yet we can use Theorem 7
to approximate C(P0,P1) when |P1[z]− P0[z]| ¿ P0[z] for all z.
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3.2 Close-to-Uniform Distributions

In the particular case where P0 is the uniform distribution over Z of
cardinality n, Theorem 7 yields

C(P0, P1) ∼ n

8 ln 2
‖P1 − P0‖2

2

for the Euclidean norm ‖ · ‖2, which can be used as the approximation

C(P0, P1) ≈ n

8 ln 2
‖P1 − P0‖2

2

when |P1[z] − 1
n | ¿ 1

n for all z. When Z has a group structure, this can
be expressed as

C(P0, P1) ≈ 1
8 ln 2

‖P̂1 − P̂0‖2
2 or even C(P0, P1) ≈ 1

8 ln 2

∑

χ∈Ẑ

LP(χ)

where Ẑ is the dual group of Z (i.e., the set of all group homomorphisms
χ between Z and the non-zero complex numbers) and where P̂ is the
Fourier transform of P, i.e.

P̂(χ) =
∑

z∈Z
P[z]χ̄(z) and LP(χ) = |P̂1(χ)|2 = |E(χ(Z))|2

where Z follows the distribution P1. This formally proves a heuristic re-
sult from Baignères, Stern, and Vaudenay [3] by showing that the best
advantage is approximately

1− e−
q
8
‖P̂1−P̂0‖22

for q large and ‖P̂1 − P̂0‖2 small.

4 A Case of Composite Hypothesis Testing

So far, we considered the problem of testing the null hypothesis H0 : P =
P0 against the simple alternate hypothesis H1 : P = P1 where P0 and P1

were fully specified. We now consider the problem of distinguishing the
case where P is equal to a specified distribution P0 (the null hypothesis
H0) from the case where P belongs to a set D = {P1, . . . ,Pd} of d fully
specified distributions (the hypothesis H1). Under H1 we assume that
the selection of Pi is taken with an a priori weight of πi to define the
advantage for distinguishing H0 from H1. For simplicity we assume that
all distributions have the same support Z.
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4.1 Complex Hypothesis Testing

Theorem 8. Let P0 be a distribution of support Z and D = {P1, . . . ,Pd}
be a finite set of distributions of support Z. In order to test the null
hypothesis H0 : P = P0 against H1 : P ∈ D, the advantage of the best
q-limited distinguisher is such that

1− BestAdvq(P0,D) .= max
1≤i≤d

2−qC(P0,Pi).

It is reached by the distinguisher accepting Zq iff

min
1≤i≤d

∑

z∈Z
PZq [z] log

P0[z]
Pi[z]

≤ 0.

Proof. Consider a q-limited distinguisher Aq defined by an acceptance
region Π and denote by Advq its advantage. We have

1−Advq = PrH0 [Aq(Zq) = 1] +
d∑

i=1

πiPr[Aq(Zq) = 0|P = Pi]

thus 1 − Advq is at least the average of all 1 − BestAdvq(P0, Pi) with
weight πi, which are (asymptotically) 2−qC(P0,Pi). We deduce that

1−Advq
.
>

d∑

i=1

πi2−qC(P0,Pi) thus 1−Advq
.
> max

1≤i≤d
2−qC(P0,Pi).

We define
Li(P) =

∑

z∈Z

P[z] log
P0[z]
Pi[z]

and consider the distinguisher based on the likelihood ratio between P0

and Pi which is the closest to PZq . We have

D(P‖Pi) =
∑

z∈Z
P[z] log

P[z]
Pi[z]

so that D(P‖Pi) ≤ D(P‖Pj) is equivalent to Li(P) ≤ Lj(P). Finally, this
distinguisher is based on L(P) = mini Li(P) and accepts H1 iff L(P) ≤ 0.
Let Πi be the set of all P’s such that Li(P) ≤ 0 and Π be the union of all
Πi’s. The best distinguishers simply checks whether PZq ∈ Π.

Looking at the proof of Theorem 1, we can first see that the probability
that PZq ∈ Π under the null hypothesis is equivalent to 2−qD(Π‖P0) which
is the maximum of 2−qD(Πi‖P0), itself equal to 2−qC(Pi,P0). We deduce that

PrH0 [Aq(Zq) = 1] .= max
1≤i≤d

2−qC(P0,Pi).
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When the Zi’s are sampled according to Pi under hypothesis H1, the prob-
ability of rejection is the probability that PZq 6∈ Π. This is less than the
probability that PZq 6∈ Πi and we know that it is equivalent to 2−qC(P0,Pi).
Since this is less than the maximum of 2−qC(P0,Pj), the advantage Advq

is such that
1−Advq

.= max
1≤i≤d

2−qC(P0,Pi)

Therefore, this distinguisher has the best advantage, asymptotically. ut

4.2 Example: Generalized Linear Cryptanalysis

Let X be a random variable over G, an Abelian group. Let χ be a char-
acter over G such that the group Z = χ(G) is of order d. Let Z = χ(X).
Let P0 be the uniform distribution over Z. For each u ∈ Z we consider
the distribution Pu defined by Pu[u] = 1−ε

d + ε and Pu[z] = 1−ε
d for all

z ∈ Z such that z 6= u. Note that LP(χ) = ε2 when Z follows distribution
Pu for any u. These distributions have the property that P̂u is flat in the
sense that for all ϕ 6= 1, |P̂u(ϕ)| = ε. In linear cryptanalysis [3,5], χ is the
product of several characters with “independent” biased distributions. It
thus inherits of a distribution P such that P̂ is the product of “indepen-
dent” Fourier transforms (this is the Piling-up Lemma) and is flattened
as such. We have the following result.

Theorem 9. If Z = χ(X) where χ is a character of order d, the best
distinguisher between the null hypothesis that Z is uniformly distributed
in the range of χ and the alternate hypothesis that Z follows some distri-
bution Pu with u unknown is defined by

Aq(Zq) = 1 ⇔ max
u

PZq [u] ≥ log(1− ε)
log(1− ε)− log(1 + (d− 1)ε)

where the right-hand side is approximated by 1
d(1 + (d − 1) ε

2). This dis-
tinguisher has an advantage such that 1 − Advq

.= 2−qC(P0,P1) which is
approximated by

1−Advq ≈ e−q d−1
8

ε2
.

Proof. We use the distinguisher which outputs 1 iff minu Lu(PZq) ≤ 0 (as
suggested by Theorem 8). Clearly, minu Lu is reached for the value of u
which maximizes PZq [u]. We obtain that Zq is accepted iff

max
u

PZq [u] ≥ log(1− ε)
log(1− ε)− log(1 + (d− 1)ε)

13



which is approximately 1
d(1 + (d − 1) ε

2). As it is surprising enough, we
stress that the best distinguisher is based on ‖PZq‖∞ and not on the
statistical average of χ(X) as one would expect. We can now focus on its
advantage. By Theorem 8 we have

1−Advq
.= max

u∈Z
2−qC(P0,Pu).

Since all C(P0,Pu) are equal, we can focus on C(P0,P1). Assuming that
ε ¿ 1

d , we obtain

C(P0, P1) = − inf
λ

log
1
d

(
(1 + (d− 1)ε)λ + (d− 1)(1− ε)λ

)
≈ d− 1

8 ln 2
ε2.

The advantage is thus roughly 1− e−
d−1
8

qε2
. ut

Another problem consists in distinguishing the null hypothesis that
Z is uniformly distributed in the range of χ from the alternate hypoth-
esis that Z follows some arbitrary distribution of known flatness ζ. We
define the flatness of a distribution P1 by ‖P̂1 − P̂0‖2. (Previously, we
had ζ = ε

√
d− 1.) For such distributions, the Chernoff information is

approximated by C(P0, P1) ≈ ζ2

8 ln 2 . By Theorem 8, the best distinguisher
satisfies 1 − Advq ≈ e−

q
8
ζ2

. It is defined by accepting Zq iff we have
L(PZq) ≤ 0 for

L(PZq) = min
P1

‖P̂1−P̂0‖2=ζ

∑

z∈Z
PZq [z] log

P0[z]
P1[z]

.

Since ‖f‖2
2 = 1

d‖f̂‖2
2 for any function f : Z → R, by writing P0[z] = 1

d
and assuming that PZq [z] − P0[z] and P1[z] − P0[z] are negligible to the
first order, the above sum approximates to

L(PZq) ≈ d

ln 2

(
1
2
‖P1 − P0‖2

2 −max
P1

∑

z∈Z

(
PZq [z]− 1

d

) (
P1[z]− 1

d

))

which is clearly reached when P1[z]− 1
d is proportional to PZq [z]− 1

d . It is
negative iff ‖PZq −P0‖2 ≥ 1

2‖P1−P0‖2. So the best distinguisher accepts
Zq iff ‖PZq − P0‖2 ≥ ζ

2
√

d
. We conclude by the following heuristic result.

Theorem 10. If Z = χ(X) where χ is a character of order d, the best
distinguisher between the null hypothesis that Z is uniformly distributed in

14



the range of χ and the alternate hypothesis that Z follows some unknown
distribution P1 of known flatness ζ = ‖P̂1 − P̂0‖2 is defined by

Aq(Zq) = 1 ⇔
∑

z

(
PZq [z]− 1

d

)2

1
d

≥ ζ2

4
.

It has an advantage approximated by

1−Advq ≈ e−
q
8
ζ2

.

All in all, this is nothing but a χ2 test on the frequencies with threshold
ζ2

4 .

5 Conclusion

We provided a precise asymptotic expression for the best distinguisher
between two given distributions. We gave a simple approximation of this
in terms of the Euclidean distance between the two distributions. We
derived a link to the spectral analysis of distributions. We studied the
problem of distinguishing one distribution from a set of distributions.
This lead us to generalize linear cryptanalysis to arbitrary Abelian groups
with order not necessarily equal to 2.
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