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Abstract. We introduce a simple, practical approach with probabilis-
tic information-theoretic security to mitigate one of quantum key dis-
tribution’s major limitations: the short maximum transmission distance
(∼ 200 km) possible with present day technology. Our scheme uses clas-
sical secret sharing techniques to allow secure transmission over long
distances through a network containing randomly-distributed compro-
mised nodes. The protocol provides arbitrarily high confidence in the
security of the protocol, with modest scaling of resource costs with im-
provement of the security parameter. Although some types of failure are
undetectable, users can take preemptive measures to make the probabil-
ity of such failures arbitrarily small.
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1 Introduction

Public key cryptography is a critical component of many widely-used
cryptosystems, and forms the basis for much of our ecommerce transac-
tion security infrastructure. Unfortunately, the most common public key
schemes are known to be insecure against quantum computers. In 1994,
Peter Shor developed a quantum algorithm for efficient factorization and
discrete logarithms [1]; the (supposed) hardness of these two problems
formed the basis for RSA and DSA, respectively. Sufficiently powerful
quantum computers do not yet exist, but the possibility of their existence
in the future already poses problems for those with significant forward
security requirements.

A more secure replacement for public key cryptography is needed.
Ideally, this replacement would offer information-theoretic security, and
would possess most or all of the favorable qualities of public key cryp-
tography. At present, no complete replacement exists, but quantum key
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distribution (QKD)—in conjunction with one-time pad (OTP) or other
symmetric ciphers—appears promising.

QKD—first developed by Bennett and Brassard [2]—is a key distri-
bution scheme that relies upon the uncertainty principle of quantum me-
chanics to guarantee that any eavesdropping attempts will be detected. In
a typical QKD setup, individual photons are sent through optical fiber or
through free space from the sender to the receiver. The receiver performs
measurements on the photons, and sender and receiver communicate via
an authenticated (but not necessarily private) classical channel.

Optical attenuation of these single photon pulses limits the distance
the maximum transmission distance for a single QKD link to about 200
km over fiber with present technology [3], and significantly less through
air. Unlike optically-encoded classical information, the “signal strength”
of these photons cannot be amplified using a conventional optical ampli-
fier; the No Cloning Theorem [4] prohibits this. We refer to this challenge
as the relay problem.

Two classes of quantum repeaters have been proposed to resolve the
distance limitations of QKD. The first makes use of quantum error cor-
rection to detect and rectify errors in specially-encoded pulses. Unfortu-
nately, the extremely low error thresholds for such schemes (∼ 10−4) make
this impractical for use in a realistic quantum repeater. The second class
of quantum repeaters uses entanglement swapping and distillation [5, 6]
to establish entanglement between the endpoints of a chain of quantum
repeaters, which can then be used for QKD [7]. This method is much more
tolerant of errors, and offers resource costs that scale only polynomially
with the number of repeaters (i.e., polynomially with distance). How-
ever, such repeaters do have one major drawback: they require quantum
memories with long decoherence times [6].

In order to be useful for practical operation, a quantum repeater must
possess a quantum memory that meets the following three requirements:

1. Long coherence times: at a minimum, coherence times must be compa-
rable to the transit distance for the entire repeater chain (e.g., ∼ 10 µs
for a trans-Atlantic link).

2. High storage density: the bandwidth for a quantum repeater is limited
by the ratio of its quantum memory capacity to the transit time for
the entire repeater chain [8].

3. Robustness in extreme environments: practical quantum repeaters
must be able to operate in the range of environments to which tele-
com equipment is exposed (e.g., on the ocean floor, in the case of a
trans-oceanic link).



These requirements are so demanding that it is possible that practical
quantum repeaters will not be widely available until after large-scale
quantum computers have been built—in other words, not until too late.

The distance limitations of QKD and the issues involved in devel-
oping practical quantum repeaters make it challenging to build secure
QKD networks that span a large geographic area. The näıve solution of
classical repeaters leads to exponentially decaying security with transmis-
sion distance if each repeater has some independent probability of being
compromised. If large QKD networks are to be built in the near future
(i.e., without quantum repeaters), an alternative method of addressing
the single-hop distance limitation must be found. We refer to this as the
relay problem.

We have developed a solution to the relay problem that involves encod-
ing encryption keys into multiple pieces using a secret sharing protocol [9,
10]. These shares are transmitted via multiple multi-hop paths through
a QKD network, from origin to destination. Through the use of a dis-
tributed re-randomization protocol at each intermediate stage, privacy is
maintained even if the attacker controls a large, randomly-selected subset
of all the nodes.

We note that authenticated QKD is information-theoretic secure [11],
as is OTP; in combination, these two cryptographic primitives provide
information-theoretic security on the level of an individual link. Our pro-
tocol makes use of many such links as part of a network that provides
information-theoretic security with very high probability. In particular,
with some very small probability δ, the protocol fails in such a way as to
allow a sufficiently powerful adversary to perform undetected MITM at-
tacks. The security parameter δ can be made arbitrarily small by modest
increases in resource usage. In all other cases, the network is secure. We
describe the level of security of our protocol as probabilistic information-
theoretic.

In analyzing our protocol, we consider a network composed of a chain
of “cities”, where each city contains several parties, all of whom are linked
to all the other parties in that city. We assume intracity bandwidth is
cheap, whereas intercity bandwidth is expensive; intercity bandwidth us-
age is the main resource considered in our scaling analysis. For the sake
of simplicity, we consider communication between two parties (Alice and
Bob) who are assumed to be at either end of the chain of cities. A similar
analysis would apply to communication between parties at any interme-
diate points in the network.



2 Adversary and Network Model

It is convenient to model networks with properties similar to those de-
scribed above by using undirected graphs, where each vertex represents
a node or party participating in the network, and each edge represents a
secure authenticated public channel. Such a channel could be generated
by using QKD in conjunction with a shared secret key for authentication,
or by any other means providing information-theoretic security.

We describe below an adversary and network model similar in some
ways to one we proposed earlier3 in the context of a protocol for authenti-
cating mutual strangers in a very large QKD network, which we referred
to as the stranger authentication protocol. In that protocol, edges rep-
resented shared secret keys, whereas here they represent physical QKD
links. Network structure in the previous model was assumed to be random
(possibly with a power law distribution, as is common in social networks),
whereas here the network has a specific topology dictated by geographic
constraints, the distance limitations of QKD, and the requirements of the
protocol.

2.1 Adversarial Capabilities and Limitations

We call the following adversary model the sneaky supercomputer :

(i) The adversary is computationally unbounded.
(ii) The adversary can listen to, intercept, and alter any message on any

public channel.
(iii) The adversary can compromise a randomly-selected subset of the

nodes in the network. Compromised nodes are assumed to be under
the complete control of the adversary. The total fraction of compro-
mised nodes is limited to (1− t) or less.

Such an adversary is very powerful, and can successfully perform
MITM attacks against public key cryptosystems (using the first capa-
bility) and against unauthenticated QKD (using the second capability),
but not against a QKD link between two uncompromised nodes that
share a secret key for authentication (since quantum mechanics allows
the eavesdropping to be detected) [11]. The adversary can always per-
form denial-of-service (DOS) attacks by simply destroying all transmitted
information; since DOS attacks cannot be prevented in this adversarial

3 See arXiv:0803.2717



scenario, we concern ourselves primarily with security against MITM at-
tacks. Later, we will briefly consider variants of this adversarial model
and limited DOS attacks.

The third capability in this adversarial model—the adversary’s control
of a random subset of nodes—simulates a network in which exploitable
vulnerabilities are present on some nodes but not others. As a first ap-
proximation to modeling a real-world network, it is reasonable to assume
the vulnerable nodes are randomly distributed throughout the network.

2.2 The Network

For the relay problem, let us represent the network as a graphG, with V (G)
being the set of vertices (nodes participating in the network) and E(G)
being the set of edges (secure authenticated channels, e.g. QKD links be-
tween parties who share secret keys for authentication). N = |V (G)| is
the number of vertices (nodes). Vd is the set of compromised nodes, which
are assumed to be under the adversary’s control; |Vd| ≤ N(1−t). Further-
more, let us assume that the network has the following structure: nodes
are grouped into m clusters—completely connected sub-graphs contain-
ing n nodes each. There are thus N = mn nodes in the network. We label
the nodes as vi,j , i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. Each node is connected
to one node in the immediately preceding cluster and one node in the
cluster immediately following it.

More formally, let E`(G) ≡ {(vi,j , vi,j+1) : vi,j , vi,j+1 ∈ V (G)} and
Eσ(G) ≡ {(vi,j , vk,j) : vi,j , vk,j ∈ V (G)}. Then, E(G) ≡ E`(G) ∪ Eσ(G).

This network structure models a chain ofm cities (a term which we use
interchangeably with “cluster”), each containing n nodes. The cities are
spaced such that the physical distance between cities allows QKD links
only between adjacent cities. To realistically model the costs of commu-
nication bandwidth, we assume that use of long distance links (i.e., those
represented by E`(G)) is expensive, whereas intracity links (i.e., Eσ(G))
are cheap.

Next, we consider two additional nodes—a sender and a receiver. The
sender (hereafter referred to as Alice or simply A) has direct links to all
the nodes in city 1, while the receiver (Bob, or B) has a link to all nodes
in city m. We assume Alice and Bob to be uncompromised. An example
is shown in Fig. 1.



Alice Bob

Fig. 1. White vertices represent honest parties, whereas shaded vertices represent dis-
honest parties. Double vertical lines represent secure communication links between all
joined vertices (i.e., all parties within a given city can communicate securely). In the
graph shown above, 40% of the parties in cities between Alice and Bob are dishonest,
but Alice and Bob can still communicate securely using the method described in Sec.
3 and Fig. 2.

3 The Relay Protocol

In the relay problem, Alice wishes to communicate with Bob over a dis-
tance longer than that possible with a single QKD link, with quantum
repeaters being unavailable. As described above, Alice and Bob are sep-
arated by m “cities”, each containing n participating nodes. (In the case
where different cities contain different numbers of participating nodes, we
obtain a lower bound on security by taking n to be the minimum over all
cities.)

To achieve both good security and low intercity bandwidth usage, we
can employ a basic secret sharing scheme with a distributed re-randomization
of the shares [12] performed by the parties in each city. This re-randomization
procedure is similar to that used in the mobile adversary proactive secret
sharing scheme [13, 14].

(i) Alice generates n random strings ri,0, i ∈ {1, . . . , n} of length `,
r ∈ {0, 1}`. ` is chosen as described in Fig. 2.

(ii) Alice transmits the strings to the corresponding parties in the first
city: vi,1 receives ki,0.

(iii) When a party vi,j receives a string ri,j−1, it generates n− 1 random
strings q(k)i,j , k 6= i of length `, and transmits each string q(k)i,j to party
vk,j .



(r, H(s3)) ! s1

H(r) ! s2’

Fig. 2. Alice and Bob perform a verification sub-protocol to check that their respective
secret keys, s = (s1, s2, s3) and s′ = (s′

1, s
′
2, s

′
3), are in fact the same. Alice generates

a random number r, concatenates it with the hash H(s3) of s3, XORs this with s1,
and send the result to Bob. Bob decodes with s′

1, verifies that H(s3) = H(s′
3), then

sends back to Alice the result of bit-wise XORing the hash of r, H(r), with s′
2. Finally,

Alice decodes with s2 and checks to see that the value Bob has computed for H(r) is
correct. Alice and Bob now know s3 = s′

3 and can store s3 for future use. The lengths
of s1 and s2 scale as O(− log δ), where δ is the maximum allowable probability that an
attacker who does not know s can modify s′ and escape detection. The length of s3 is
therefore only slightly less than l (the length of s). Alice and Bob thus choose l so that
the length of s3 will be sufficient for their purposes. Note that with this protocol, the
adversary can fool Alice and Bob into accepting s 6= s′ with 100 % probability if the
adversary knows s and s′.

(iv) Each party vi,j generates a string ri,j as follows:

ri,j ≡ ri,j−1 ⊕

⊕
k,k 6=i

q
(k)
i,j

⊕
⊕
k,k 6=i

q
(i)
k,j

 ,
where the symbols (⊕ and

⊕
) are both understood to mean bitwise

XOR. The string ri,j is then transmitted to party vi,j+1.
(v) Steps (iii) and (iv) are repeated until the strings reach the parties

in city m. All the parties vi,m in city m forward the strings they
receive to Bob.

(vi) Alice constructs s ≡
∏
i ri,0 and Bob constructs s′ ≡

∏
i ri,j−1.

(vii) Alice and Bob use the protocol4 described in Fig. 2 to determine
if s = s′. If so, they are left with a portion of s (identified as s3),
which is their shared secret key. If s 6= s′, Alice and Bob discard s
and s′ and repeat the protocol.

4 We previously proposed the sub-protocol shown in Fig. 2 as part of the stranger
authentication protocol in arXiv:0803.2717.



4 Security

In order for the secret to be compromised, there must be some j ∈
{1, . . . ,m − 1} such that, for all i ∈ {1, . . . , n}, at least one of vi,j and
vi,j+1 is dishonest. If this happens, we say the protocol has been compro-
mised at stage j. For a given j, the probability of compromise is (1− t2)n,
but the probability for j is not entirely independent of the probabilities
for j−1 and j+1. Thus, we can bound from below the overall probability
of the channel between Alice and Bob being secure, ps, by (1):

ps ≥
[
1− (1− t2)n

]m−1
. (1)

From this result, we see that, if we wish to ensure our probability of
a secure channel between Alice and Bob is at least ps, it is sufficient
to choose n = log

(
1− p1/(m−1)

s

)
/ log

(
1− t2

)
. Intercity bandwidth con-

sumed is proportional to n, so we see that we have good scaling of resource
consumption with communication distance. Alternatively, we can re-write
the equation for choosing n in terms of a maximum allowed probability
of compromise, δ = 1− ps. For δ � 1, we obtain the following relation:

n ' log (m− 1)− log δ
− log (1− t2)

.

Total resource usage (intercity communication links required) scales as
O(mn), or O(m logm) for fixed δ, t. While intracity communication re-
quirements scale faster (asO(mn2)), it is reasonable to ignore this because
of the comparatively low cost of intracity communication and the finite
size of the earth (which effectively limits m to a maximum of 100 or so
for a QKD network with single link distances of ∼ 100 km).

If each party in the network simultaneously wished to communicate
with one other party (with that party assumed to be m/2 cities away on
average), total intercity bandwidth would scale as O(m2n2). By compari-
son, the bandwidth for a network of the same number of parties employing
public key cryptography (and no secret sharing) would scale as O(m2n).
Since n scales relatively slowly (i.e., with logm), this is a reasonable
penalty to pay for improved security.

5 Alternative Adversary Models

We now briefly consider a number of alternative adversary models. First,
let us consider replacing adversary capability (iii) with the following al-
ternative, which we term (iii′): the adversary can compromise up to k−1



nodes of its choice. Compromised nodes are assumed to be under the
complete control of the adversary, as before. In this scenario, the security
analysis is trivial. If k > n, the adversary can compromise Alice and Bob’s
communications undetected. Otherwise, Alice and Bob can communicate
securely.

We could also imagine an adversary controls some random subset
of nodes in the network—as described by (iii)—and wishes to disrupt
communications between Alice and Bob (i.e., perform a DOS attack), but
does not have the capability to disrupt or modify public channels. Alice
and Bob can modify the protocol to simultaneously protect against both
this type of attack and also the adversary mentioned in Section 2.1. To do
so, they replace the simple secret sharing scheme described above with a
Proactive Verifiable Secret Sharing (PVSS) scheme [15]. In this scenario,
nodes can check at each stage to see if any shares have been corrupted,
and take corrective measures. This process is robust against up to n/4−1
corrupt shares, which implies that PVSS yields little protection against
DOS attacks unless t > tthresh ≈

√
3/2.

6 Conclusion

We have shown a protocol for solving the relay problem and building se-
cure long-distance communication networks with present-day QKD tech-
nology. The protocol proposed employs secret sharing and multiple paths
through a network of partially-trusted nodes. Through the choice of mod-
erately large n in the relay problem, one can make the possibility of com-
promise vanishingly small. For fixed probability of compromise of each of
the intermediate nodes, the number of nodes per stage required to main-
tain security scales only logarithmically with the number of stages (i.e.,
with distance).

Given that QKD systems are already commercially available, our
methods could be implemented today.
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