Skip to main content

Strong Formulations for 2-Node-Connected Steiner Network Problems

  • Conference paper
Book cover Combinatorial Optimization and Applications (COCOA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5165))

Abstract

We consider a survivable network design problem known as the 2-Node-Connected Steiner Network Problem (2NCON): we are given a weighted undirected graph with a node partition into two sets of customer nodes and one set of Steiner nodes. We ask for the minimum weight connected subgraph containing all customer nodes, in which the nodes of the second customer set are nodewise 2-connected. This problem class has received lively attention in the past, especially with regard to exact ILP formulations and their polyhedral properties.

In this paper, we present a transformation of 2NCON into a related problem on directed graphs and use this to establish two novel ILP formulations, based on multi-commodity flow and on directed cuts, respectively. We prove the strength of our formulations over the known formulations, and compare our ILPs theoretically and experimentally. This paper thereby consitutes the first experimental study of exact 2NCON algorithms considering more than ~100 nodes, and shows that graphs with up to 4900 nodes can be solved to provable optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  2. Cherkassky, B.V., Goldberg, A.V.: On implementing push-relabel method for the maximum flow problem. Algorithmica 19, 390–410 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Strong formulations for the 2-node-connected steiner network problems (tr). Technical Report TR07-1-008, Chair for Algorithm Engineering, TU Dortmund (November 2007)

    Google Scholar 

  4. Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Obtaining optimal k-cardinality trees fast. In: Proc. Siam ALENEX 2008 (2008)

    Google Scholar 

  5. Chimani, M., Kandyba, M., Mutzel, P.: A new ILP formulation for 2-root-connected prize-collecting Steiner networks. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 681–692. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Chopra, S.: Polyhedra of the equivalent subgraph problem and some edge connectivity problems. SIAM J. Discrete Math. 5(3), 321–337 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ghashghai, E., Rardin, R.L.: Using a hybrid of exact and genetic algorithms to design survivable networks. Computers & OR 29(1), 53–66 (2002)

    Article  MATH  Google Scholar 

  8. Goemans, M.X.: Analysis of linear programming relaxations for a class of connectivity problems. PhD thesis. MIT, Cambridge (1990)

    Google Scholar 

  9. Grötschel, M., Monma, C.L., Stoer, M.: Polyhedral Approaches to Network Survivability. In: Reliability of Computer and Communication Networks, Proc. Workshop 1989. Discrete Mathematics and Theoretical Computer Science, vol. 5, pp. 121–141. American Mathematical Society (1991)

    Google Scholar 

  10. Grötschel, M., Monma, C.L., Stoer, M.: Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints. Operatios Research 40(2), 309–330 (1992)

    Article  MATH  Google Scholar 

  11. Grötschel, M., Monma, C.L., Stoer, M.: Facets for polyhedra arising in the design of communication networks with low-connectivity constraints. SIAM Journal on Optimization 2(3), 474–504 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Johnson, D.S., Minkoff, M., Phillips, S.: The prize-collecting steiner tree problem: Theory and practice. In: Proceedings of 11th ACM-SIAM Symposium on Distcrete Algorithms, San Fransisco, CA, pp. 760–769 (2000)

    Google Scholar 

  13. Kerivin, H., Mahjoub, A.R.: Design of survivable networks: A survey. Networks 46(1), 1–21 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ljubić, I.: Exact and Memetic Algorithms for Two Network Design Problems. PhD thesis, TU Vienna (2004)

    Google Scholar 

  15. Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prize-collecting steiner tree problem. Math. Prog. Ser. B 105(2–3), 427–449 (2006)

    Article  MATH  Google Scholar 

  16. Lucena, A., Resende, M.G.C.: Strong lower bounds for the prize-collecting steiner problem in graphs. Discrete Applied Mathematics 141(1-3), 277–294 (2003)

    Article  MathSciNet  Google Scholar 

  17. Magnanti, T.L., Raghavan, S.: Strong formulations for network design problems with connectivity requirements. Networks 45(2), 61–79 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Polzin, T., Daneshmand, S.V.: Improved algorithms for the Steiner problem in networks. Discrete Applied Mathematics 112(1-3), 263–300 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Raghavan, S.: Formulations and Algorithms for the Network Design Problems with Connectivity Requirements. PhD thesis. MIT, Cambridge(1995)

    Google Scholar 

  20. Robbins, H.E.: A theorem on graphs with an application to a problem of traffic control. American Mathematical Monthly 46, 281–283 (1939)

    Article  MathSciNet  Google Scholar 

  21. Stoer, M.: Design of Survivable Networks. LNM, vol. 1531. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  22. Wagner, D.: Generierung und Adaptierung von Testinstanzen für das OPT und SST Problem. Technical Report 03/2007, Carinthia Tech Institute, Klagenfurt, Austria (2007) (in German)

    Google Scholar 

  23. Wagner, D., Raidl, G.R., Pferschy, U., Mutzel, P., Bachhiesl, P.: A multi-commodity flow approach for the design of the last mile in real-world fiber optic networks. In: Proc. OR 2006, pp. 197–202. Springer, Heidelberg (2006)

    Google Scholar 

  24. Winter, P.: Steiner problem in networks: A survey. Networks 17(2), 129–167 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wolsey, L.A.: Integer Programming. Wiley-Interscience, Chichester (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Boting Yang Ding-Zhu Du Cao An Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P. (2008). Strong Formulations for 2-Node-Connected Steiner Network Problems. In: Yang, B., Du, DZ., Wang, C.A. (eds) Combinatorial Optimization and Applications. COCOA 2008. Lecture Notes in Computer Science, vol 5165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85097-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85097-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85096-0

  • Online ISBN: 978-3-540-85097-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics