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The smallest multistationary mass-preserving

chemical reaction network
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Abstract. Biochemical models that exhibit bistability are of interest
to biologists and mathematicians alike. Chemical reaction network the-
ory can provide sufficient conditions for the existence of bistability, and
on the other hand can rule out the possibility of multiple steady states.
Understanding small networks is important because the existence of mul-
tiple steady states in a subnetwork of a biochemical model can sometimes
be lifted to establish multistationarity in the larger network. This paper
establishes the smallest reversible, mass-preserving network that admits
bistability and determines the semi-algebraic set of parameters for which
more than one steady state exists.
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1 Introduction

Bistable biochemical models are often presented as the possible underpinnings
of chemical switches [2,17]. Systematic study of mass-action kinetics models–
which a priori may or may not admit multiple steady states–constitutes chemical
reaction network theory (CRNT), a subject pioneered by Horn, Jackson, and
Feinberg [13,16]. Certain classes of networks, such as those of deficiency zero,
do not exhibit multistationarity or other strange behaviors. A generalization
of deficiency-zero systems is the class of toric dynamical systems which have a
unique steady state [5]. See also the recent work of Craciun and Feinberg for
additional conditions that rule out multistationarity [6,7].

On the other hand, there are conditions that are sufficient for establishing
whether a network supports multiple steady states. The CRNT Toolbox de-
veloped by Feinberg and improved by Ellison implements the Deficiency One
and Advanced Deficiency Algorithms [9,12]; this software is available online [10].
For a large class of systems, the CRNT Toolbox either provides a witness for
multistationarity or concludes that it is impossible. For systems for which the
CRNT Toolbox is inconclusive, see the approach of Conradi et al. [4]. Related
work includes an algebraic approach that determines the full set of parameters
for which a system is multistationary; a necessary and sufficient condition for
multistationarity is the existence of a non-trivial sign vector in the intersection
of two subsets of Euclidean space [3].
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To model biological processes, one typically reverse-engineers a system of
non-linear differential equations that exhibits specific dynamical behavior, such
as bistability or oscillations, observed in experiments. For example, Segel pro-
poses a small immune network consisting only two cell types, which has three
stable steady states, corresponding to “normal,” “vaccinated,” and “diseased”
states [19]. Similarly, the Brusselator is a mass-action kinetics network with a
stable limit cycle [11].

This paper focuses on the smallest mass-action kinetics networks that admit
multiple steady states. Section 2 provides an introduction to chemical reaction
network theory. A special network called the Square is shown in Section 3 to be
a smallest reversible multistationary chemical reaction network. Sections 4 and 5
determine precisely which parameters of the Square give rise to multiple steady
states.

2 Chemical Reaction Network Theory

We now give an introduction to chemical reaction network theory. Before giving
precise definitions, we present an intuitive example that illustrates how a chemi-
cal reaction network gives rise to a dynamical system. An example of a chemical

reaction, as it usually appears in the literature, is the following:

3A+ CA+B
κ //

In this reaction, one unit of chemical species A and one of B react (at reaction
rate κ) to form three units of A and one of C. The concentrations cA, cB, and cC
will change in time as the reaction occurs. Under the assumption of mass-action

kinetics, species A and B react at a rate proportional to the product of their
concentrations, where the proportionality constant is the rate constant κ. Noting
that the reaction yields a net change of two in the amount of A, we obtain the
first differential equation in the following system:

d

dt
cA = 2κcAcB ,

d

dt
cB = − κcAcB ,

d

dt
cC = κcAcB .

The other two equations arise similarly. Next we include the reverse reaction
and switch from additive to multiplicative notation to highlight the monomials
that appear in our differential equations; the chemical reaction networks in this
paper will appear with the following notation:

c3AcCcAcB
κ

κ′

//
oo



This network defines differential equations that are each a sum of the mono-
mial contribution from the reactant of each chemical reaction in the network:

d

dt
cA = 2κcAcB − 2κ′c3AcC ,

d

dt
cB = − κcAcB + κ′c3AcC ,

d

dt
cC = κcAcB − κ′c3AcC .

The recipe for obtaining these differential equations from a chemical reaction
network easily generalizes from this example. However, in order to display the
linearity hidden in these non-linear equations, the equations will appear in a
different but equivalent form in (1) below.

We now establish the notation for this paper, following [5]. A chemical reac-

tion network is a finite directed graph whose vertices are labeled by monomials
and whose edges are labeled by parameters. Specifically, the digraph is denoted
G = (V,E), with vertex set V = {1, 2, . . . , n} and edge set E ⊆ {(i, j) ∈ V ×V :
i 6= j}. The vertex i of G represents the ith chemical complex and is labeled by
the monomial

cyi = cyi1

1
cyi2

2
· · · cyis

s .

This yields Y = (yij), an n × s-matrix of non-negative integers. The unknowns
c1, c2, . . . , cs represent the concentrations of the s species in the network, and we
regard them as functions ci(t) of time t. The monomial labels form the entries
in the following row vector:

Ψ(c) =
(

cy1 , cy2 , . . . , cyn

)

.

A network is said to be mass-preserving if all monomials cyi have the same
degree. Each directed edge (i, j) ∈ E is labeled by a positive parameter κij which
represents the rate constant in the reaction from the i-th chemical complex to
the j-th chemical complex. A network is reversible if the graph G is undirected,
in which case each undirected edge has two labels κij and κji. Let Aκ denote the
negative of the Laplacian of the digraph G. In other words Aκ is the n×n-matrix
whose off-diagonal entries are the κij and whose row sums are zero. Mass-action
kinetics specified by the digraph G is the dynamical system defined by

dc

dt
= Ψ(c) · Aκ · Y . (1)

By decomposing the mass-action equations in this way, we see that they are linear
in the κij by way of the matrix Aκ. A steady state (or equilibrium) is a positive
concentration vector c ∈ R

s
>0 at which the equations (1) vanish. These equations

remain in the (stoichiometric) subspace S spanned by the vectors yi− yj (where
(i, j) is an edge of G). In the earlier example, yi − yj = (−2,−1, 1), meaning
that whenever a reaction occurs, two units of A and one of B are lost, while one
unit of C is formed (or vice-versa). Therefore, a trajectory c(t) beginning at a



positive vector c(0) = c0 remains in the invariant polyhedron P := (c0+S)∩Rs
≥0

.
Multistationarity refers to the existence of more than one steady state in some
invariant polyhedron. A chemical reaction network may admit multistationarity
for all, some, or no choices of positive parameters κij .

Horn initiated the investigation of small chemical reaction networks by enu-
merating networks comprised of “short complexes,” those whose corresponding
monomials cy have degree at most two [14,15]. Networks that consist of at most
three short complexes do not permit multiple steady states.

The next section establishes that the following graph, which we call the
Square, depicts a smallest reversible multistationary chemical reaction network:

c31 c1c
2
2

c3
2

c2
1
c2

κ12

κ21

κ23κ32

κ34

κ43

κ41 κ14

OO OO

�� ��

//

//

oo

oo

In the horizontal reactions, two units of species one are transformed into two of
species two (or vice-versa), while a third unit remains unchanged by the reaction.
In the vertical reactions, only one is transformed.

The Square appeared in non-reversible form as networks 7-3 in [16] and 4.2
in [11]. The matrices whose product defines the dynamical system (1) follow:

Ψ(c) =
(

c31, c1c
2

2, c32, c21c2
)

,

Aκ =









−κ12 − κ14 κ12 0 κ14

κ21 −κ21 − κ23 κ23 0
0 κ32 −κ32 − κ34 κ34

κ41 0 κ43 −κ41 − κ43









,

Y =









3 0
1 2
0 3
2 1









.

There may be two or even three steady states in each invariant polyhedron P ;
Example 1 in the next section provides a choice of positive rate constants κij

that give rise to three steady states. Sections 4 and 5 determine precisely which
parameters give rise to two steady states and which yield three. Moreover, we
compute this semi-algebraic parametrization for all networks on the same four
vertices as the Square, in other words, networks with complexes c3

1
, c1c

2

2
, c3

2
,

and c21c2. The parametrization is captured in Table 1 and can be computed “by
hand,” but larger systems may require techniques of computational real algebraic
geometry [1]. For example, our problem of classifying parameters according to
number of steady states is labeled as Problem P2 in [21], where it is addressed
with computer algebra methods.



3 The Smallest Multistationary Network

Following equation (7) of [5], the Matrix-Tree Theorem defines the following
polynomials in the rate constants of the Square:

K1 = κ23κ34κ41 + κ21κ34κ41 + κ21κ32κ41 + κ21κ32κ43 ,

K2 = κ14κ32κ43 + κ12κ34κ41 + κ12κ32κ41 + κ12κ32κ43 ,

K3 = κ14κ23κ43 + κ14κ21κ43 + κ12κ23κ41 + κ12κ23κ43 ,

K4 = κ14κ23κ34 + κ14κ21κ34 + κ14κ21κ32 + κ12κ23κ34 .

Theorem 7 of [5] provides an ideal MG that is toric in these Ki coordinates, and
the variety of MG is the moduli space of toric dynamical systems on the Square.
In this case, the ideal MG is the twisted cubic curve in the Ki coordinates,
generated by the 2×2-minors of the following matrix:

(

K1 K2 K4

K4 K3 K2

)

. (2)

Theorem 7 of [5] says that for a given choice of positive rate constants κij ,
the equations (1) define a toric dynamical system if and only if the minors of
the matrix (2) vanish. In general the codimension of MG is the deficiency of a
network; see Theorem 9 of [5]. Here the deficiency is two. Recall that a toric

dynamical system is a dynamical system (1) for which the algebraic equations
Ψ(c) ·Aκ = 0 admit a strictly positive solution c∗ ∈ R

s
>0

; this solution is called a
complex balancing steady state [16]. In this case there is a unique steady state in
each invariant polyhedron P , so multistationarity is ruled out. Toric dynamical
systems exhibit further nice properties; for details, see [5,13,16].

It is no coincidence that the original monomials of the Square, namely c3
1
,

c1c
2
2, c

3
2, c

2
1c2, parametrize the twisted cubic curve. In fact, the following general

result follows from Theorem 9 in [5].

Proposition 1. Assume that a chemical reaction network G is strongly con-

nected and all monomials cyi have the same total degree. Then the toric variety

parametrized by Ψ(c) coincides with the variety of MG.

For the Square, each one-dimensional invariant polyhedron P is defined by some
positive concentration total T = c1 + c2. The steady states in P correspond
precisely to the positive roots of the following cubic polynomial:

pS(x) = (−2κ12 − κ14)x
3 + (κ41 − κ43)x

2 + (2κ21 − κ23)x + (κ32 + 2κ34) ;

this polynomial arises by substituting x := c1/c2 into the equation dc1/dt =
−dc2/dt. From this point of view, we reach some immediate conclusions. First,
the algebraic degree of this system is three, which bounds the number of steady
states. Second, the number of steady states and their stability depend only on
the rate parameters κij , and not on the invariant polyhedron P or equivalently
the choice of total concentration T . Also, by noting that pS(x) is positive at



x = 0 and is negative for large x, we see that the Square admits at least one
steady state for any choice of rate constants. Recall that the discriminant of a
univariate polynomial f is a polynomial that vanishes precisely when f has a
multiple root over the complex numbers [20]. Maple computes the discriminant
of pS to be the following polynomial:

− 108κ2

12
κ2

32
− 432κ2

12
κ32κ34 − 432κ2

12
κ2

34
− 108κ12κ14κ

2

32

− 432κ12κ14κ32κ34 − 432κ12κ14κ
2

34
+ 64κ12κ

3

21
− 96κ12κ

2

21
κ23 + 48κ12κ21κ

2

23

− 72κ12κ21κ32κ41 + 144κ12κ21κ32κ43 − 144κ12κ21κ34κ41 + 288κ12κ21κ34κ43

− 8κ12κ
3

23 + 36κ12κ23κ32κ41 − 72κ12κ23κ32κ43 + 72κ12κ23κ34κ41

− 144κ12κ23κ34κ43 − 27κ2

14
κ2

32
− 108κ2

14
κ32κ34 − 108κ2

14
κ2

34
+ 32κ14κ

3

21

− 48κ14κ
2

21
κ23 + 24κ14κ21κ

2

23
− 36κ14κ21κ32κ41 + 72κ14κ21κ32κ43

− 72κ14κ21κ34κ41 + 144κ14κ21κ34κ43 − 4κ14κ
3

23
+ 18κ14κ23κ32κ41

− 36κ14κ23κ32κ43 + 36κ14κ23κ34κ41 − 72κ14κ23κ34κ43 + 4κ2

21κ
2

41

− 16κ2

21κ41κ43 + 16κ2

21κ
2

43 − 4κ21κ23κ
2

41 + 16κ21κ23κ41κ43 − 16κ21κ23κ
2

43

+ κ2

23
κ2

41
− 4κ2

23
κ41κ43 + 4κ2

23
κ2

43
− 4κ32κ

3

41
+ 24κ32κ

2

41
κ43 − 48κ32κ41κ

2

43

+ 32κ32κ
3

43
− 8κ34κ

3

41
+ 48κ34κ

2

41
κ43 − 96κ34κ41κ

2

43
+ 64κ34κ

3

43
.

As pS is cubic and has at least one positive root, its discriminant is negative
if and only if pS has one real root and one pair of complex conjugate roots; in
this case, the Square has precisely one steady state. When the discriminant is
non-negative, the system may admit one, two, or three steady states; we analyze
this case fully in the next section.

Example 1. Consider the following rate constants for the Square:

(κ12, κ14, κ21, κ23, κ32, κ34, κ41, κ43) = (1/4, 1/2, 1, 13, 1, 2, 8, 1) .

This yields pS(x) = −x3+6x2− 11+6, which has three positive roots: x = 1, 2,
and 3. This is an instance of bistability; it is easy to determine that x = 1 and
x = 3 correspond to stable steady states, while the third is unstable. In the next
section we determine the conditions for an arbitrary vector of rate constants to
admit one, two, or three steady states.

Recalling the definitions given earlier, the Square has the following properties:
the number of complexes is n = 4, the number of connected components of G
is l = 1, the number of species is s = 2, and the dimension of any invariant
polyhedron is σ = 1. The main result of this section states that this network is
minimal with respect to each of these four parameters.

Theorem 1. The Square is a smallest multistationary, mass-preserving, re-

versible chemical reaction network with respect to each of the following param-

eters: the number of complexes, the number of connected components of G, the

number of species, and the dimension of an invariant polyhedron.



Proof. First l = 1 and σ = 1 are clearly minimal. Next any mass-preserving
system with n ≤ 2 or s = 1 has no reactions or has deficiency zero. Finally, an
n = 3 system has deficiency zero or one; in the deficiency one case, the Deficiency
One Theorem of Feinberg rules out the possibility of multistationarity [12]. ⊓⊔

Among all mass-preserving multistationary systems that share these four
minimal parameters, the Square is distinguished because its monomials are of
minimal degree. A connected network of lower degree would consist of at most
three of Horn’s “short” complexes [14].

We now discuss the possible connection of the Square to biology by comparing
it to the following simple network:

cxcy ⇆ c2y (3)

cx ⇆ cy.

Network (3) is a modified version of the following molecular switch mechanism
proposed by Lisman [18]:

cxcy ⇆ cxy −→ c2y

cycp ⇆ cyp −→ cxcp.

Here x denotes a kinase in an inactive state, y is the active version, and p is a
phosphatase. In the first reactions, y catalyzes the phosphorylation of x, turning
x into y; the second reactions correspond to dephosphorylation. By skipping
the binding steps, making all reactions reversible, and noting that removing p
effectively scales the second reaction rate constant, we obtain the network (3).
The reactions of (3) are similar to c2

1
cy ⇆ c3

2
and c3

1
⇆ c3

2
, which are reactions

in the generalization of the Square network examined in the next section; this
suggests the possible biological relevance of the reactions of the Square. For
example c2

1
c2 −→ c3

2
can be viewed as a reaction in which species two catalyzes

the reaction c21 −→ c22. Such a positive feedback loop–in which a high amount of
some species y encourages the further production of the same species–occurs in
biological settings. For example, the recent work of Dentin et al. finds that high
glucose levels in diabetic mice promote further glucose production in the liver,
which is triggered by the binding of glucose (which we may view as y) to the
transcription factor CREB (x) [8].

This paper focuses on the Square and more generally, the networks that share
the same complexes as the Square. In the following section, we shall determine
which of these are bistable. The one with the fewest edges is the only one with
two connected components rather than one, and is featured in the last section.

4 Parametrizing Multistationarity

The aim of this section is similar to that of Conradi et al. [3], which determined
the full set of parameters that give rise to multistationarity for a biochemical
model describing a single layer of a MAPK cascade. However we additionally



determine the precise number of steady states: zero, one, two, or three, and
determine their stability. The family of networks we consider are those that have
the same four complexes as the Square. In other words, we classify subnetworks
of the complete network depicted here:

c3
1

c1c
2

2

c32c21c2

OO OO

�� ��

//

//

oo

oo
  A

AA
AA

AA
AA

AA
A``AAAAAAAAAAAA

??���������������
��

��
��

��
�

Each of the twelve rate constants κij is permitted to be zero, which defines the
parameter space R

12

≥0
of dynamical systems. The main result of this section is

summarized in Table 1, which is the semi-algebraic decomposition of the twelve-
dimensional parameter space according to the number of steady states of the
dynamical system. The conditions listed there make use of certain polynomials
in the rate constants, including the signed coefficients of the polynomial p:

S0 = 2κ12 + 3κ13 + κ14 ,

S1 = κ41 − κ42 − 2κ43 ,

S2 = −2κ21 + κ23 − κ24 ,

S3 = 3κ31 + κ32 + 2κ34 ,

where p generalizes the polynomial pS from the Square:

p(x) = −S0x
3 + S1x

2 − S2x+ S3 .

We now derive the entries of Table 1 for those networks without boundary
steady states (this includes the case of the Square). These cases are precisely
the ones in which S0 > 0 and S3 > 0. Our approach is simply to determine the
conditions on the coefficients of p for the polynomial to have one, two, or three
positive roots.

In this twelve-parameter case, the discriminant of p is a homogeneous degree-
four polynomial with 113 terms. For the same reason as that for the Square, there
is one steady state when the discriminant is negative. Now assume that the
discriminant is non-negative. Then p has three real roots, counting multiplicity;
recall that the positive ones correspond to the steady states of the chemical
reaction network. Now the constant term of a monic cubic polynomial is the
negative of the product of its roots, so by examining the sign of the constant
term of p, we conclude that p has either one positive root and two negative roots,
or three positive roots. Continuing the sign analysis with the other coefficients
of p, we conclude that there are three positive roots if and only if S1 > 0 and
S2 > 0. We proceed by distinguishing between the cases when the discriminant
is positive or zero. If the discriminant is positive, then we have derived criteria



Table 1. Classification of dynamical systems arising from non-trivial (having at
least one reaction) networks with complexes c3

1
, c1c

2

2
, c3

2
, c2

1
c2. Listed are the

number of steady states and the number of steady states that are stable. The
discriminant of p is denoted by D. The signed coefficients of p are denoted by
S0, S1, S2, and S3. The triple root condition consists of the equations (4).

Condition Steady states Stable states

D < 0 and S0S3 = 0 0 0
D < 0 and else 1 1

D > 0 and S0, S1, S2, S3 > 0 3 2
D > 0 and S0, S1, S2 > 0 and S3 = 0 2 1
D > 0 and S1, S2, S3 > 0 and S0 = 0 2 1
D > 0 and S0 = S3 = 0 and S1S2 < 0 0 0

D > 0 and else 1 1

D = 0 and S0, S1, S2, S3 > 0 and triple root condition 1 1
D = 0 and S0, S1, S2, S3 > 0 without triple root condition 2 1

D = 0 and S1 ≤ S0 = 0 ≤ S2 and S3 > 0 0 0
D = 0 and S1 ≤ S3 = 0 ≤ S2 and S0 > 0 0 0

D = 0 and else 2 1

for having one or three steady states; this is because the roots of p are distinct.
If the discriminant is zero, then in the case of one positive root, the two negative
roots come together (one steady state). In the case of discriminant zero and three
positive roots, then at least two roots come together (at most two steady states);
a triple root occurs if and only if the following triple root condition holds:

3S0S2 = S2

1 and 27S2

0S3 = S3

1 . (4)

These equations are precisely what must hold in order for p to have the form
p(x) = −(x − α)3. Finally, stability analysis in this one-dimensional system is
easy, and this completes the analysis for the networks without boundary steady
states. The remaining cases can be classified similarly to complete the entries
of Table 1. To parametrize the behavior of the Square, we simply reduce to the
case when each of its parameters κ12, κ14, κ21, κ23, κ32, κ34, κ41, and κ43 are
positive and all others are zero.

By determining which sign vectors in (0,+)12 can be realized by a vector
of parameters that yields multistationarity, we find a necessary and sufficient
condition for a directed graph on the four complexes of the Square to admit
multistationarity. This condition is that the graph must include the edges labeled
by κ23 and κ41 and at least one edge directed from the vertex c3

1
or c3

2
. In this

case, for appropriate rate parameters arising from Table 1, the dynamical system
has multiple steady states. Therefore, we can enumerate the reversible networks
on the four complexes that admit multistationarity: there is one network with
all six (bi-directional) edges, four with five edges, six (including the Square)
with four edges, four with three edges, and one with two edges. These sixteen



networks comprise the family of “smallest” multistationary networks. For the
two-edge network, the decomposition from Table 1 is depicted in Figure 1 in the
next section.

5 Subnetworks of the Square

Subnetworks of the Square are obtained by removing edges. From the parametriza-
tion in the previous section, we know that up to symmetry between c1 and c2,
only two reversible subnetworks of the Square exhibit multiple steady states.

The first network is obtained by removing the bottom edge of the Square. In
other words Aκ is replaced by

Aκ =









−κ12 − κ14 κ12 0 κ14

κ21 −κ21 − κ23 κ23 0
0 κ32 −κ32 0
κ41 0 0 −κ41









.

In this subnetwork, the four parameters of Theorem 1 are the same as those
of the Square. The system is a toric dynamical system if and only if the following
four binomial generators of MG vanish:

κ14κ32 − κ23κ41 ,

κ12κ32κ41 − κ14κ21κ23 ,

κ2

14
κ21 − κ12κ

2

41
,

κ12κ
2

32 − κ21κ
2

23 .

We note that both κ23 times the third binomial and κ14 times the fourth bi-
nomial are in the ideal generated by the first two binomials. Therefore, an
assignment of positive parameters for this network defines a toric dynamical
system if and only if the following two equations hold: κ14κ32 = κ23κ41 and
κ12κ32κ41 = κ14κ21κ23.

The second subnetwork of the Square is obtained by removing one additional
edge, the one between the vertices labeled by c3

1
and c1c

2

2
. The new Aκ is

Aκ =









−κ14 0 0 κ14

0 −κ23 κ23 0
0 κ32 −κ32 0
κ41 0 0 −κ41









.

The network graph G is now disconnected, and p reduces to

p(x) = − κ14x
3 + κ41x

2 − κ23x+ κ32 .

The discriminant of p is

D = −27κ2

14
κ2

32
− 4κ14κ

3

23
+ 18κ14κ23κ32κ41 + κ2

23
κ2

41
− 4κ32κ

3

41
.



Further, the toric condition reduces to the single equation

κ23κ41 = κ14κ32 ,

which defines the Segre variety. A single equation suffices to define the space
of toric dynamical systems; this corresponds to the fact that this subnetwork
has deficiency one, while the previous subnetwork has deficiency two. The semi-
algebraic decomposition of the previous section for this four-parameter network
can be depicted in three dimensions by setting one parameter to be one, in other
words, by scaling the equations (1); this is displayed in Figure 1.

2
1.5

2
0

0.5

1.5
1

1

k14

1.5

k32

k23

2

1
0.5

0.5 0
0

Fig. 1. This depicts the semi-algebraic decomposition of Section 4 for the sub-
network of the Square in which only the vertical edges remain and κ41 = 1. At
the left is the discriminant-zero locus. Parameter vectors lying below this sur-
face give rise to dynamical systems with three steady states. Those above the
surface yield one steady state; these include parameters of the toric dynamical
systems, which are the points on the Segre variety which appears on the right.
Parameters on the discriminant-zero locus correspond to systems with either one
(if 3κ14κ32 = κ23) or two steady states. This figure was created using Maple.



We remark that Horn and Jackson performed the same parametrization for
the following special rate constants:

(κ12, κ14, κ21, κ23, κ32, κ34, κ41, κ43) = (ǫ, 0, 1, 0, ǫ, 0, 1, 0) ,

where ǫ > 0. Their results are summarized as Table 1 in [16]. Their analysis
notes that any instance of three steady states can be lifted to establish the same
in the (reversible) Square. In other words, in a small neighborhood in R

8

≥0
of

a vector of parameters that yields three steady states of the directed Square,
there is a vector of parameters for the bi-directional Square that also exhibits
multistationarity. The specific criterion for when lifting of this form is possible
appears in Theorem 2 of Conradi et al. [4]. As this approach is widely applicable,
further analysis of small networks may be fruitful for illuminating the dynamics
of larger biochemical networks.

We have seen that the family of Square networks is the smallest class of
bistable mass-action kinetics networks. Whether nature has implemented one of
these (perhaps with additional components to provide robustness) in a biological
setting is as yet unknown, but it is also remarkable that these networks exhibit
a simple switch mechanism, which we now explain. Consider the case of three
steady states. The corresponding positive roots x1 < x2 < x3 of p in Section 4
are the equilibria for the ratio of concentrations c1/c2. To switch from the low
stable equilibrium x1 to the high stable equilibrium x3 is easy: simply increase
the concentration ratio c1/c2 past x2, and the dynamics will do the rest.
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