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Abstract. Polynomial interpretations are a standard technique used in
almost all tools for proving termination of term rewrite systems (TRSs)
automatically. Traditionally, one applies interpretations with polynomi-
als over the naturals. But recently, it was shown that interpretations
with polynomials over the rationals can be significantly more powerful.
However, searching for such interpretations is considerably more diffi-
cult than for natural polynomials. Moreover, while there exist highly
efficient SAT-based techniques for finding natural polynomials, no such
techniques had been developed for rational polynomials yet. In this pa-
per, we tackle the two main problems when applying rational polynomial
interpretations in practice: (1) We develop new criteria to decide when
to use rational instead of natural polynomial interpretations. (2) After-
wards, we present SAT-based methods for finding rational polynomial
interpretations and evaluate them empirically.
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1 Introduction

Orders based on polynomial interpretations are essential for termination proofs.
Recently, [16–18] showed that polynomial interpretations over the rationals are
strictly more powerful for proving termination than those over the naturals.3

One of the most popular termination techniques that is implemented in vir-
tually all current tools for termination analysis of TRSs is the dependency pair
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(DP) method, cf. e.g. [1, 9, 11–13]. In principle, rational polynomial interpreta-
tions can immediately be used in this method. In other words, the polynomial
constraints (over the rationals) which have to be generated are the same as those
for polynomials with natural coefficients [16, 18]. But as discussed in [18], the
main problem when attempting to use rational polynomials in practice is that
one needs efficient and suitable methods to find polynomial interpretations over
the rationals automatically. Here, there are two main challenges:

Since searching for rational polynomial interpretations is much more time-
consuming than for natural interpretations, one needs criteria to decide when
to use rational interpretations. After recapitulating the necessary prerequisites
on termination proving in Sect. 2, the first contribution of this paper are such
criteria, presented in Sect. 3. Here, we first introduce sufficient criteria (i.e.,
criteria which state that the termination proof will fail when just using natural
polynomials). Afterwards, we introduce heuristics to characterize the remaining
termination problems where rational polynomials are “likely” to be needed.

The other challenge are efficient methods to search for rational interpreta-
tions. For interpretations over the naturals, until recently the best known tech-
niques were dedicated constraint-based algorithms like [3]. However, recently a
new approach was developed in [7] which proposes the use of SAT solvers for gen-
erating natural polynomial interpretations. This approach was implemented in
the termination tool AProVE [10] and it leads to speed-ups in orders of magnitude
over constraint-based algorithms. While there already exists a constraint-based
algorithm for finding rational polynomial interpretations [18]4 (implemented in
the tool mu-term [15]), a SAT-based approach similar to [7] could bring similar
improvements when polynomials over the rationals are considered. The second
contribution of this paper (in Sect. 4) is the development of two such SAT-based
approaches. Finally, Sect. 5 contains an extensive experimental evaluation.

2 Termination Proving with Rational Polynomials

Definition 1 (Dependency Pairs). For a TRS R, the defined symbols D are
the root symbols of left-hand sides of rules. All other function symbols are called
constructors. For every defined symbol f ∈ D, we introduce a fresh tuple symbol
f ] with the same arity. To ease readability, we often write F instead of f ], etc.
If t = f(t1, . . . , tn) with f ∈ D, we write t] for f ](t1, . . . , tn). If `→ r ∈ R and t
is a subterm of r with defined root symbol, then the rule `] → t] is a dependency
pair of R. The set of all dependency pairs of R is denoted by DP(R).

Example 2. Consider the following TRS R from [20], where random(x) computes
a random number between 0 and x.

nonZero(0)→ false (1)

nonZero(s(x))→ true (2)

random(x) → rand(x, 0) (3)

rand(x, y)→ if(nonZero(x), x, y) (4)

4 [18] also presents an algorithm for real polynomial interpretations. Extending the
results of the current paper to real interpretations is a topic for future work.
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p(0)→ 0 (5)

p(s(x))→ x (6)

id inc(x)→ x (7)

if(false, x, y)→ y (8)

if(true, x, y)→ rand(p(x), id inc(y)) (9)

id inc(x)→ s(x) (10)

The defined symbols are nonZero, p, id inc, random, rand, if, and the DPs are

RANDOM(x)→ RAND(x, 0) (11)

RAND(x, y)→ IF(nonZero(x), x, y) (12)

RAND(x, y)→ NONZERO(x) (13)

IF(true, x, y)→ RAND(p(x), id inc(y)) (14)

IF(true, x, y)→ P(x) (15)

IF(true, x, y)→ ID INC(y) (16)

The newset formulation of the DP method is the so-called DP framework [9,
11]. In this framework, termination techniques operate on sets of dependency
pairs instead of TRSs. We refer to such techniques as DP processors. Formally,
a DP processor is a function Proc which takes a set of DPs as input and returns
several new sets of DPs which then have to be solved instead. These DP proces-
sors are sound : if d is a set of DPs, Proc(d) = {d1, . . . , dn}, and all d1, . . . , dn
represent terminating problems, then the original problem d is also terminating.5

Termination proofs in the DP framework start with the initial set of DPs
DP (R). Then DP processors are applied repeatedly. If the final processors return
empty sets, then termination is proved. In Thm. 5 and 6 we recapitulate the two
most important DP processors. The first uses an estimated dependency graph to
estimate which DPs (i.e., which “function calls”) follow each other in evaluations.

Definition 3 (Estimated Dependency Graph). Let P be a set of DPs. The
nodes of the estimated P-dependency graph are the pairs of P and there is an
arc from s→ t to u→ v iff ren(cap(t)) and u unify. Here, cap(t) replaces all
subterms of t with defined root symbol by fresh variables and ren(t) linearizes t
by renaming all occurrences of variables into pairwise different fresh variables.

Example 4. For the TRS in Ex. 2, we obtain the following estimated DP (R)-
dependency graph.

(13) (11)oo

��

(15)

(14)

OO

++
(12)kk //

<<zzzzzzzz
(16)

For example, the reason for the arc from (12) to (14) is that if t is the right-
hand side of (12) and u is the left-hand side of (14), then ren(cap(t)) =
ren(IF(z, x, y)) = IF(z′, x′, y′) and u = IF(true, x, y) clearly unify.

One can prove termination separately for each strongly connected component
(SCC) of the estimated dependency graph. Therefore, the following processor
modularizes termination proofs by decomposing the set of DPs.

5 To ease readability we consider just sets of dependency pairs instead of DP problems
[9, 11]. This suffices for the presentation of the results of this paper. We also refer to
[9, 11] for a precise definition of “terminating” problems.
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Theorem 5 (Dependency Graph Processor). Let P be a set of DPs whose
estimated dependency graph has n SCCs. For every i ∈ {1, . . . , n}, let Pi be the
set of DPs in the i-th SCC. Then the following DP processor is sound:

Proc(P) = {P1, . . . ,Pn}

So in our example, the original set of DPs DP (R) = {(11), . . . , (16)} is
transformed to the subset P1 = {(12), (14)}, i.e., Proc(DP (R)) = {P1}.

The next processor is based on reduction pairs (%,�). Here, % is reflexive,
transitive, monotonic (i.e., s % t implies f(. . . s . . .) % f(. . . t . . .) for all function
symbols f), and stable (i.e., s % t implies sσ % tσ for all substitutions σ) and �
is a stable well-founded order compatible with % (i.e., % ◦ � ⊆ � or � ◦ % ⊆ �).

The following processor generates inequality constraints which have to be
satisfied by a reduction pair (%,�). The constraints require that all DPs in P
are strictly or weakly decreasing (i.e., w.r.t. � or %) and all usable rules U(P)
are weakly decreasing. Then one can delete all strictly decreasing DPs from P .

The usable rules include all rules that can reduce the terms in right-hand
sides of P when their variables are instantiated with normal forms. To ensure
that it suffices to regard only the usable rules instead of all rules in the following
processor, one has to demand that % is Cε-compatible, i.e., that c(x, y) % x
and c(x, y) % y hold for a fresh function symbol c [11, 13]. This requirement is
satisfied by almost all quasi-orders used in practice.

Theorem 6 (Reduction Pair Processor). Let (%,�) be a reduction pair
where % is Cε-compatible. Then the following DP processor Proc is sound.

Proc(P) =

{
P \ � if P ⊆ � ∪% and U(P) ⊆ %
P otherwise

For any function symbol f , let Rls(f) = {` → r ∈ R | root(`) = f}. For any
term t, the usable rules U(t) are the smallest set such that

U(f(t1, . . . , tn)) = Rls(f) ∪
⋃

`→r∈Rls(f)
U(r) ∪

⋃n

i=1
U(ti)

For a set of dependency pairs P, its usable rules are U(P) =
⋃
s→t∈P U(t).

There are many techniques to search for reduction pairs automatically (re-
cursive path orders, polynomial interpretations, etc. [4]). In this paper, we consi-
der polynomial interpretations Pol which map every n-ary function symbol f to
a polynomial fPol ∈ Q0[x1, . . . , xn]. So the coefficients of fPol are from Q0 = {pq |
p ∈ N, q ∈ N\{0}} and the variables x1, . . . , xn also range overQ0. This is in con-
trast to traditional polynomial interpretations where one uses N = {0, 1, 2, . . .}
instead of Q0. The mapping Pol is extended to terms by defining [x]Pol = x for
variables x and [f(t1, . . . , tn)]Pol = fPol([t1]Pol, . . . , [tn]Pol). An interpretation
Pol induces an order �Pol and a quasi-order %Pol where s %Pol t iff [s]Pol −
[t]Pol ≥ 0 holds for all instantiations of the variables with numbers from Q0. To
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define �Pol one needs a number δ > 0 and then s �Pol t iff [s]Pol − [t]Pol ≥ δ
holds for all instantiations of the variables with numbers from Q0. Then, �Pol
is also well founded for rational polynomial interpretations [16, 18].

Example 7. For the TRS of Ex. 2, the dependency graph processor reduced the
set of DPs to P1 = {(12), (14)}. The rules for the defined symbols nonZero,
p, and id inc in the right-hand sides of (12) and (14) are usable, i.e., U(P1) =
{(1), (2), (5), (6), (7), (10)}. We have to find a reduction pair which makes the
rules in U(P1) weakly decreasing and the DPs in P1 weakly or strictly decreasing.
Then the strictly decreasing DPs are removed. We use (%Pol,�Pol) with

0Pol = 0 pPol = 1
2
x1

sPol = 2x1 + 1 id incPol = 2x1 + 1

truePol = 1 RANDPol = 2x1

falsePol = 0 IFPol = x1 + x2

nonZeroPol = x1 δ = 1

Now all usable rules from U(P1) and all DPs from P1 are weakly decreas-
ing. Moreover, the DP (14) is strictly decreasing since [IF(true, x, y)]Pol −
[RAND(p(x), id inc(y))]Pol = 1 + x− 2 ∗ 1

2 x ≥ 1. Thus, it is removed by Thm. 6
and the resulting set of DPs is {(12)}. Afterwards, another application of the
dependency graph processor results in the empty set of DPs, since now the graph
has no arcs anymore. Hence, termination of this example is proved.

To measure the performance of termination tools, there is an annual Interna-
tional Termination Competition [19] where the tools are applied to a large collec-
tion of TRSs (the so-called Termination Problem Data Base (TPDB)). The TRS
of Ex. 2 comes from the TPDB (SchneiderKamp-trs-thiemann40), but none
of the tools in the Termination Competition 2007 could show its termination.6

Indeed, almost all termination tools use polynomial interpretations, but most of
them are restricted to interpretations with natural or integer coefficients. If they
were extended to rational coefficients, TRSs like Ex. 2 could easily be handled
by virtually all existing tools. Thus, this TRS shows that rational polynomial
interpretations indeed increase the power of termination proving substantially.

3 Criteria for Rational Polynomial Interpretations

In this section, we introduce criteria to decide when to use rational polynomial
interpretations. In Sect. 3.1 we present sufficient criteria7 which state that the

6 [20] presents a (manual) termination proof for this TRS using an improved variant
of predictive labeling, but their technique has not been implemented yet. In con-
trast, our proof is much easier and (apart from rational interpretations) it only uses
standard methods that are already implemented in most termination provers.

7 The criteria in Sect. 3.1 are restricted to linear polynomial interpretations which
are used in the vast majority of automated termination proofs for TRSs, cf. [19]. All
other results of the paper (i.e., the heuristics of Sect. 3.2 as well as the automation
of Sect. 4) can be used for interpretations with polynomials of arbitrary degree.
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termination proof will fail if one uses natural instead of rational interpretations.
In particular, this proves that rational polynomials really increase power, i.e.,
that there are examples where termination can be proved with rational, but not
with natural interpretations. Afterwards, Sect. 3.2 introduces heuristics to detect
remaining cases where rational interpretations are also likely to be needed.

3.1 Sufficient Criteria for Rational Polynomial Interpretations

Our sufficient criteria are based on the following notions of monotonicity.

Definition 8 (Monotonicity). Let Pol be a linear polynomial interpretation,
let f be a function symbol with arity n, let 1 ≤ i ≤ n, and let fPol = f0 +f1 x1 +
. . . + fn xn with f0, . . . , fn ∈ Q0. Then8 f is monotonically increasing (MI) on
i iff fi > 0 and f is strongly monotonically increasing (SMI) on i iff fi ≥ 1. So
if f is MI, but not SMI on i, then we have 0 < fi < 1, i.e., fi /∈ N.

Now we present sufficient criteria to detect when a function symbol must be
MI but not SMI. This indicates that one has to use rational interpretations for
the termination proof. We start with a criterion to detect that certain argument
positions cannot be SMI. To this end, we check whether there are terms s and t
where s �Pol t must hold although s is embedded in t. To formalize the notion of
embedding, we use the TRS Emb which consists of the rules f(x1, . . . , xn)→ xi
for all function symbols f and all 1 ≤ i ≤ n where n is the arity of f .

Theorem 9 (Sufficient Criterion for Non-SMI). Let Pol be a linear poly-
nomial interpretation. If s �Pol t and t→∗E s for a set9 of embedding rules E ⊆
Emb, then there is a rule f(x1, . . . , xn)→ xi in E such that f is not SMI on i.

Proof. Assume that for all f(x1, . . . , xn)→ xi in E , f is SMI on i. We show that
t→m

E s implies t %Pol s by induction on m. This is a contradiction to s �Pol t.
Clearly, t→m

E s implies t %Pol s for m = 0. Now let m > 0, i.e., t→E t′ →∗E s.
So t′ %Pol s by the induction hypothesis. Thus, it suffices to show t %Pol t′.

As t →E t′, we obtain t = t[f(t1, . . . , ti, . . . , tn)]π and t′ = t[ti]π for some
position π and some rule f(x1, . . . , xn) → xi in E . Since Pol is linear, we have
fPol = f0 + f1 x1 + . . . + fn xn for f0, . . . , fn ∈ Q0 and as f is SMI on i, we
have fi ≥ 1. Thus, f(x1, . . . , xn) %Pol xi. As %Pol is monotonic and stable, this
implies t[f(t1, . . . , ti, . . . , tn)]π %Pol t[ti]π and hence, t %Pol t′ as desired. ut
8 In general, a function fPol is monotonically increasing if xi − yi > 0 implies
fPol(x1, ..., xi, ..., xn) − fPol(x1, ..., yi, ..., xn) > 0 for all numbers x1, ..., xn, yi and
fPol is strongly monotonically increasing if xi−yi ≥ δ implies fPol(x1, ..., xi, ..., xn)−
fPol(x1, ..., yi, ..., xn) ≥ δ for all numbers x1, ..., xn, yi and all δ > 0. So obviously,
∂fPol
∂xi

> 0 implies that fPol is monotonically increasing and ∂fPol
∂xi

≥ 1 implies that
fPol is strongly monotonically increasing.

9 Explicitly considering the rules E which are needed to come from t to s (instead of
considering Emb) gives a better approximation of the “non-SMI” arguments.
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Example 10. To illustrate the criterion of Thm. 9, we consider the following TRS
from the TPDB (secret05-tpa2).

minus(x, 0)→x (17)

minus(s(x), s(y))→minus(x, y) (18)

p(s(x))→x (19)

f(s(x), y)→ f(p(minus(s(x), y)), p(minus(y, s(x)))) (20)

f(x, s(y))→ f(p(minus(x, s(y))), p(minus(s(y), x))) (21)

This TRS has 11 DPs, but an application of the dependency graph processor
yields the two subsets {(22)} and {(23), (24)}, where

MINUS(s(x), s(y)) → MINUS(x, y) (22)

F(s(x), y) → F(p(minus(s(x), y)), p(minus(y, s(x)))) (23)

F(x, s(y)) → F(p(minus(x, s(y))), p(minus(s(y), x))) (24)

The DP (22) can immediately be removed by the reduction pair processor.
It remains to find a polynomial interpretation such that one of the DPs
(23) and (24) is strictly decreasing and the other DP and the usable rules
{(17), (18), (19)} are weakly decreasing. For both DPs (23) and (24), the
left-hand side is embedded in the right-hand side. For instance for (23), we
have F(p(minus(s(x), y)), p(minus(y, s(x)))) →∗E F(s(x), y) with E = {p(x1) →
x1, minus(x1, x2)→ x1}. So by Thm. 9, p or minus cannot be SMI on 1.

Now we present criteria for MI. Clearly, if one has to satisfy a collapsing in-
equality s %Pol x for a variable x ∈ V , then the polynomial [s]Pol must contain x.
Hence, x is at a monotonically increasing position in s. For any position π in a
term s, let trace(s, π) contain all pairs (f, i) such that π is below the i-th argu-
ment of the function symbol f . So trace(s, ε) = ∅ and trace(f(s1, . . . , sn), i π′) =
{(f, i)} ∪ trace(si, π

′). We omit the proof of Thm. 11, since it is obvious.

Theorem 11 (First Sufficient Criterion for MI). Let Pol be a linear poly-
nomial interpretation. If s %Pol x for x ∈ V, then there exists a position π in s
with s|π = x where f is MI on i for all (f, i) ∈ trace(s, π).

Example 12. To illustrate the criterion from Thm. 11, we continue the example
from Ex. 10. Since the rule (19) is usable, our polynomial interpretation has
to satisfy p(s(x)) %Pol x. We have p(s(x))|1 1 = x and trace(p(s(x)), 1 1) =
{(p, 1), (s, 1)}. Hence, both p and s have to be MI on 1. Similarly, the rule (17)
is also usable and therefore, we have to satisfy minus(x, 0) %Pol x. By Thm. 11
this implies that minus also has to be MI on 1.

As both p and minus are MI on 1 but at least one of them is not SMI on 1
(cf. Ex. 10), the constraints of the reduction pair processor are not satisfied by
a linear polynomial interpretation over the naturals. More precisely, if pPol =
p0 + p1 x1 and minusPol = m0 +m1 x1 +m2 x2 then 0 < p1 < 1 or 0 < m1 < 1.

Indeed, the following rational polynomial interpretation makes all usable
rules weakly decreasing and both DPs (23) and (24) strictly decreasing. Hence,
they can both be removed, which proves termination of this example.
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0Pol = 0 minusPol = x1

sPol = 2x1 + 1 FPol = x1 + x2

pPol = 1
2
x1 δ = 1

2

Example 13. The criteria presented so far can also detect the need for rational
coefficients in the TRS of Ex. 2. As explained in Ex. 7, one has to find an
interpretation such that one of the DPs (12) and (14) is strictly decreasing
and the other DP and the usable rules {(1), (2), (5), (6), (7), (10)} are weakly
decreasing. So

RAND(s(x), y) %Pol IF(nonZero(s(x)), s(x), y) by weak decrease of (12)
%Pol IF(true, s(x), y) by weak decrease of (2)
%Pol RAND(p(s(x)), id inc(y)) by weak decrease of (14)

and as at least one of the DPs is strictly decreasing, we also have10

RAND(s(x), y) �Pol RAND(p(s(x)), id inc(y)).

Note that the term in the left-hand side is embedded in the right-hand side, i.e.,
RAND(p(s(x)), id inc(y))→∗E RAND(s(x), y) with E = {p(x1)→ x1, id inc(x1)→
x1}. So by Thm. 9, one of the symbols p and id inc is not SMI on 1. But due to
the usable rules (6) and (7), by Thm. 11 both p and id inc have to be MI on 1.
Thus here we again need a rational polynomial interpretation. More precisely, if
pPol = p0 +p1 x1 and id incPol = i0 + i1 x1 + i2 x2, then 0 < p1 < 1 or 0 < i1 < 1.

Thm. 14 is a second criterion for MI which can be used instead of Thm. 11.

Theorem 14 (Second Sufficient Criterion for MI). Let Pol be a linear
polynomial interpretation. Let C[f(s1, . . . , sn)] �Pol C[f(t1, . . . , tn)] and let
there be an 1 ≤ i ≤ n such that sj ∈ V for all j 6= i. Then f is MI on i.
If moreover ti is a variable that does not occur in si, then there must be an i′ 6= i
with si′ = ti and f is also MI on i′.

Proof. Clearly, C[f(s1, . . . , sn)] �Pol C[f(t1, . . . , tn)] for a context C implies
f(s1, . . . , sn) �Pol f(t1, . . . , tn). If fPol = f0 + f1 x1 + . . . + fn xn, then pl =
[f(s1, . . . , sn)]Pol − [f(t1, . . . , tn)]Pol = f1 ([s1]Pol − [t1]Pol) + . . .+ fn ([sn]Pol −
[tn]Pol) ≥ δ. Thus we must have fi > 0 (i.e., f is MI on i), because otherwise
the polynomial pl is 0 or negative when instantiating all variables with 0.

Now let ti be a variable that does not occur in si. If the variable ti did not
occur in s, then the coefficient for the variable ti in the polynomial pl would be
−fi, i.e., pl would be negative if one instantiates ti by a large enough number.
Hence, there must be an i′ 6= i with si′ = ti and fi′ > 0. ut
Example 15. To illustrate the criterion of Thm. 14, we consider the following
TRS from the TPDB (Zantema-jw05).

f(f(a, x), a)→ f(f(x, f(a, a)), a) (25)

10 To automate Thm. 9, one has to search for inequalities s �Pol t where s is embedded
in t. To this end, one could use narrowing on right-hand sides of DPs.
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This TRS has 3 DPs:

F(f(a, x), a) → F(f(x, f(a, a)), a) (26)

F(f(a, x), a) → F(x, f(a, a)) (27)

F(f(a, x), a) → F(a, a) (28)

The dependency graph processor removes the DP (28). We first try to find
a polynomial interpretation where the DP (27) is strictly decreasing and where
the DP (26) and the usable rule (25) are weakly decreasing. This is easy by using
FPol = x2, aPol = 1, fPol = 0, and δ = 1. Hence, (27) can be removed.

Finally, we have to find a polynomial interpretation where (26) is strictly
decreasing and where the usable rule (25) is weakly decreasing. Now we can
apply Thm. 14 by choosing “C”, “f(s1, s2)”, “i”, and “f(t1, t2)” as follows: C
is F(�, a), f(s1, s2) is f(a, x), i is 1, and f(t1, t2) is f(x, f(a, a)). So by Thm. 14,
f is MI on 1 and as the variable t1 does not occur in s1, f is also MI on 2.

Moreover, strict decrease of (26) implies F(f(a, a), a) �Pol F(f(a, f(a, a)), a)
where the left-hand side is embedded in the right-hand side, i.e., F(f(a, f(a, a)), a)
→∗E F(f(a, a), a) with E = {f(x1, x2) → x1} or E = {f(x1, x2) → x2}. So by
Thm. 9, f is neither SMI on 1 nor on 2. Hence if fPol = f0 + f1 x1 + f2 x2, then
both 0 < f1 < 1 and 0 < f2 < 1. Indeed, (26) is strictly decreasing and (25) is
weakly decreasing if we use the following interpretation:

fPol = 1
4
x1 + 1

4
x2 FPol = 4x1 aPol = 4 δ = 2

3.2 Heuristics for Rational Polynomial Interpretations

The criteria from Sect. 3.1 are only sufficient, i.e., there are TRSs where rational
interpretations are needed although the criteria are not fulfilled. Therefore, we
now develop heuristics which indicate that rational polynomials are likely to be
useful. So one should apply rational interpretations whenever one of the sufficient
criteria of Sect. 3.1 or one of the following heuristical criteria is fulfilled.

The first heuristic suggests to apply rational interpretations whenever a de-
structor symbol occurs in the right-hand side of a DP. A destructor is a symbol
which is the inverse function to a constructor. So if s is a constructor and we
have a rule p(s(x))→ x, then the symbol p is a destructor.

Heuristic 16 (Destructor Heuristic). Let P be a set of DPs. If the TRS R
contains f(c(x1, . . . , xn))→ xi, c is a constructor, and f occurs in the right-hand
side of a DP from P, then apply rational polynomials in the processor of Thm. 6.

For instance, in the TRS of Ex. 2, we indeed have the rule (6) for the de-
structor p and p occurs in the right-hand side of the DP (14). Hence, the above
heuristic suggests to apply rational polynomial interpretations.

However, one can of course also formulate destructor rules in a different way.
The next heuristic serves to detect such alternative formulations.

Heuristic 17 (Permutation Heuristic). Let R be a TRS and P be a set of
DPs. If R ∪ P contains a rule C1[t1] → C2[t2] where t1 = f(. . . , D1[g(. . .)], . . .)
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and t2 = g(. . . , D2[f(. . .)], . . .) and where at least one of the terms t1 or t2 con-
tains two nested f-symbols or two nested g-symbols, then apply rational polyno-
mials in the processor of Thm. 6. Here, C1, C2, D1, D2 are contexts and f and g
may also be the same function symbol.

As an example, we replace the rules p(0) → 0 and p(s(x)) → x in the TRS
of Ex. 2 by p(s(0)) → 0 and p(s(s(x))) → s(p(s(x))). Now p still acts as a
destructor and termination of the TRS can be proved almost11 as before, but
the destructor heuristic (Heuristic 16) fails. Instead, the permutation heuristic
is applicable now.

Example 18. Another class of examples recognized by this heuristic are permu-
tative TRSs like the following example Endrullis-pair3swap from the TPDB.

p(a(a(x0)), p(x1, p(a(x2), x3)))→ p(x2, p(a(a(b(x1))), p(a(a(x0)), x3)))

By two repeated applications of the dependency graph and the reduction pair
processor, this example can easily be solved. However, in the reduction pair
processor, one should use rational polynomial interpretations. This would be
detected by the permutation heuristic above.12

Finally, the last heuristic detects rules where the same variable occurs twice
in different arguments of a constructor on the right-hand side.

Heuristic 19 (Non-Linearity Heuristic). Let R be a TRS and P be a set of
DPs. If R∪P contains a rule `→ C[c(. . . , t1, . . . , t2, . . .)] where V(t1)∩V(t2) 6=
∅, then apply rational polynomials in the processor of Thm. 6.

Example 20. To illustrate this heuristic, consider the following example. Its be-
havior is similar to Ex. 2, i.e., f(sn(0)) rewrites to f(sm(0)) for any 0 ≤ m < n.

f(s(x))→ f(id inc(c(x, x)))

f(c(s(x), y))→ g(c(x, y))

g(c(s(x), y))→ g(c(y, x))

g(c(x, s(y)))→ g(c(y, x))

g(c(x, x))→ f(x)

id inc(s(x)) → s(id inc(x))

id inc(c(x, y))→ c(id inc(x), id inc(y))

id inc(0)→ 0

id inc(0)→ s(0)

When applying the dependency graph processor, the set of DPs can be split
into the set of ID INC-DPs (here the termination proof is trivial) and into the
set with the F- and G-DPs. Due to the DP

F(s(x)) → F(id inc(c(x, x))), (29)

the non-linearity heuristic applies. One can use the rational polynomial in-
terpretation with FPol = GPol = x1, 0Pol = 0, sPol = id incPol = x1 + 1,

11 The only difference is that the polynomial interpretation of s must be modified.
Instead of sPol = 2 x1 + 1 we now use sPol = 2x2

1 + 1.
12 For this example, a termination proof is also possible with matrix orders [6], but no

tool found a proof with natural polynomial interpretations in the competitions.
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cPol = 1
2x1 + 1

2x2, and δ = 1
2 to remove all DPs with G on the right-hand side.

Another application of the dependency graph processor removes the remaining
DP with G on the left-hand side. To handle the last DP (29), we can use the
interpretation FPol = id incPol = x1, 0Pol = sPol = 1, cPol = 0, δ = 1. In
contrast, it is not clear how to prove termination of this system with natural
polynomial interpretations.13 For example, the tool AProVE [10] was the winner
of the Termination Competition 2007 for TRSs, but the version of AProVE used
at the competition fails on this example.

4 Generating Rational Interpretations by SAT Solving

In this section, we present two approaches to extend the SAT-based method
of [7] in order to search for polynomial interpretations over the rationals. The
approach of Sect. 4.1 transforms constraints over the rationals into constraints
over the naturals which are then solved with the SAT-based technique of [7].
In contrast to that, Sect. 4.2 introduces a novel direct reduction of the search
problem for rational polynomial interpretations into a SAT problem.

4.1 Transformation from Rationals to Naturals

To solve constraints over rational unknowns, one can reduce the problem to so-
called Diophantine constraints where the unknowns are natural numbers. Subse-
quently, one can apply a Diophantine solver to solve the resulting constraints, cf.
[16]. Such an approach was already implemented in the tool mu-term [15], but
there the resulting Diophantine constraints were solved with the constraint-based
solver CiME [2] instead of a more efficient approach using SAT solving. As shown
in [18], this transformational approach in mu-term [15] is not competitive.14

We now illustrate our transformation in more detail. One starts with an
abstract polynomial interpretation. It maps each function symbol to a polynomial
with abstract coefficients. Thus, one has to determine the degree and the shape
of the polynomial, but the actual coefficients are left open. For instance, for
the TRS of Ex. 2 we could use an abstract polynomial interpretation Pol where
pPol = p0+p1x1, sPol = s0+s1x1, etc. Here, p0, p1, s0, s1 are abstract coefficients.

To apply the reduction pair processor of Thm. 6, we obtain inequalities of
the form s �Pol t or s %Pol t that we would like to hold. These inequalities then
lead to constraints on the abstract coefficients. To ensure s %Pol t, it suffices to
require that [s]Pol−[t]Pol has only non-negative coefficients, cf. [14]. For s �Pol t,
in addition we require that the constant coefficient of [s]Pol − [t]Pol is > 0.15 So

13 However, one can prove termination using other techniques. For example, the tool
Jambox [5] finds a proof using dependency pairs and matrix interpretations [6].

14 It is much slower than mu-term’s direct constraint-based approach [18] for finding
rational polynomials. However, in Sect. 5 we show that our new SAT-based technique
even significantly outperforms mu-term’s direct constraint-based approach.

15 This is sufficient, since we only regard finitely many inequalities of the form s �Pol t.
Hence, δ can be defined to be the smallest constant coefficient of all these polynomials
[s]Pol − [t]Pol, cf. [16, 18].
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to ensure p(s(x)) �Pol x with the abstract interpretation Pol above, we have to
regard [p(s(x))]Pol − [x]Pol = (p0 + p1s0) + (p1s1 − 1)x. Hence, we require

p0 + p1s0 > 0 (30) p1s1 − 1 ≥ 0 (31)

In this way, the search for a polynomial interpretation is transformed to the
search for values of abstract coefficients satisfying certain inequalities.

In our setting, the values for the abstract coefficients may be numbers from
Q0. To make this problem decidable, we restrict the possible values to numbers
from a finite set Dom = { pq | 0 ≤ p ≤ m ∧ 1 ≤ q ≤ n}. To transform this
problem into a problem with abstract coefficients over the naturals instead of
the rationals, we now apply the following transformation:

1. Replace all abstract variables a by fractions aN

aD
where aN and aD are new

abstract variables. Here “N ” stands for “numerator” and “D” stands for
“denominator”. The values for the abstract variables aN and aD are chosen
from the domainsDomN = {0, . . . ,m} andDomD = {1, . . . , n}, respectively.
So in our example, the constraints (30) and (31) would be replaced by

p0N
p0D

+
p1N
p1D

s0N
s0D

> 0 (32)
p1N
p1D

s1N
s1D
− 1 ≥ 0 (33)

2. Multiply each constraint with the product of all its denominators. So (32) is
multiplied by p0D p1D s0D and (33) is multiplied by p1D s1D . This yields

p0N p1D s0D + p1N s0N p0D > 0 (34) p1N s1N − p1D s1D ≥ 0 (35)

Now we obtained Diophantine constraints of the form pl > 0 or pl ≥ 0 where
pl is a (possibly non-linear) polynomial over abstract coefficients and where
the values for the abstract coefficients are natural numbers.

3. Apply a Diophantine solver to search for suitable values for the abstract
coefficients. In [7], it was shown how to translate Diophantine constraints
into a satisfiability problem for propositional logic which can be handled by
SAT solvers efficiently. In our example, the constraints (34) and (35) are
for instance satisfied by p0N = 0, p0D = 1, p1N = 1, p1D = 2, s0N = s0D =
1, s1N = 2, s1D = 1. This corresponds to the values p0 = 0, p1 = 1

2 , s0 =
1, s1 = 2 for the original abstract coefficients. So with these values, the
abstract interpretation with pPol = p0 + p1x1 and sPol = s0 + s1x1 is turned
into the concrete interpretation with pPol = 1

2 x1 and sPol = 1 + 2x1.

4.2 SAT Encoding for Searching Rational Interpretations

Next we present an alternative approach which encodes the search for ra-
tional polynomial interpretations directly into a SAT problem. One again
starts with an abstract polynomial interpretation and thus, one obtains con-
straints like (30) and (31). In this approach, we follow a heuristic suggested
in [18] and let the domains for the abstract variables have the form Dom =
{2−k, 2−k+1, . . . , 2`−1, 2`} ∪ {0} for k, ` ∈ N. The advantage of such domains is
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that they are particularly suitable for a SAT encoding. To encode constraints
like (30) and (31) into a SAT problem, we now proceed as follows:

1. Up to now, the abstract coefficients like p0, p1, s0, s1 may take rational values
fromDom. We now transform the constraints so that the abstract coefficients
only take natural values fromDom′ = {20, . . . , 2k+`}∪{0}. To this end, every
abstract coefficient a in the constraints is replaced by 1

2k
a′ where a′ is a fresh

abstract coefficient. In our example, let k = 1 and ` = 2, i.e., the values
for the original abstract coefficients are from Dom = {2−1, 20, 21, 22, 0} =
{0, 1

2 , 1, 2, 4}. Then (30) and (31) are transformed into

1
2
p′0 + 1

4
p′1 s
′
0 > 0 (36) 1

4
p′1 s
′
1 − 1 ≥ 0 (37)

The values for p′0, p
′
1, s
′
0, s
′
1 are from Dom′ = {20, 21, 22, 23, 0}.

2. To remove the rational numbers from the constraints, one now multiplies
them with the least common multiple of all denominators occurring in the
respective constraint. So (36) and (37) are both multiplied by 4 which yields

2 p′0 + p′1 s
′
0 > 0 (38) p′1 s

′
1 − 4 ≥ 0 (39)

3. Now we have again obtained Diophantine constraints. The only difference
to the Diophantine constraints handled in existing SAT encodings like [7] is
that the domains used for the values of abstract coefficients are not inter-
vals of natural numbers, but sets of powers of 2. In [7], one used a mapping
||.|| from Diophantine constraints to propositional formulas such that a con-
straint α is satisfiable with values from a domain {0, 1, 2, 3, . . . , 2n − 1} iff
the propositional formula ||α|| is satisfiable. We now have to modify this
mapping in order to handle domains of the form {20, 21, . . . , 2n} ∪ {0}.
As usual, propositional formulas F are built from propositional variables X ,
the constants 0 (“false”) and 1 (“true”), and the usual Boolean connectives.
Propositional interpretations are mappings I : X → {0, 1} which can be
extended to propositional formulas as usual (i.e., then we have I : F →
{0, 1}). Moreover, one can extend I further to tuples of formulas by defining

I(〈ϕ1, . . . , ϕn〉) = 2n−1 ∗ I(ϕ1) + 2n−2 ∗ I(ϕ2) + . . .+ 2 ∗ I(ϕn−1) + I(ϕn).

Hence, then I : Fn → N. So if b ∈ X and I(b) = 0, then I(〈1, b ∨ ¬b, b〉) =
4 ∗ I(1) + 2 ∗ I(b ∨ ¬b) + I(b) = 4 ∗ 1 + 2 ∗ 1 + 0 = 6.
To determine ||.||, one first defines the mapping of polynomials to tuples
of propositional formulas. For numbers k, ||k|| is the corresponding binary
representation (e.g., ||6|| = 〈1, 1, 0〉) and every abstract coefficient (i.e., Dio-
phantine variable) a is mapped to an n-tuple of propositional variables (e.g.,
||a|| = 〈a1, a2, a3〉). Having defined ||pl1|| and ||pl2|| for polynomials pl1 and
pl2, one can also define ||pl1 + pl2|| and ||pl1 ∗ pl2||. Finally, one defines the
mapping ||.|| from Diophantine constraints like pl > 0 or pl ≥ 0 to proposi-
tional formulas (not tuples of formulas). For details, we refer to [7].
To handle the new domains of the form {20, . . . , 2n} ∪ {0} we now extend
propositional interpretations also to pairs of tuples of formulas. If Φ and Ψ
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are two tuples of propositional formulas, then we define

I(� Φ, Ψ �) = I(Φ) ∗ 2I(Ψ)

We now introduce a new mapping τ instead of ||.||. For polynomials pl, τ(pl)
is a pair of tuples of propositional formulas. For any number k, we define
τ(k) = � ||m||, ||e|| � where k = m ∗ 2e and m is an odd number (unless
k = m = 0). So since 6 = 3 ∗ 21, we obtain τ(6) =� ||3||, ||1|| �.

Every abstract coefficient (i.e., Diophantine variable) a is now mapped to a
pair τ(a) =� a0, 〈a1, . . . , adlogne〉 �. Here, a0 is just a single propositional
variable (i.e., I(a0) ∈ {0, 1} for any interpretation I) and I(〈a1, . . . , adlog ne〉)
can be any number between 0 and n. Hence, � a0, 〈a1, . . . , adlog ne〉 � can
indeed represent the numbers from {20, . . . , 2n} ∪ {0}. Afterwards, one has
to extend the mapping τ to more complex polynomials and to Diophantine
constraints, similar to the mapping ||.|| from [7].

In our example, we could finally obtain an interpretation with I(τ(p′0)) = 0,
I(τ(p′1)) = 1, I(τ(s′0)) = 2, I(τ(s′1)) = 4. This would correspond to the
solution p0 = 1

2 ∗ p′0 = 0, p1 = 1
2 ∗ p′1 = 1

2 , s0 = 1
2 ∗ s′0 = 1, and s1 = 1

2 ∗ s′1 =
2. With these values, the abstract interpretation with pPol = p0 + p1x1

and sPol = s0 + s1x1 is again turned into the concrete interpretation with
pPol = 1

2 x1 and sPol = 1 + 2x1.

5 Experiments and Conclusion

In Sect. 3, we developed new criteria to determine when to use rational interpre-
tations in termination proofs. Moreover, in Sect. 4.1 and 4.2 we proposed two
SAT-based approaches to automate the search for rational polynomials.

We implemented our contributions in the termination prover AProVE [10]
and evaluated the performance of different variants of AProVE on all 2061 term
and string rewrite systems from the TPDB. As in the Termination Competition
2007, we used a time limit of 120 seconds for each example.

In the following table, we only used the dependency graph and reduction pair
processor, but no other termination techniques. In the first technique “Nat”, we
only searched for natural polynomials where the coefficients take values from
{0, 1, 2, 3, 4}. In the technique “Rat + Sect. 4.1”, we used rational coefficients
from { p4 | 0 ≤ p ≤ 16} instead16 and applied the transformational technique of
Sect. 4.1 to convert constraints over the rationals to constraints over the naturals.
Here, we always search for rational polynomials, whereas in the technique “Rat
+ Sect. 4.1 + Sect. 3” we only search for rationals if this is suggested by the cri-
teria from Sect. 3. Otherwise, we use natural polynomials with coefficients from
{0, 1, 2, 3, 4}. Finally, in the technique “Rat + Sect. 4.2” we (always) use rational
coefficients from {2−2, 2−1, 20, 21, 22, 0} and apply the direct SAT-encoding from

16 The idea of fixing the value of the denominator (e.g. to 4) and only to search for
suitable values of the numerator was already proposed by [8].

14



Sect. 4.2.17 The column “Yes” shows the number of TRSs where the termination
proof succeeds. “SucTime” gives the average runtime for successful examples and
“FulTime” gives the average runtime for all examples.

Nat Rat + Sect. 4.1 Rat + Sect. 4.1 + Sect. 3 Rat + Sect. 4.2
Yes SucTime FulTime Yes SucTime FulTime Yes SucTime FulTime Yes SucTime FulTime
606 1.9 s 2.9 s 742 3.1 s 15.4 s 685 2.6 s 11.0 s 696 6.1 s 29.2 s

Comparing “Nat” with the other setting shows that rational polynomials can
significantly increase power, but they also increase runtimes. The comparison of
“Rat + Sect. 4.1” with “Rat + Sect. 4.1 + Sect. 3” shows the usefulness of the
criteria from Sect. 3: if one applies these criteria, then runtimes are not increased
that much anymore, but (as long as one does not use any other termination
techniques) one also loses several examples where rational interpretations were
needed. Finally, the comparison with the last setting in the table shows that the
method of Sect. 4.1 which transforms constraints over the rationals to constraints
over the naturals is preferable to the direct SAT encoding from Sect. 4.2.

The next experiment compares “Rat + Sect. 4.1” with the existing constraint-
based method [18] for generating rational interpretations, implemented in
mu-term [15]. More precisely, we compare this version (“mu-term + [18]”) with
a version of mu-term where instead of [18] one calls AProVE (with the tech-
nique of “Rat + Sect. 4.1”) externally. Since mu-term generates the polynomial
constraints and it only calls AProVE with this set of constraints, the implemen-
tation of the criteria from Sect. 3 cannot be used here. In this table, we only ran
mu-term on a collection of 79 TRSs from the TPDB. These are TRSs where
mu-term needs rational polynomials in order to succeed with the proof. It turns
out that in spite of the external calls, the new SAT-based implementation is in-
deed significantly faster than the previous non-SAT-based method of [18].

mu-term + [18] mu-term + Rat + Sect. 4.1
Yes FulTime Yes FulTime
62 10.1 s 65 4.1 s

Finally, to measure the usefulness of our contributions in full termination
provers, the next table compares the performance of full versions of AProVE
on all 2061 examples. Here, many termination techniques are used in addition
to the dependency graph and reduction pair processor. Moreover, there are also
techniques to disprove termination (cf. column “No”). The next table shows that
the results of the current paper are also useful when integrating them into such a
powerful prover. AProVE-07 is the version which participated in the Termination
Competition 2007 (and which won this competition in the category of TRSs).
“AProVE-07 + Sect. 4.1” differs from AProVE-07 by using rational polynomials
with the setting “Rat + Sect. 4.1” and “AProVE-07 + Sect. 4.1 + Sect. 3” uses
“Rat + Sect. 4.1 + Sect. 3” instead. It is interesting to note that when integrating
rational polynomials into this full version of AProVE, the criteria of Sect. 3 have
quite positive effects. In other words, they reduce the runtimes and hardly affect
the power. For details on our experiments (including details on runtimes and

17 We also experimented with different ranges for the coefficients, but the above ranges
gave the best results as far as power and runtimes are concerned.
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timeouts) and to run “AProVE-07 + Sect. 4.1 + Sect. 3” via a web-interface, we
refer to http://aprove.informatik.rwth-aachen.de/eval/RATPOLO/.

AProVE-07 AProVE-07 + Sect. 4.1 AProVE-07 + Sect. 4.1 + Sect. 3
Yes No SucTime FulTime Yes No SucTime FulTime Yes No SucTime FulTime
1089 238 3.8 s 29.6 s 1119 238 5.2 s 30.4 s 1118 238 4.9 s 30.1 s
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