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Abstract. A key technique for the verification of programs is counterexample-
guided abstraction refinement (CEGAR). In a previous approach, we developed
a CEGAR-based algorithm for the modal µ-calculus, where refinement applies
only locally, i.e. lazy abstraction techniques are used. Unfortunately, our previous
algorithm was not completely lazy and had some further drawbacks, like a pos-
sible local state explosion. In this paper, we present an improved algorithm that
maintains all advantages of our previous algorithm but eliminates all its draw-
backs. The improvements were only possible by changing the philosophy of re-
finement from state splitting into the new philosophy of state focusing, where the
states that are about to be split are not removed.

1 Introduction

The modal µ-calculus [19] is an expressive modal logic that allows to express safety,
reachability, and mixtures of these properties, by using fixpoint constructions. The µ-
calculus is a sensible choice for branching time properties, which are relevant when-
ever nondeterminism occurs from external factors (e.g. user input), from the modeling
of faulty systems/channels [9], or from the abstraction of time or arguments [7]. In
particular, the µ-calculus can express most of the standard logics, like LTL and CTL.

For automatic verification of µ-calculus properties the state explosion has to be
tackled. One of the most successful techniques to checking correctness of large or even
infinite programs is predicate abstraction [12] with counterexample-guided abstraction
refinement (CEGAR) [5]. This approach consists of three phases: abstraction, model
checking, and refinement. Refinement is performed by adding a new predicate that splits
the abstract states. A prominent safety-checking tool based on CEGAR is BLAST [16],
where refinement is applied locally (called lazy abstraction), i.e., only the abstract states
of a trace which comprises a spurious counterexample are refined. This avoids the state
space doubling obtained when the whole state space is split via a new predicate.

Adapting the idea of lazy abstraction to the µ-calculus is not straightforward. One
reason is that in order to preserve branching time properties, an abstract model needs
two kinds of transitions (called may, respectively must, transitions). Examples of such
models are (Kripke) modal transition systems [20, 17]. They also allow to preserve
both validity and invalidity from the abstract model to the concrete model, at the cost of
introducing a third truth value unknown, which means that the truth value in the concrete
model is unknown. This leads to a 3-valued semantics. In this setting, refinement is no
longer needed when the result is invalid, as in traditional CEGAR approaches. Instead,
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refinement is needed when the result is unknown. As such, the role of a counterexample
as guiding the refinement is taken by some cause of the indefinite result.

In [10], we have developed a preliminary algorithm for µ-calculus verification, hav-
ing the following advantages: (i) Refinement is made lazily. More precisely, some, but
not all, configurations (abstract states combined with subproperties) having the same
abstract state are split during a refinement phase: The state space remains smaller and
verification is sped up. (ii) The more expressive generalized Kripke modal transition
systems [24] are used as underlying abstract models (they have must hypertransitions,
i.e. transitions pointing to a set of states rather than to a singleton): A smoother re-
finement determination is obtained [24] and more properties (in principle, every least
fixpoint free µ-calculus formula) can be shown. (iii) Refinement determination is sep-
arated from the model checking: Refinement-heuristics can be defined independently.
(iv) Configurations and transitions that become irrelevant by newly obtained informa-
tion of (in)validity are removed: Complexity is reduced.

Unfortunately, the algorithm of [10] still has the following disadvantages: (I) A
set of configurations rather than the single configuration determined by a refinement-
heuristic is split: Verification is unnecessarily slowed down, since often expensive splits
that do not contribute to the verification are made. (II) All may-/must-transitions that
can arise as a result of a split are calculated even if they are not needed for the verifica-
tion or falsification: Avoidable, expensive satisfiability checks are made. (III) An expo-
nential blowup can occur during a refinement phase, since all hypertransitions obtained
as the powerset of the may-transitions are calculated. (IV) Some interesting informa-
tion for defining refinement-heuristics is lost: The split of accompanying configurations
along with the one that is determined by the refinement-heuristic obscures the interme-
diate results obtained after each split, and might divert the refinement into undesired
directions. These disadvantages cannot be eliminated with existing techniques, with the
exception of (III) that was addressed by [24, 25], yet their approaches rely on particular
model checking algorithms.

Contribution. We develop the new technique of state focusing for refinement: the
states that are about to be split are not removed. Instead, the ‘old’ states are con-
nected to the ‘new’ states that result from their split via focus-transitions. This allows
to encode hypertransitions, but more importantly, it allows to perform a local refine-
ment, in which propagation of a split is deferred until it is called for by a refinement-
heuristic. We use this new technique to construct a new lazy, CEGAR-based algorithm
for the µ-calculus. Our algorithm uses a configuration structure (where the abstract
states are combined with subproperties) to encode the verification problem. In each iter-
ation, (in)valid configurations are determined, the structure is simplified accordingly, a
refinement-heuristic is used to determine a refinement step, and refinement is performed
locally by either splitting (focusing) one configuration, or propagating a previous split
to other configurations or components of the structure. Our new algorithm still has all
the advantages (i) – (iv) and additionally does not have the disadvantages (I) – (IV). In
particular, our algorithm combines the following properties:

– At most two configurations are added during a refinement step.
– No (in)validity is lost during a refinement or simplification calculation.
– Every satisfiability check is made on demand, i.e. unnecessary satisfiability checks

are avoided except if called for by the refinement-heuristic.
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– The capability of verification with generalized Kripke modal transition systems as
the underlying abstract models is preserved while avoiding state explosion, since
only the hypertransitions obtained constructively via old configurations are present,
as in the non-lazy abstraction approach of [24].

– Improved simplifications of the underlying configuration structure are made by us-
ing a 9-valued logic, which is an extension of the 6-valued one used in [3].

– A separation of the refinement determination from the model checking is made,
allowing to define refinement-heuristics separately.

– Definition of improved refinement-heuristics (compare with (IV) from above) is
possible, since only elementary updates of the configurations structure are made
during a refinement step.

– Other refinements (e.g., that of [10]) can be imitated at no further cost by gathering
together several local refinement steps.

Further related work. The state space doubling occurring after splitting the whole state
space via a predicate can also be tackled by the usage of BDDs, as in the tool SLAM
[4]. There the abstract transition relation is encoded as a BDD, avoiding the explicit
calculation of the exponentially large state space. Such a BDD approach is generalized
from the safety properties checked by SLAM to µ-calculus properties in the tool YASM
[15]. There, the underlying abstract model is equivalent to a Kripke modal transition
system, which is less expressive than generalized Kripke modal transition systems.

A CEGAR-approach to branching time properties is given in [23], where, contrary
to our approach, only the transition relation is under, resp., over approximated (the state
space remains unchanged). In [14, 13], CEGAR-based algorithms for the µ-calculus are
presented having only Kripke modal transition systems as underlying abstract model.
Furthermore, there every configuration for which (in)validity is not yet shown is split,
i.e. only a weak form of lazy abstraction is made.

In [22] models are abstracted by alternating transition systems with focus predi-
cates. These resemble game-graphs with must-hypertransitions. Refinement is not dis-
cussed in this paper. Must-hypertransitions were first introduced in disjunctive modal
transition systems [21]. A CEGAR-approach for the more general alternating µ-calculus
is given in [1], where must- as well as may-hypertransitions are used in the underlying
abstract model. Refinement is made globally (not locally) and the refinement deter-
mination depends on the model checking algorithm, i.e. no separation is used. [2] in-
creases expressiveness without using hypertransitions: Backward must-transitions and
entry/exit points are used to conclude the existence of transitive must-transitions.

In [11], cartesian abstraction, where ‘previous’ abstract states also remain existent,
is used for improving under approximations. However, there, the ‘old’ states are not
used to encode hypertransitions, and thus less expressive abstractions are obtained.
Moreover, our technique also improves the over approximation by forbidding may-
transitions subsumed by may-transitions whose targets are more precise (less abstract).

2 Underlying structures

Notations. Throughout, functional composition is denoted by ◦. Given a relation ρ ⊆
B×D with subsetsX ⊆ B and Y ⊆ D we writeX.ρ for {d ∈ D | ∃b ∈ X : (b, d) ∈ ρ}
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and ρ.Y for {b ∈ B | ∃d ∈ Y : (b, d) ∈ ρ}. Let map(f, Φ) be the sequence obtained
from the sequence Φ by applying function f to all elements of Φ pointwise. f [b 7→ d]
denotes the function that behaves as f except on b, which is mapped to d. Suppose D is
ordered, thenv ⊆ (B → D)×(B → D) denotes the derived pointwise order between
functions in B → D. Furthermore, for f, f ′ : B → D expression f t f ′ denotes the
least function (if existent) that is above f and f ′ w.r.t. v.

System. Without loss of generality, we will not consider action labels on models in this
paper. A rooted transition system T = (S, si,→,L) consists of a (possibly infinite) set
S of states, an initial state si ∈ S, a transition relation→ ⊆ S × S, and a predicate
languageL, which is a set of predicates that are interpreted over the states in S (i.e. each
predicate p ∈ L denotes a set [[p]] ⊆ S), such that there exists pi ∈ L with [[pi]] = {si}.
The boolean and exact predecessor closure ofL is denoted byL, where [[ ]] over boolean
operators is straightforwardly extended and [[pre(ψ)]] = → .[[ψ]] for ψ ∈ L.

Intermediate games. They are a generalization of the three-valued parity games of
[10, 13] by using a third-kind of states (called intermediate game states) that are not
controlled by a unique player, but change the player depending on the type of the play
(validity vs. invalidity). The intermediate game states are used to model state-focusing:
The states to be split become intermediate game states. Intermediate games also use a
more complex validity image to improve refinement and simplification determinations:

Definition 1. An intermediate game G = (C0, C1, C 1
2
, C i, R,R−, R+, θ, ω) has

– pairwise disjoint sets of game states for Player 0 (C0), for Player 1 (C1), and inter-
mediate game states C 1

2
; the union of all game states is denoted C = C0∪C 1

2
∪C1,

– a set of initial game states C i ⊆ C,
– a set of normal transitions R ⊆ C × C,
– a set of must- and a set of may-transitions R−, R+ ⊆ (C0 ∪ C1)× C,
– a parity function θ : C → IN with finite image, and
– a validity function ω : C → {tt,ff,⊥}×{tt,ff,⊥}, where we write ω1, respectively ω2,

for applying the projection to the first, respectively second, component of ω.

The values of ω are explained in detail in Sec. 3. In general, ω1 is used to determine
the winner in the validity game, whereas ω2 is used in the invalidity game:

Definition 2. – Finite validity (resp. invalidity) plays for intermediate game G have
the rules and winning conditions as stated in Table 1. An infinite play Φ is a win
for Player 0 iff sup(map(θ, Φ)) is even; otherwise it is won by Player 1.

– G is valid (invalid) in c ∈ C iff Player 0 (resp. Player 1) has a strategy for the
corresponding validity (resp. invalidity) game such that Player 0 (resp. Player 1)
wins all validity (resp. invalidity) plays started at c with her strategy. G is valid
(invalid) iff G is valid (resp. invalid) in all games states of C i.

In the validity game, Player 0 has the role of the checker, and Player 1 has the role of the
refuter. In the invalidity game their roles switch. In both cases, must-transitions are only
used by the checker, whereas may-transitions are only used by the refuter. In addition,
the C 1

2
game states are always controlled by the refuter.

Remark 1. The validity, as well as the invalidity, game obviously correspond to a parity
game. Therefore, decidability of validity, resp. invalidity, is in UP ∩ coUP [18].
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Moves of the validity game:
ω1(c) 6= ⊥: Player 0 wins if ω1(c) = tt; otherwise Player 1 wins;
ω1(c) = ⊥ and c ∈ C0: Player 0 picks as next game state c′ ∈ {c}.(R ∪R−);
ω1(c) = ⊥ and c ∈ C 1

2
∪ C1: Player 1 picks as next game state c′ ∈ {c}.(R ∪R+);

Moves of the invalidity game:
ω2(c) 6= ⊥: Player 1 wins if ω2(c) = ff; otherwise Player 0 wins;
ω2(c) = ⊥ and c ∈ C1: Player 1 picks as next game state c′ ∈ {c}.(R ∪R−);
ω2(c) = ⊥ and c ∈ C0 ∪ C 1

2
: Player 0 picks as next game state c′ ∈ {c}.(R ∪R+);

Table 1. Moves of (in)validity game at game state c, specified through a case analysis. A player
also wins if its opponent has to move but cannot.

Property language. We use an automata representation of the µ-calculus [19]:

Definition 3 (Tree automata). An (alternating tree) automaton A = (Q, qi, δ, Θ) has

– a finite, nonempty set of states (q ∈)Q with the initial element qi ∈ Q
– a transition relation δ mapping automaton-states to one of the following forms,

where q, q1, q2 are automaton states and p ∈ L: p | ¬p | q1∧̃q2 | q1∨̃q2 | 3q | 2q
– an acceptance condition Θ : Q→ IN with finite image.

An example of an automaton is depicted in Fig. 1 (α) on page 9, where all automaton-
states have acceptance value 0. In the following, QL = {q ∈ Q | δ(q) ∈ L}, Qqua =
{q ∈ Q | δ(q) ∈

⋃
q′∈Q{3q′,2q′}} andQ0 = {q ∈ Q | δ(q) ∈

⋃
q1,q2∈Q{q1∨̃q2,3q1}}

resp. Q1 = {q ∈ Q | δ(q) ∈
⋃
q1,q2∈Q{q1∧̃q2,2q1}} denotes those under control of

Player 0 resp. Player 1. Satisfaction of a rooted transition system w.r.t. an automaton is
obtained via transformation into an intermediate game:

Definition 4. The property-game for T and A, denoted PT,A, is an intermediate game
(S × Q0, S × Q1, S × QL, {(si, qi)}, R,R−, R+, Θ ◦ πQ, ω), where πQ denotes the
projection to the second component and

R = {((s, q), (s, q′)) | ∃q′′ : δ(q) ∈ {q′∧̃q′′, q′′∧̃q′, q′∨̃q′′, q′′∨̃q′}}
R− = R+ = {((s, q), (s′, q′)) | δ(q) ∈ {3q′,2q′} ∧ (s, s′) ∈→}

ω(s, q) =

 (tt, tt) if q ∈ QL, s ∈ [[δ(q)]]
(ff,ff) if q ∈ QL, s /∈ [[δ(q)]]
(⊥,⊥) otherwise

Furthermore, we write T |= A, whenever PT,A is valid, and otherwise, we write T 6|= A
(which is equivalent to PT,A being invalid).

Note that our definition of T |= A coincides with the standard definition of satis-
faction, and T 6|= A coincides with the satisfaction of the dual formula, i.e. corresponds
to negation. Next, special intermediate games derived for automata satisfaction on ab-
stracted systems are introduced. In the following, Z is used to describe subsets of the
system’s state space. More precisely, Z = {z : L → {+, ?,−} | ∞ > |z|} with

|z| = |{ψ ∈ L | z(ψ) 6=?}|. The set {+, ?,−} is ordered by
?

+ −?? �� . The elements
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of Z can be thought of as abstract states obtained through predicate abstraction, which
is made explicit as follows: The derived formula for z ∈ Z, which characterizes the
underlying system states, is ψz = ((

∧
ψ:z(ψ)=+ ψ) ∧ (

∧
ψ:z(ψ)=− ¬ψ)). We say that z

is finer than z′ if z w z′, i.e. ∀ψ ∈ L : z(ψ) ≥ z′(ψ), which ensures that [[ψz]] ⊆ [[ψz′ ]].

Definition 5. An abstract property-gameP w.r.t.Q is (G,R−?, R+?, Zsat, Zunsat), where

– G is an intermediate game such that C ⊆ Z × Q. We write πZ , respectively πQ,
for the projection from C to its first, respectively second, component.

– R−?, R+? ⊆ C × C are a set of possible must- and a set of possible not-may-
transitions such that R−? ∩R− = ∅ and R+? ⊆ R+.

– Zsat, Zunsat ⊆ Z are disjoint sets of abstract states indicating for which abstract
state satisfiability (resp. unsatisfiability) is ensured.

The set of all its transitions is Rall = R ∪R− ∪R−? ∪R+ ∪R+?.

The underlying states of a abstract property-game are also called configurations in
the sequel. In our algorithm, we are only interested in abstract property-games where
Q is the underlying state space of an automaton and where G obeys the following
additional notations and constraints, described only informally: Configurations whose
Q-component is in Q0 (Q1) belong in general to C0 (resp. C1), except that they can
also be intermediate game states (in C 1

2
). The parity function θ ofG is given byΘ◦πQ,

where Θ is the automaton’s acceptance condition.
The normal transition relation R of G consists of two types of transitions; the tran-

sitions leaving configurations from C 1
2

are called focus-transitions and those leaving
configurations from C0 ∪ C1 and having a property of type ∨̃ or ∧̃ are called junction-
transitions. The corresponding configurations are called junction configurations. Junc-
tion, as well as C 1

2
, configurations, have at most two outgoing transitions. The must-

and may-transitions leave C0∪C1 configurations having type 3 or 2, also called quan-
tifier configurations.

Focus-transitions are used to partition an abstract state into several configurations:
Each of the targets of the outgoing focus-transitions of an abstract game state c ∈ C 1

2
describes a part of the set of concrete states described by c. The automaton component
does not change along focus-transitions. Junction-transitions imitate the automaton
transitions, but the abstract state of the source of a junction transition might be finer
than the abstract state of its target (as a result of refinement). Must and may transitions
change both the Q-component of the game state according to the automaton transi-
tion relation, and the abstract states according to the system. The must-transitions are
used to underapproximate the concrete transitions of T , whereas the may-transitions are
used as an overapproximation. Namely, a must-transition exists only if all the concrete
system states represented by the source game state have a corresponding transition to
some concrete state represented by the target game state. This is called the ∀∃ rule.
Every must-transition satisfies it, but possibly not all the transitions that satisfy it are
included. On the other hand, a may-transition exists (at least) if some concrete state
represented by the source state has a corresponding transition to some concrete state
represented by the target state. This is called the ∃∃ rule. Every transition that satisfies
it has to be included as a may-transition, but possibly more are contained.
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Since the approximations given by the must and may transitions are not always
precise, we use R−? to denote the transitions that are candidates to be added as must-
transitions, as they might satisfy the ∀∃ rule. Dually, R+? denotes transitions that are
candidates to be removed from the set of may-transitions, as they might not satisfy the
∃∃ rule. The initial abstract property-game is the following:

Definition 6. The initial abstract property-game P IT,A for T and A is
((C0, C1, {z?} ×QL, {(z?, q

i)}, R, ∅, R+, Θ ◦ πQ, ω), R+, R+, {z?}, ∅), where

z?(ψ) =? for any ψ ∈ L
C0 = ({z?} ×Q0) ∪ {(z?[p 7→ x], q) | (x = −, δ(q) = p) or (x = +, δ(q) = ¬p)}
C1 = ({z?} ×Q1) ∪ {(z?[p 7→ x], q) | (x = +, δ(q) = p) or (x = −, δ(q) = ¬p)}
R = {((z?, q), (z?, q

′)) | ∃q′′ : δ(q) ∈ {q′∧̃q′′, q′′∧̃q′, q′∨̃q′′, q′′∨̃q′}} ∪
{((z?, q), (z?[p 7→ x], q)) | δ(q) ∈ {p,¬p}, x ∈ {+,−}}

R+ = {((z?, q), (z?, q
′)) | δ(q) ∈ {3q′,2q′}}

ω(z, q) = (⊥,⊥) for (z, q) ∈ C0 ∪ C1 ∪ {z?} ×QL.

Note that the initial abstract property-game does not depend on T . It consists of a
single abstract state z?, which abstracts any concrete system-state. The may-transitions
overapproximate the concrete transitions by including a transition from z? to itself.
The underapproximation is empty. All the may-transitions are candidates to be added
as must-transitions, or alternatively be removed from the set of may-transitions. Here,
all the configurations whose property is in Q0 are C0-states, and all the configurations
whose property is inQ1 areC1-states, as in the concrete property-game. TheC 1

2
config-

urations consist of the combination of z? with the predicate subproperties. Such a game
state is divided according to the predicate, via focus-transitions, into two configurations
having the same subproperty (predicate) but whose states are less abstract: one where
the predicate is added to z?, and another where its negation is added to z?. The game
state where the abstract state agrees with the predicate is a C1-state, meaning Player
0 wins in it (since it has no outgoing transition for Player 1 to use). The game state
that represents disagreement between the abstract state and the predicate is a C0-state,
meaning Player 1 wins in it. This makes the C 1

2
-state, which is controlled by Player 1

in the validity game and by Player 0 in the invalidity game, neither valid nor invalid,
indicating that the value of the predicate in z? is unknown. The set of configurations
for which satisfiability is ensured (Zsat) is initialized to {z?}, since system states exist,
and the set where unsatisfiability is ensured (Zunsat) is initialized as empty. The initial
abstract property-game for the property and system given in Fig. 1 is illustrated in Fig.
2 (a). There, the abstract state z? is denoted by ∅ since no predicate is set in it.

3 CEGAR via lazy abstraction

Validity values. We start by explaining the 9 different validity-values. A configura-
tion with abstract state z and property q of an abstract property-game can only be valid
(resp. invalid) if all the underlying concrete states of z satisfy (resp. falsify) q. Thus, val-
idation in abstract property-games is no longer 2-valued, since it is possible that some
underlying concrete states satisfy the formula and some do not. This typically leads to
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a 3-valued setting, where (z, q) can be neither valid nor invalid. In case unsatisfiable
abstract states are allowed, as in our case, it even leads to a 4-valued setting, where
(z, q) can be both valid and invalid (if z is unsatisfiable). We use further validity values
that help us define improved simplifications of the game structure. Namely, we distin-
guish between (in)validity and existential-(in)validity: (in)validity ensures that all the
underlying concrete states are (in)valid, possibly vacuously. Existential-(in)validity en-
sures that there exists an underlying (in)valid concrete state. Existential-invalidity thus
ensures that the configuration is not valid, and dually for existential-validity. These pos-
sibilities are recorded by ω1 w.r.t. validity and by ω2 w.r.t. invalidity. Namely, we use
ω1 to determine if the configuration is valid (tt), existential-invalid (ff) – meaning it is
not valid, or its validity is unknown (⊥). Dually for ω2.

More precisely, (tt,⊥) stands for valid, (⊥,tt) stands for existential-valid, and (tt,tt)

stands for valid-and-satisfiable. Similarly, (⊥,ff) stands for invalid, (ff,ff) stands for invalid-
and-satisfiable, and (ff,⊥) stands for existential-invalid. Value (tt,ff) stands for unsatisfi-
able, (ff,tt) stands for existential-mixed, and (⊥,⊥) stands for unknown.

Example. We illustrate how our algorithm works on a toy example. We describe the
underlying abstract property-game, the underlying model checking algorithm, the sim-
plifications of the underlying game structure, and the possible refinement steps (which
depend on a heuristic). The algorithm is illustrated by checking the µ-calculus formula
presented via an automaton in Fig. 1 (α) at the system depicted in Fig. 1 (β).

Fig. 2 (a) presents the initial abstract property-game, defined in Def. 6 and explained
thereafter. The unknown existence of may and must transitions is indicated by the sym-
bol ? on the transitions. The focusing of predicates configurations can be viewed as
a degenerate split that takes place in the initial abstract property-game. (In)validity is
determined via a parity game algorithm. The configurations where Player 0 has a win-
ning strategy in the validity game are labeled as valid (tt,⊥), whereas the ones where
Player 1 has a winning strategy in the invalidity game are labeled as invalid (⊥,ff),
as shown in Fig. 2 (b). No further validity-label improvements and redundant transi-
tions/configurations removals are possible in Fig. 2 (b).

Since the initial configuration in Fig. 2 (b) is undetermined, refinement is needed.
Thus, a heuristic, determining how to refine the abstraction, is applied. The different
possibilities are illustrated by the remainder of the example. Assume that the heuristic
determines that the initial configuration, denoted c, needs to be split according to the
least precondition of true (the characterizing formula of the abstract state ∅), denoted
p̃ ≡ pre(true). Then the structure Fig. 2 (c) is obtained, where two initial configura-
tions that correspond to the division of c by p̃ are added, c becomes an intermediate
(C 1

2
) configuration, corresponding focus-transitions are added from c to the new con-

figurations, and the outgoing transitions of c are redirected to the new configurations
(by doubling them). Note that only c is split. Here we already determine the existence
of the must-transition from (p̃,3) to (∅,∧) since p̃ represents the least precondition
of ∅, thus the ∀∃ condition necessarily holds. By analogous arguments, we determine
the absence of the may-transition from (¬p̃,3) to (∅,∧) (this detection mechanism is
not yet included in the algorithm in order to increase readability). The validity check
determines the upper left configuration to be invalid, yielding Fig. 2 (d).

Next, assume that the heuristic determines that the lower left configuration needs
to be checked to determine if it contains the initial concrete state (since two initial
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Fig. 1. A µ-calculus formula (α) in terms of automata (see Def. 3), and a system (β). The prop-
erty of (α) holds if there is an infinite path possible such that always x ≤ 4 holds. It corresponds
to the CTL formula EG(x ≤ 4). In (β), the range of x is IN, initialized with 0. The actions of
the transitions can be executed whenever the guard, depicted in rectangular brackets, is valid.
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Fig. 2. Example of a property check via lazy abstraction. Here, p ≡ x ≤ 4 and p̃ ≡ pre(true).
May-transitions are depicted as dashed arrows and must-, as well as focus- and junction-, transi-
tions as solid arrows. May-/must-transition whose existence is unknown contain symbol ?. Inter-
mediate configurations are depicted as circles and the others are depicted as rectangles.
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configurations currently exist as a result of the previous split). This is indeed the case
here. Therefore, the set of initial configurations becomes this singleton set. Moreover,
the satisfiability of the corresponding abstract state p̃ is implied, thus Zsat is extended.
Fig. 2 (e) is obtained.

Now, assume the heuristic determines that the “degenerate” split of the intermedi-
ate configuration (∅, p) needs to be propagated backwards along the junction-transition
t that points to it. Then the source (∅,∧) of t, denoted sor(t), is divided into two new
configurations via the predicate p that determined the split of (∅, p). This is done by
dividing sor(t) according to the targets of the focus-transitions that leave (∅, p) (these
are the configurations to which (∅, p) was split). As a result, sor(t) becomes an interme-
diate configuration, corresponding focus-transitions are added from sor(t) to the new
configurations, t is redirected (by doubling it) such that each of its copies connects one
of the new configurations directly to the corresponding target of the focus-transitions
leaving (∅, p) that agrees with it on the splitting predicate p (instead of connecting it to
(∅, p)), and other transitions leaving sor(t) are redirected (by doubling them) such that
their sources become the new configurations. As a result, the original target (∅, p) of
t becomes unreachable. Thus Fig. 2 (f) is obtained and after (in)validity determination
and removal of the unreachable configuration, Fig. 2 (g) is obtained.

Assume the heuristic yields the (unique) may-transition t that points to the interme-
diate configuration (∅,∧) in order to redirect it to the configurations that resulted from
the previous split of (∅,∧). Then t is replaced by may-transitions (for which existence is
not ensured) pointing to the targets of the focus-transitions leaving (∅,∧). Also, possi-
ble must-transitions are added to those configurations, but previous must-transitions (to
the intermediate configuration (∅,∧)) are not removed. These previous must-transitions
can be considered as hypertransitions. Thus Fig. 2 (h) is obtained and after the removal
of irrelevant transitions Fig. 2 (i) is obtained. There, the (not ensured) may transition
from (p̃,3) to (¬p,∧) is removed. This is because the source configuration is controlled
by Player 0 and may transitions are used by Player 0 in the invalidity game. However,
since the target of the transition is labeled by (⊥,ff), Player 0 will not use this transition
in a winning strategy in the invalidity game, since it will make him lose (by reaching a
configuration whose ω2-value is ff). Thus, removing it does not change the outcome.

Assume the heuristic determines that satisfiability of the abstract state encoded by
¬p needs to be checked. The state is satisfiable and therefore Zsat is extended. Further-
more, the validity-value of the two configurations having this abstract state and that are
invalid (⊥,ff) is modified to (ff,ff), indicating that, beside the fact that all underlying con-
crete states are invalid, there also exists an invalid underlying concrete state. Using this
information, the intermediate configuration (∅,∧) pointing to one of those configura-
tions via a focus-transition is labeled with a value (ff,⊥) (existential-invalid) indicating
that there is an underlying concrete state which is invalid. This is justified by the fact
that the intermediate configuration has the same subproperty as the targets of its outgo-
ing focus-transitions and its abstract state represents a superset of their abstract states.
Thus Fig. 2 (j) is obtained and after the removal of irrelevant transitions and unreachable
configurations Fig. 2 (k) is obtained. Namely, first both of the (possible-)must transi-
tions pointing to the intermediate configuration (∅,∧) are removed. This is because the
sources of these transitions are controlled by Player 0 and must transitions are used by
Player 0 in the validity game, but the ω1-value of the target (∅,∧) of the transitions
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is ff , which makes Player 0 lose. Therefore, Player 0 will not use these transitions in
a winning strategy in the validity game, and removing them does not change the out-
come. Similar arguments are responsible for the removal of the possible-must transition
pointing to (¬p,∧). The removal of these transitions makes (∅,∧), (¬p,∧) and (¬p, p)
unreachable and they are removed with their transitions.

Assume the heuristic yields the abstract state encoded by p̃ for which satisfiability
needs to be checked. The state is unsatisfiable and therefore Zunsat is extended. Further-
more, the upper left configuration having this abstract state is labeled as unsatisfiable
(tt,ff). Thus Fig. 2 (l) is obtained and after the removal of irrelevant transitions and un-
reachable configurations Fig. 2 (m) is obtained. Namely, the focus-transition pointing to
the unsatisfiable configuration is removed (along with the unsatisfiable configuration),
since it will never be used as a part of a winning strategy: in the validity game its source
is controlled by Player 1, yet, the ω1-value of its target is tt, making Player 1 lose.
Analogously, in the invalidity game it makes Player 0 who controls it lose, since the
ω2-value of its target is ff .

Finally, assume the heuristic yields the (unique) possible-must-transition from (p̃,3)
to (p,∧), for which existence needs to be checked. After checking the ∀∃ condition by
an unsatisfiability check of p̃ ∧ ¬pre(p), the must transition is added to the structure.
Thus Fig. 2 (n) is obtained. The parity-game algorithm determines all the configurations
as valid, after which the validity function is adapted to (tt,tt) in the configurations where
the states are known to be satisfiable. This yields Fig. 2 (o), where the calculation ter-
minates, since the property is verified: the single initial configuration is valid (the first
component of its validity-value is tt).

Base algorithm. Table 2 presents the verification algorithm PropertyCheck and its
used procedure Validity, which determines the (in)valid configurations of a given ab-
stract property-game and adapts the validity function as best as possible. In Line 1,
Zunsat is used to determine unsatisfiable states. In Line 2 the validity algorithm is ap-
plied and the determined validity is stored in the first component of ω. In Line 3, valid
configurations become valid-and-satisfiable if the underlying abstract state is known
to be satisfiable, i.e. is in Zsat. In Line 4, a configuration c that points via a chain of
focus-transitions to a configuration for which the existence of a concrete state satisfy-
ing the corresponding property is known, i.e. where ω2 is tt, is also updated to have
value tt for ω2. This is because the concrete states described by c are a superset of
those described by the targets of its outgoing focus-transitions. Lines 5-7 make the
analogous adaptations concerning invalidity determination. As a result of Lines 4 and
7, C 1

2
-configurations may get the “pure existential” values (⊥,tt),(ff,⊥),(ff,tt), which are

later used to simplify the game. No other configurations can get these values.
PropertyCheck starts by constructing the initial abstract property-game obtained

from a given automaton. Then it repeatedly applies Validity, makes some simplifica-
tions (explained below), and calculates a refinement step until the property is verified
or falsified, which is the case if the initial configurations are either all valid or all in-
valid. Redundant transitions (and configurations) are removed as follows. In Line 3, the
outgoing transitions of configurations whose validity value is from {(tt,tt),(ff,ff),(tt,ff)}
are removed. This is reasonable, since any play in one of the games will end at such
configurations. The same argument holds for value (ff,tt) that might be given to a C 1

2
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Algorithm PropertyCheck (A : automaton, T : rooted transition system)
Local variables P : an abstract property-game, initialized with P I

T,A

1: Validity (P)

2: while (∃ci ∈ C i : ω1(ci) 6= tt) ∧ (∃ci ∈ C i : ω2(ci) 6= ff) do

3: Remove all transitions in Rall leaving a configuration c with ω(c) ∈ {(tt,tt),(ff,ff),(tt,ff)}.
4: If c ∈ C0 ∧ (ω1(c) = ⊥ ⇒ ω1(c′) = ff) ∧ (ω2(c) = ⊥ ⇒ ω2(c′) = ff) or

c ∈ C1 ∧ (ω1(c) = ⊥ ⇒ ω1(c′) = tt) ∧ (ω2(c) = ⊥ ⇒ ω2(c′) = tt) or
c ∈ C 1

2
∧ ω(c′) = (tt,ff) then Remove (c, c′) from R.

5: If c ∈ C0 ∧ (ω2(c) = ⊥ ⇒ ω2(c′) = ff) or c ∈ C1 ∧ (ω1(c) = ⊥ ⇒ ω1(c′) = tt)
then Remove (c, c′) from R+ ∪R+?.

6: If c ∈ C0 ∧ (ω1(c) = ⊥ ⇒ ω1(c′) = ff) or c ∈ C1 ∧ (ω2(c) = ⊥ ⇒ ω2(c′) = tt)
then Remove (c, c′) from R− ∪R−?.

7: Remove from P all the configurations which are unreachable from the initial configura-
tions via Rall.

8: Refine (P)

9: Validity (P)

10:if ∀ci ∈ C i : ω1(ci) = tt then return(tt) else return(ff)

Algorithm Validity (P : a abstract property-game)
1: Set ω to (tt,ff) on every configuration c ∈ C where πZ(c) ∈ Zunsat.
2: Determine the valid configurations via a parity-game algorithm and set ω1 to tt on those.

3: Set ω2(c) to tt on every configuration c ∈ C where ω1(c) = tt and πZ(c) ∈ Zsat.

4: Set ω2 to tt on every configuration from C 1
2

that points to a configuration where ω2 is tt.

5: Determine the invalid configurations via a parity-game algorithm and set ω2 to ff on those.

6: Set ω1(c) to ff on every configuration c ∈ C where ω2(c) = ff and πZ(c) ∈ Zsat.
7: Set ω1 to ff on every configuration from C 1

2
that points to a configuration where ω1 is ff .

Table 2. A model checking algorithm PropertyCheck for the µ-calculus. Its used procedure for
validity determination Validity is presented here and the procedure for the refinement calculation
is given in Table 3. Here, P = ((C0, C1, C 1

2
, C i, R,R−, R+, θ, ω), R−?, R+?, Zsat, Zunsat).

configuration, but here (in)validity is not completely resolved, and therefore the out-
going transitions are not removed, since they might be necessary during refinement.
Transitions that will never be chosen in a winning strategy are removed as follows. In
Line 4 junction-transitions leaving ∨̃-configurations c, i.e. c ∈ C0, are removed when-
ever each not yet determined component of ω(c) is ff in the target of the transition.
This is justified since Player 0 would lose (in both games) by using such transitions.
Analogously for c ∈ C1. Focus-transitions to unsatisfiable configurations are also re-
moved since they are losing for their controlling player (in both games). In Line 5 (resp.
Line 6) may-(resp. must-)transitions are removed in similar conditions as for junction-
transitions except it is sufficient to consider only one component of ω(c), since may-
(resp. must-)transitions can only be used by Player 0 in the invalidity game or Player
1 in the validity game (resp. Player 0 in the validity game or Player 1 in the invalidity
game). Finally, all unreachable configurations are removed in Line 7.
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Refinement algorithm. The pseudo code of the refinement algorithm is presented in
Table 3. There, a heuristic is used to determine the refinement. The heuristic may de-
pend on further arguments other than the abstract property-game, like the system to
be checked or the history of refinement. It can also be probabilistic. We describe each
possible refinement-scenario along with the way it is handled algorithmically.

The first two scenarios of the refinement correspond to the local split, better fo-
cusing, of a quantifier-, resp. junction-, configuration (Line 1, resp. Line 7). A split
always originates either in a configuration whose subproperty is a predicate (such con-
figurations are split in the initial abstract property-game already) or in a quantifier-
configuration. It later might be propagated to junction-configurations. A local split is
performed by turning the configuration into a C 1

2
configuration, which serves as an

auxiliary configuration, and introducing new subconfigurations. Newly introduced con-
figurations map via ω to (⊥,⊥) and via θ as Θ ◦ πQ. Thus, during refinement, C0 or C1

configurations can become C 1
2

configurations. However, a C0 configuration will never
become a C1 configuration and vice versa. Similarly, C 1

2
-configurations never become

C0 or C1 configurations. In addition, the initial configurations always remain C0 ∪ C1

configurations. Furthermore, as a result of the local splitting, the configurations used
in the abstract property-game might overlap. However, we have the property that when
considering only C0∪C1 configurations having the same property (i.e. the same second
component), then their abstract states have disjoint underlying sets of concrete states.
The different calculations for the two splitting scenarios are described in more detail
below, followed by the other scenarios of the refinement, which are aimed at updating
the components of the abstract property-game and making them more precise (e.g. after
a split took place). Note that in previous papers the propagation of a split to junction-
configurations, as well as the updates of the other components, were all performed
together in each refinement step.
Splitting quantifier-configurations (Line 1). A quantifier-configuration c = (z, q) ∈
C0 ∪ C1 whose validity is unknown, i.e. ω(c) = (⊥,⊥), is determined together with
a predicate ψ ∈ L performing the split. The predicate is unused in z, i.e. z(ψ) =
? (otherwise no improvement takes place). Two new configurations where z is set to
positive, resp. negative, at ψ are added to the configurations of the corresponding player,
and c becomes a C 1

2
configuration that points via focus-transitions to the newly added

configurations (Line 2). The transitions outgoing c are redirected (and doubled) such
that they leave the two new configurations (Line 5). The redirected must-transitions
remain ensured. The redirected may-transitions, on the other hand, might be overly
approximated due to the specialization of the source. Thus, they are added as possible
not-may-transitions (Line 3). Furthermore, the may-transitions which are not subsumed
by ensured must-transitions are also added as possible must-transitions (Line 4), since
the specialization of the source can cause them to fulfill the ∀∃ rule. Finally, if c is
an initial configuration, it is replaced by the new ones (Line 6). In Fig. 2, ‘splitting
quantifier-configuration’ is performed from (b) into (c).
Splitting junction-configurations (Line 7). Here, the purpose is to propagate a previous
split to the anteceding junction-configurations of the split configuration. Therefore, a
transition (c, c′) from a junction-configuration whose validity is unknown, i.e. ω(c) =
(⊥,⊥), to a C 1

2
-configuration is determined, i.e. (c, c′) ∈ R ∩ ((C0 ∪ C1) × C 1

2
). The

idea is to split c via the two configurations reachable from c′ by focus-transitions, which
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Algorithm Refine (P: a property-game)
A heuristic determines one of the following cases including the determination of the corre-
sponding configuration, transition, etc.:

1: [determine ((z, q), ψ) ∈ (C0 ∪ C1)× L with q ∈ Qqua ∧ z(ψ) =? ∧ ω(z, q) = (⊥,⊥)]:

% Here, c = (z, q) and C′ = {({z[ψ 7→ +]}, q), ({z[ψ 7→ −]}, q)} and j ∈ {1, 2} with q ∈ Qj .

2: Cj := (Cj \ {c}) ∪ C′ and C 1
2

:= C 1
2
∪ {c} and R := R ∪ ({c} × C′)

3: R+? := {(c′, c′′) | c′ ∈ C′ ∧ (c, c′′) ∈ R+} ∪R+? \ ({c} × C)

4: R−? := {(c′, c′′) | c′ ∈ C′ ∧ (c, c′′) ∈ R+ \R−} ∪R−? \ ({c} × C)

5: Ru := {(c′, c′′) | c′ ∈ C′ ∧ (c, c′′) ∈ Ru} ∪Ru \ ({c} × C) with u ∈ {+,−}
6: if c ∈ C i then C i := C′ ∪ C i \ {c}
7: [determine (c, c′) ∈ R∩((C0∪C1)×C 1

2
) with ω(c) = (⊥,⊥)∧ω(c′) /∈ {(tt,tt),(ff,ff),(tt,ff)}]:

% Here, c = (z, q) and c′ = (z′, q′) and C′′ = {(z̃, q) | ∃(z̃′, q′) ∈ {c′}.R ∧ z̃ = (z̃′ t z)}.

8: R := R \ {(c, c′)} ∪ {((z̃, q), (z̃′, q′)) | (z̃′, q′) ∈ {c′}.R ∧ z̃ = (z̃′ t z)}
9: if c /∈ C′′ then % otherwise C′′ = {c}

10: Cj := (Cj \ {c}) ∪ C′′ and C 1
2

:= C 1
2
∪ {c} % Here, j ∈ {0, 1} with q ∈ Qj .

11: R := ({c} × C′′) ∪ {(c′′, c̃) | c′′ ∈ C′′ ∧ (c, c̃) ∈ R} ∪ (R \ ({c} × C))

12: if c ∈ C i then C i := C′′ ∪ C i \ {c}
13:[determine (c, c′) ∈ R+ with c′ ∈ C 1

2
∧ ω(c′) /∈ {(tt,tt),(ff,ff),(tt,ff)}]:

% HereR′ = {c} × ({c′}.R)

14: R−? := R−? ∪R′ and Ru := (Ru \ {(c, c′)}) ∪R′ with u ∈ {+,+?}
15:[determine (c, c′) = ((z, q), (z′, q′)) ∈ R+?]: if Unsatisfiable (ψz ∧ pre(ψz′))

16: then Ru := Ru \ {(c, c′)} with u ∈ {+,+?}
17: else R+? := R+? \ {(c, c′)}
18:[determine (c, c′) = ((z, q), (z′, q′)) ∈ R−?]: if Unsatisfiable (ψz ∧ ¬pre(ψz′))

19: then R− := (R− \R↑(c,c′)
ta ) ∪ {(c, c′)} and R−? := R−? \R↑(c,c′)

ta

20: else R−? := R−? \R↓(c,c′)
ta

21:[determine (z, q) ∈ C i]: if Satisfiable (pi ∧ ψz)

22: then C i := {(z, q)} and Zsat := Zsat ∪ {z}
23:[determine z ∈ Z]: if Satisfiable (ψz)

24: then Zsat := Zsat ∪ {z}
25: else (if Unsatisfiable (ψz) then Zunsat := Zunsat ∪ {z})

Table 3. Here, P = ((C0, C1, C 1
2
, C i, R,R−, R+, θ, ω), R−?, R+?, Zsat, Zunsat). Newly in-

troduced configurations map via ω to (⊥,⊥) and via θ as Θ ◦ πQ. Satisfiable(ψ) denotes a
satisfiability check of ψ (checks if [[ψ]] 6= ∅) made by a theorem prover, and similarly for
Unsatisfiable(ψ). For (cs, ct) ∈ Rall let R↑(cs,ct)

ta = {(cs, c′t) ∈ Rall | ct ∈ {c′t}.R∗1
2
} and

R
↓(cs,ct)
ta = {(cs, c′t) ∈ Rall | c′t ∈ {ct}.R∗1

2
}, where R∗1

2
is the transitive closure of the focus

transitions R ∩ (C 1
2
× C).
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are the configurations to which c′ was split earlier. Thus, c′ is determined such that
its validity is not from {(tt,tt),(ff,ff),(tt,ff)}, since otherwise either all the underlying
concrete states of c′ are in agreement or none exist, and in both cases no improvement
will result from splitting c according to the split of c′.

Then c is (possibly) split as follows. For each of the two configurations c̃′, reachable
via a focus-transition from c′, we consider in C ′′ a configuration that corresponds to the
least upper bound z t z̃′ of the abstract state of c and the abstract state of c̃′, if it exists.
The concrete states encoded by z t z̃′ correspond to the intersection of the underlying
concrete states of z and z̃′. Note that while z̃′ is finer than the abstract state z′ of c′, it
is not guaranteed that z̃′ is finer than z, since z could become finer than z′ by previous
splits based on other outgoing junction-transitions of c. In particular, z and z̃′ might
give contradictory values (+ vs. −) to some predicate (meaning they represent disjoint
sets of concrete states), in which case z t z̃′ does not exist. Still, at least for one focus-
transition target such an upper bound exists, since by an invariant z is finer than z′.
Moreover, exactly one additional predicate ψ ∈ L is set (either to + or to −) in z̃′

compared to z′ (along the focus-transition). ψ is the predicate that c′ was split by. This
means that z is finer than z̃′ w.r.t. all predicates, except for possibly ψ. Now, if ψ is not
set in z, then ψ does not introduce contradictions as well, thus (1) upper bounds exist
for both of the focus-transitions targets. Otherwise (ψ is already set in z as a result of a
previous split), then (2) the least upper bound exists (only) for the one focus-transition
target in which ψ is set the same as in z.

In case (2), the only existing least upper bound is equal to z, since in this case z is
already finer than z̃′ (z̃′ v z), i.e., it was already split by ψ (and therefore the abstract
state of the other focus-transition target is disjoint from z). Thus,C ′′ = {c}. In this case,
c is not split but the transition (c, c′) is redirected to point directly to the configuration
c̃′ for which z̃′ v z (Line 8).

In case (1), the least upper bounds are z[ψ 7→ +] and z[ψ 7→ −], each of which
represents the intersection of the underlying states of z with the states satisfying ψ
or ¬ψ, resp., meaning z is split by ψ. In this case, identified by the condition c 6∈
C ′′ in Line 9, c is split into the two new configurations collected in C ′′. These are
added to the configurations of the corresponding player (Line 10) and c becomes a C 1

2
configuration (Line 10) pointing via focus-transitions to the new configurations (Line
11). Furthermore, the outgoing transitions of c are redirected to the new configurations
as follows. First, instead of the transition (c, c′), each of the new configurations points
directly to the focus-transition target c̃′ that “created” it, i.e., whose least upper bound
(intersection) w.r.t. z it represents (Line 8). Additionally, the outgoing transitions of c
pointing to a target different than c′ are redirected (by doubling them) to leave the new
configurations (Line 11 combined with Line 8). Finally, if c is an initial configuration,
it is replaced by the new ones (Line 12). In Fig. 2, ‘splitting junction-configuration’
(based on case (1)) takes place from (e) into (f).
Focusing may-transitions (Line 13). Here, the purpose is to propagate a previous split
to the incoming may-transitions of the split configuration. Therefore, a may-transition
(c, c′) ∈ R+ with c′ ∈ C 1

2
is determined. Such a transition models a hypertransition.

It is redirected (by doubling it) such that it points directly to the focus-transition targets
of c′, i.e. to the configurations to which c′ was ‘split’ earlier. The determined transition
is such that ω(c′) /∈ {(tt,tt),(ff,ff),(tt,ff)}, ensuring that these focus-transition targets
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were not removed during simplification. The new may-transitions also become possible
not-may-transitions, since they might be overly approximated. Furthermore, they are
also added as possible must-transitions. Note that unlike the removal of may-transitions
pointing to c′, (possible) must-transitions that point to c′ (if exist) remain intact, since
hypertransitions are needed in the case of must transitions to increase expressiveness.
In Fig. 2, ‘focusing may-transition’ is performed from (g) into (h).
Ascertaining may-transitions (Line 15). A possible not-may-transition ((z, q), (z′, q′)) ∈
R+? is determined and it is checked if it is overly approximated. This is done by a the-
orem prover call of Unsatisfiable (ψz ∧ pre(ψz′)). If this call is successful, meaning
the ∃∃ condition does not hold w.r.t. ψz and ψz′ , the transition is removed as a may-
transition. Otherwise, it is only removed from R+?. Note that here and in the next
scenario an unsatisfiability call is made instead of a satisfiability call in order to remain
sound if incomplete satisfiability checks are applied.
Ascertaining must-transitions (Line 18). A possible must-transition ((z, q), (z′, q′)) ∈
R−? is determined and it is checked if it is a real must transition. This is done by a the-
orem prover call of Unsatisfiable (ψz ∧ ¬pre(ψz′)). If this call is successful, meaning
the ∀∃ condition holds w.r.t. ψz and ψz′ , the transition is added as a real must-transition
and all (possible) must-transitions that have the same source but a less precise target
are removed, since their existence does not increase precision. Otherwise, the transition
and all possible must-transitions that have the same source but a more precise target are
removed (they cannot become real must-transitions). The less (resp. more) precise tar-
gets are given by the configurations that are backwards (resp. forwards) reachable from
(z′, q′) via focus-transitions. This is justified by the invariant that the abstract state of
the target of a focus-transition is always finer, i.e. more precise, than the abstract state
of its source. In Fig. 2, ‘ascertaining must-transition’ is performed from (m) into (n).
Ascertaining initial configuration (Line 21). Splitting of configurations might result in
multiple initial configurations. However, recall that initial configurations are always in
C0 ∪ C1 and thus their abstract states are disjoint. This ensures that only one of them
abstracts the concrete initial configuration, and the rest are merely overly approximated.
Thus an initial configuration (z, q) ∈ C i is determined and it is checked if it contains
the concrete initial state. This is done by a theorem prover call Satisfiable (pi ∧ ψz).
If successful, C i becomes {(z, q)} and z is added to Zsat (since its satisfiability is
ensured). In Fig. 2, ‘ascertaining initial configuration’ is performed from (d) into (e).
Checking satisfiability of abstract states (Line 23). An abstract state z ∈ Z is deter-
mined and its (un)satisfiability is checked. This is done by a theorem prover call Sat-
isfiable (ψz), resp. Unsatisfiable (ψz). If the call is successful, z is added to Zsat,
resp. to Zunsat. Both theorem prover calls are necessary for soundness if incomplete
satisfiability checks are applied. In Fig. 2, ‘checking satisfiability of abstract states’ is
performed from (i) into (j) and from (k) into (l).

Properties of the algorithm. Satisfiability checks are said to be sound if Satisfiable(ψ)
implies that ψ is satisfiable, i.e. [[ψ]] 6= ∅, and if Unsatisfiable(ψ) implies that ψ is not
satisfiable, i.e. [[ψ]] = ∅. Satisfiability checks are complete if the reverse implications of
the above constraints hold. LetO = {P.3, ..., P.7}∪{V.1, ..., V.7} denote the execution
lines of PropertyCheck, resp. of Validity, in which simplifications of the game structure
as well as (in)validity determinations are made. In the following, PropertyCheck also
denotes a more liberal version of it where the lines from O are not always applied after

16



every refinement step as long as (in)validity determinations are applied infinitely often
(more precisely, the bundle of the three Lines V.1,V.2,V,5 are infinitely often calculated
after a refinement step). This means that more than one refinement step is calculated at
once. We have that our algorithm is correct and no validity information is lost during
an execution (even if the more liberal version is used):

Theorem 1 (Soundness). Let satisfiability checks be sound. If PropertyCheck(A, T )
based on any heuristic returns tt (resp. ff), then T |= A (resp. T 6|= A) holds.

Theorem 2 (Incremental). Suppose satisfiability checks are sound, P is a property-
game obtained during the execution of PropertyCheck(A, T ), and P is valid (resp.
invalid) in c ∈ C. Then the execution of any line of PropertyCheck or Validity yields a
property-game that is valid (resp. invalid) in c or that does not contain c anymore.

The algorithm is relatively complete for least fixpoint free formulas (and is often
also successful for formulas containing least fixpoints). Note that this statement is not
implied by the relative completeness of generalized Kripke modal transition systems,
since not all hypertransitions are calculated.

Theorem 3 (Relative completeness). Suppose satisfiability checks are sound and com-
plete and L can describe every subset of S. If the acceptance function ofAmaps always
to zero (i.e. a least fixpoint free µ-calculus formula is encoded) and T |= A, then any
heuristic applied for the first, say n, refinement determination steps, can be extended to
a (not necessarily computable) one such that PropertyCheck(A, T ) returns tt.

Theorem 3 does not hold if we restrict to computable refinement heuristics, since
otherwise the halting problem would be decidable. Furthermore, Theorem 3 does not
hold for automata with arbitrary acceptance function, since the underlying class of ab-
stract models is not expressive enough. To handle arbitrary functions, fairness con-
straints, as in [6, 8], are needed.

Remark 2. Previous CEGAR-algorithms, including ours [10], usually need less refine-
ment steps than our new algorithm, since it has a very fundamental laziness. Never-
theless, our algorithm can mimic the refinement steps of the other algorithms without
increasing its computation time by calculating all refinements made by the other algo-
rithms in a single step before calling Validity. We expect our algorithm to be in general
faster than the others, since we can use improved heuristics that avoid the expensive
cost of refinement-calculations by restricting to the relevant calculations.

4 Conclusion

We presented a new CEGAR-based algorithm for µ-calculus verification, which is
based on the lazy abstraction technique. We obtained the high level of laziness by de-
veloping a new philosophy of a refinement step, namely state focusing: The to be split
configuration is not removed and is, e.g., used to model hypertransitions. Our algorithm
avoids state explosion and, at the same time, remains complete for least fixpoint free
formulas. We discuss several optimizations of the algorithm in Appendix A. The heuris-
tics presented in [10] can be straightforwardly adapted to our setting. Determination of
heuristics that better support the finer lazy abstraction approach of our new algorithm,
and a prototype implementation, are topics for future work.
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A Optimizations of the algorithm.

For the sake of completeness, we present some possible optimizations of the algorithm.
The ones suggested in [10] also apply to the algorithm presented here. These opti-
mizations include (i) the usage of a more liberal algorithm as defined on page 16; (ii)
adaption of the validity function inside the refinement calculation already; (iii) reusage
of (un)satisfiability checks; (iv) usage of an initial configuration structure whose under-
lying abstract state space is finer; (v) usage of approximations for reducing complexity
of the (un)satisfiability checks. Beside these optimizations, further ones can be applied
to our new algorithm, as described below.

Transition existence by construction. As already demonstrated in our example in Sec-
tion 3, (non-)existence of some transitions follows immediately by construction: When
a configuration is split via a precondition p of a may transition target and the transi-
tion is redirected to the new configurations, then the may transition becomes a must
transition in the new configuration where p is set positively and it is non-existent in
the other configuration. Optimizations obtained by construction without using a satis-
fiability check, can be further improved by extensions of the configuration structure.
For example, suppose that a may transition from c′ to c ∈ C 1

2
is known to exist, but it

is redirected to point to the targets of the focus transitions of c (as possible not-may-
transitions). Then its storage (independently of the underlying parity game algorithm)
allows the following derivation: If it turns out that no may transition from c′ to one
focus-transition target c1 of c exists, then it is guaranteed that a may transition from c′

to the other focus-transition target c2 of c exists.

Improved (un)satisfiability handling. The unsatisfiability checks for determining the
existence of may, respectively must, transitions can be used to extend Zsat and Zunsat.
Here, it might be useful if a satisfiability check returns three values: satisfiable, unsat-
isfiable or don’t know. For example, from an unsatisfiability call of ψz ∧ pre(ψz′) that
returns ‘satisfiable’, we can extend Zsat by {z, z′, z[pre(ψz′) 7→ +]}. Furthermore, a
configuration can be removed from the set of initial configurations whenever its under-
lying abstract state is unsatisfiable (conjuncted with pi). On the other hand, whenever
the set of initial configurations becomes a singleton set containing c, then the underlying
abstract state of c has to be satisfiable.
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B Proof sketches

Throughout, P(B) denotes the power set of a set B. For the property-game P the fol-
lowing notations are used: Rjunc = R ∩ ((C0 ∪ C1) × C) and R 1

2
= R ∩ (C 1

2
× C)

and R∗1
2

is the transitive closure of R 1
2

. First we straighten the definition of a property-
game w.r.t. set Q to a property-game w.r.t. an alternating tree automaton, where more
dependencies between these models are drawn.

Definition 7. A property-game P for the alternating tree automata A = (Q, qi, δ, Θ)
is a property-game P w.r.t. Q such that

1. C 1
2
⊆ Z ×Q and Ci ⊆ Z ×Qi for i ∈ {0, 1}

2. C i ⊆ (C0 ∪ C1) ∩ (Z × {qi})
3. R+, R− ⊆ {((z, q), (z′, q′)) ∈ (C0 ∪ C1)× C | δ(q) ∈ {3q′,2q′}}
4. R ⊆ {((z, q), (z′, q′)) ∈ (C0∪C1)×C | z′ v z∧∃q′′ : δ(q) ∈ {q′∧̃q′′, q′′∧̃q′, q′∨̃q′′, q′′∨̃q′}}∪
{((z, q), (z′, q′)) ∈ C 1

2
× C | q = q′ ∧ ∃ψ : z(ψ) =? ∧ z′ ∈ {z[ψ 7→ +], z[ψ 7→ −]}}

5. ∀q, c, z′, z′′ : ((c, (z′, q)) ∈ R+ ∧ (c, (z′′, q)) ∈ R+ ∧ z′ 6= z′′)⇒ (z′ 6v z′′ ∧ z′′ 6v z′)
6. ∀z, z′ : (∃q : (z, q) ∈ C ∧ (z′, q) ∈ C ∧ z 6= z′)⇒

((z′ v z ∧ z′ ∈ C 1
2
) ∨ (z v z′ ∧ z ∈ C 1

2
) ∨ ∃ψ : {z(ψ), z′(ψ)} = {+,−})

7. ∀c ∈ C0 ∪ C1 : (ω1(c) = ff ⇒ ω2(c) = ff) ∧ (ω2(c) = tt⇒ ω1(c) = tt)
8. θ = Θ ◦ π2

9. R−?, R+? ⊆ {((z, q), (z′, q′)) ∈ (C0 ∪ C1)× C | δ(q) ∈ {3q′,2q′}}

Later we will show that our algorithm has the invariant that always property-games
for A are produced. Next a definition of a sound property-game is given:

Definition 8. A property-game P for A is sound w.r.t. T if

1. ∃z : (z, qi) ∈ C i ∧ si ∈ [[ψz]]
2. ∀((z, q), (z′, q′)) ∈ R− : ∀s ∈ [[ψz]] : ∃s′ ∈ [[ψz′ ]] : s→ s′

3. ∀c = (z, q) ∈ C0 ∪ C1 :
δ(q) = 3q′ ⇒ (∀s′ ∈ [[ψz]]. →: (ω2(c) = ⊥ ∧ s′ |= q′) ⇒ ((∃z′ : (z′, q′) ∈

C ∧ s′ ∈ [[ψz′ ]]) ∧ ∀z′ : ((z′, q′) ∈ C ∧ s′ ∈ [[ψz′ ]]) ⇒ ∃z′′ : (z′′, q′) ∈
{c}.R+∧((z′′, q′) ∈ R∗1

2
.{(z′, q′)}∨((z′′, q′) ∈ {(z′, q′)}.R∗1

2
∧s′ ∈ [[ψz′′ ]]))))

δ(q) = 2q′ ⇒ (∀s′ ∈ [[ψz]]. →: (ω1(c) = ⊥ ∧ s′ 6|= q′) ⇒ ((∃z′ : (z′, q′) ∈
C ∧ s′ ∈ [[ψz′ ]]) ∧ ∀z′ : ((z′, q′) ∈ C ∧ s′ ∈ [[ψz′ ]]) ⇒ ∃z′′ : (z′′, q′) ∈
{c}.R+∧((z′′, q′) ∈ R∗1

2
.{(z′, q′)}∨((z′′, q′) ∈ {(z′, q′)}.R∗1

2
∧s′ ∈ [[ψz′′ ]]))))

δ(q) = q1∨̃q2 ⇒ (⊥ ∈ {ω1(c), ω2(c)} ⇒ ∀j ∈ {1, 2} : ((∃s ∈ [[ψz]] : s |= qj)⇒
∃z′ : (z′, qj) ∈ {c}.R))

δ(q) = q1∧̃q2 ⇒ (⊥ ∈ {ω1(c), ω2(c)} ⇒ ∀j ∈ {1, 2} : ((∃s ∈ [[ψz]] : s 6|= qj)⇒
∃z′ : (z′, qj) ∈ {c}.R))

4. ∀c = (z, q) ∈ C 1
2

: (ω(c) /∈ {(tt,tt),(ff,ff),(tt,ff)} ⇒ [[ψz]] =
⋃

(z′,q′)∈{c}.R [[ψz′ ]])
5. ∀q, z, z′ : ((z, q) ∈ C ∧ (z′, q) ∈ C ∧ z v z′ ∧ [[ψz′ ]] 6= ∅) ⇒ ∃z′′ : z v z′′ v
z′ ∧ (z′′, q) ∈ {(z, q)}.R∗1

2
∧ (ω(z′′, q) ∈ {(tt,tt),(ff,ff),(tt,ff)} ∨ z′′ = z′)

6. ∀c = (z, q) ∈ C : (ω1(c) = tt ⇒ ∀s ∈ [[ψz]] : s |= q) ∧ (ω2(c) = ff ⇒ ∀s ∈
[[ψz]] : s 6|= q) ∧ (ω2(c) = tt⇒ ∃s ∈ [[ψz]] : s |= q) ∧ (ω1(c) = ff ⇒ ∃s ∈ [[ψz]] :
s 6|= q)
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7. ∀z ∈ Zsat : [[ψz]] 6= ∅ and ∀z ∈ Zunsat : [[ψz]] = ∅.
Next we define when a sound property-game is precise:

Definition 9. A property-game P for A is sound-and-precise w.r.t. T if it is sound and

1. ∀((z, q), (z′, q′)) ∈ R+ : (∀s ∈ [[ψz]] : ∀s′ ∈ [[ψz′ ]] : s 6→ s′)⇒ ((z, q), (z′, q′)) ∈
R+?

2. ∀c = (z, q) ∈ C0 ∪ C1 :
δ(q) = 3q′ ⇒ (∀z′ : (c′ = (z′, q′) ∈ C ∧ [[ψz]] 6= ∅ ∧ ω1(c) = ⊥∧ (∀s′ ∈ [[ψz′ ]] :

s′ |= q′) ∧ ∀s ∈ [[ψz]] : ∃s′ ∈ [[ψz′ ]] : s → s′) ⇒ ((c, c′) ∈ R−? ∨ (∃c̃′ ∈
{c′}.R∗1

2
: (c, c̃′) ∈ R−) ∨ ∃c̈′ ∈ R∗1

2
.{c′} : c̈′ 6= c′ ∧ (c, c̈′) ∈ R+))

δ(q) = 2q′ ⇒ (∀z′ : (c′ = (z′, q′) ∈ C ∧ [[ψz]] 6= ∅ ∧ ω2(c) = ⊥∧ (∀s′ ∈ [[ψz′ ]] :
s′ 6|= q′) ∧ ∀s ∈ [[ψz]] : ∃s′ ∈ [[ψz′ ]] : s → s′) ⇒ ((c, c′) ∈ R−? ∨ (∃c̃′ ∈
{c′}.R∗1

2
: (c, c̃′) ∈ R−) ∨ ∃c̈′ ∈ R∗1

2
.{c′} : c̈′ 6= c′ ∧ (c, c̈′) ∈ R+))

Lemma 1. Suppose T is a rooted transition system and A an alternating tree automa-
ton. Then the initial property-game P IT,A is a property-game for A and it is sound-and-
precise for A w.r.t. T .

Proof. Is straightforwardly checked.

Lemma 2. Suppose satisfiability checks are sound and P is a sound property-game
for A w.r.t. T . Then the execution of Refine(P ) or of any line from O yields a sound
property-game for A w.r.t. T .

Proof. Is exhaustively, but straightforwardly checked.

Lemma 3. Suppose satisfiability checks are sound and complete and P is a sound-
and-precise property-game for A w.r.t. T . Then the execution of Refine(P ) or of any
line from O yields a sound-and-precise property-game for A w.r.t. T .

Proof. Is exhaustively, but straightforwardly checked.

Proof (of Theorem 1). From Lemma 1 and Lemma 2 we obtain a sound property-game
forA w.r.t. T at the point of termination. Then from the termination constraint and from
the definition when a property-game is sound, we obtain that si |= qi, as required.

Proof (of Theorem 2). It is easily checked that a winning strategy for validity (resp.
invalidity) remains a winning strategy for validity (resp. invalidity) after an execution
of a line from {P.3, ..., P.6}, since only those transitions are removed that will never be
used in a winning strategy. Furthermore, executing line P.7 also does not harm, since the
removing of non-reachable configurations does not effect the strategies for the reachable
configurations.
An execution of a line from {V.1, ..., V.7} does not influence the existence of winning
strategies for validity (resp. invalidity), since we have the invariant that only sound
property-game for A are obtained (Lemma 1 together with Lemma 2).
It is straightforwardly checked that the execution of Refine(P ) does not harm, since the
possibilities of the verifier are not decreased (only delayed) and the possibilities of the
refuter are not increased.
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Proof (of Theorem 3). Let η be a memoryless strategy for the verifier (Player 0) in
the intermediate game PT,A such that η is winning for a configuration whenever the
configuration is valid. It can be shown by using the standard techniques that such a
strategy exists.

Then the extension of a finitely applied refinement heuristic is defined as follows,
where a choice function for A is a function ςA from the configurations of type ∨̃ to
{`, r} indicating if the left or right term is chosen:

1. For every q′ ∈ Q and choice function ςA, split every quantifier configuration
(z, q) ∈ C0 ∪ C1 with ω(z, q) = (⊥,⊥) via the predicate ψq,ςA where [[ψq

′,ςA ]] =
{s ∈ S | η is winning in (s, q′) & the choices made at (s, q′′) where q′′ is of type ∨̃ coincide with ςA}.

2. Split all sources of junction-transition pointing to a configuration from C 1
2

where
the validity value is not from {(tt,tt),(ff,ff),(tt,ff)}.

3. Redirect all may-transitions such that they point to configurations from C0 ∪C1 or
those where the validity value is from {(tt,tt),(ff,ff),(tt,ff)}.

4. Check if all possible not-may- and possible must-transitions are semantically exis-
tent.

5. Reduce the set of initial configuration to a singleton set.
6. Make a satisfiability check of all abstract states occurring in a configuration.
7. Take a may-transition that does not have a corresponding must-transition: split the

source via the weakest pre condition (and check if the may- and must-transitions
are semantically existent, which can be derived by construction). Proceed until no
such may-transition exists anymore.

Now consider the property-game obtained via such a heuristic applied on the con-
sidered modified-algorithm. Before we continue, we show that a junction-configuration
(z, q) from C0∪C1 of the obtained property-game has either (i) a validity value with tt
in its first or ff in its second component after the corresponding validity checks, or (ii) z
is defined on all predicates used in the heuristic Phase 1. This can be seen as follows: If
a configuration that does not fulfil the above requirements exists, then choose one, say
(z, q), that has a minimal distance, where distance is determined by the maximal length
of a circle free path over junction-transitions to a quantifier-configurations. If no such
configuration exists, then it has only loops or dead-ends inside junction-configurations
(in this case, a validity check would yield tt in its first or ff in its second component).
By induction we have that all targets of (z, q) satisfy constraint (i) or (ii). If for all tar-
gets (ii) does not hold, then a validity check for (z, q) would yield tt in its first or ff in
its second component. Therefore, we assume that (ii) holds for a target (z′, q′). From
the fact that we have a property-game for A we obtain that z′ is functional below z and
thus (z, q) satisfies (ii) as required.

Now we show that the property can be shown at the obtained property-game. This
is done via contradiction: we assume that a validity check was not successful and then
construct a strategy that is a witness for validity. Note that a invalidity check cannot be
successful by the soundness theorem. We proceed to construct the strategy mentioned:
Let V be the set of configurations (z, q) ∈ C with ∀s ∈ [[ψz]] : η is winning in (s, q)
and which are reachable from the initial configuration without using must-transitions
or transitions leaving configurations with a validity value from {(tt,tt),(ff,ff),(tt,ff)}. A
winning strategy for Player 0 on set V is defined by a case analysis as follows, where
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we also show the invariant that a play beginning in a configuration of V and played by
verifier according to our defined strategy stays within V .
(z, q) ∈ C0 ∧ δ(q) = q`∨̃qr: If a validity check was successful, then ω1(z, q) is tt and

we are done. Otherwise, by the above statement, there exists ςA with z(ψq,ςA) = +,
or z is unsatisfiable in which case we are also done, since it is then contained in
Zunsat and validity was determined. From the sound-and-precise property, we obtain
the existence of z′ such that (z, q) points to (z′, qςA(q)). Player 0 responds with this
(z′, qςA(q)), which has to be in V .

(z, q) ∈ C0 ∧ δ(q) = 3q′: If a validity check was successful, then ω1(z, q) is tt and we
are done. If z is unsatisfiable, we are also done, since it is then contained in Zunsat.
Suppose s ∈ [[ψz]] and from the fact that η is winning at (s, q) there is a successor
s′ of s with η is winning at (s′, q′). From the sound-and-precise property, we obtain
the existence of z′ such that (z, q) points to (z′, q′), which has to be in V . From the
fact that every may-transition has a corresponding must-transition, Player 0 replies
with this (z′, q′).

(z, q) ∈ C1 ∧ δ(q) = q`∧̃qr: If a validity check was successful, then ω1(z, q) is tt and
we are done. Otherwise, by the above statement, there exists ςA with z(ψq,ςA) = +,
or z is unsatisfiable in which case we are also done, since it is then contained in
Zunsat and validity was determined. Now suppose the refuter replies with (z′, q′).
From the property that the target of a junction-transition is more abstract, we get that
for every s ∈ [[ψz]] the same move can be made. From the heuristic definition and the
definition of V we either get that (z′, q′) is already determined to be valid, and we
are done. Otherwise, by the above statement, there exists ςA with z′(ψq

′,ςA) = +, or
z′ is unsatisfiable in which case we are also done, since it is then contained in Zunsat

and validity was determined. Consequently, (z′, q′) ∈ V .
(z, q) ∈ C1 ∧ δ(q) = 2q′: If a validity check was successful, then ω1(z, q) is tt and

we are done. Suppose the refuter replies with (z′, q′). Then from the fact that all
may-transition are semantical may-transitions we get that there is s ∈ [[ψz]] and
s′ ∈ [[ψz′ ]] with s′ successor of s. Hence, η is winning at (s′, q′). By the above
statement, there exists ςA with z′(ψq

′,ςA) = + or (s′, q′) is already determined to be
valid. Consequently, (z′, q′) ∈ V .

(z, q) ∈ C 1
2

From the reachability constraint of V we get that for (z, q) ∈ V the va-
lidity value of (z, q) is from {(tt,tt),(ff,ff),(tt,ff)} or ∃ςA : z(ψq,ςA) = +. From the
fact that we have a property-game for A, we obtain that an element from V has to
be reached independently how the refuter plays.

Using the above invariant, it is straightforwardly checked that any play beginning in a
configuration of V and played by Player 0 according to the strategy described above is
won by Player 0.
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