
Founding Cryptography on Oblivious Transfer –
Efficiently

Yuval Ishai1,�, Manoj Prabhakaran2,��, and Amit Sahai3,���

1 Technion, Israel and University of California, Los Angeles
yuvali@cs.technion.il

2 University of Illinois, Urbana-Champaign
mmp@cs.uiuc.edu

3 University of California, Los Angeles
sahai@cs.ucla.edu

Abstract. We present a simple and efficient compiler for transform-
ing secure multi-party computation (MPC) protocols that enjoy security
only with an honest majority into MPC protocols that guarantee security
with no honest majority, in the oblivious-transfer (OT) hybrid model.
Our technique works by combining a secure protocol in the honest ma-
jority setting with a protocol achieving only security against semi-honest
parties in the setting of no honest majority.

Applying our compiler to variants of protocols from the literature, we
get several applications for secure two-party computation and for MPC
with no honest majority. These include:

– Constant-rate two-party computation in the OT-hybrid
model. We obtain a statistically UC-secure two-party protocol in the
OT-hybrid model that can evaluate a general circuit C of size s and
depth d with a total communication complexity of O(s)+poly(k, d, log s)
and O(d) rounds. The above result generalizes to a constant number of
parties.

– Extending OTs in the malicious model. We obtain a computa-
tionally efficient protocol for generating many string OTs from few string
OTs with only a constant amortized communication overhead compared
to the total length of the string OTs.

– Black-box constructions for constant-round MPC with no
honest majority. We obtain general computationally UC-secure MPC
protocols in the OT-hybrid model that use only a constant number of
rounds, and only make a black-box access to a pseudorandom generator.
This gives the first constant-round protocols for three or more parties
that only make a black-box use of cryptographic primitives (and avoid
expensive zero-knowledge proofs).

� Supported in part by ISF grant 1310/06, BSF grant 2004361, and NSF grants
0205594, 0430254, 0456717, 0627781, 0716389.

�� Supported in part by NSF grants CNS 07-16626 and CNS 07-47027.
��� Research supported in part from NSF grants 0627781, 0716389, 0456717, and

0205594, a subgrant from SRI as part of the Army Cyber-TA program, an equip-
ment grant from Intel, an Alfred P. Sloan Foundation Fellowship, and an Okawa
Foundation Research Grant.

D. Wagner (Ed.): CRYPTO 2008, LNCS 5157, pp. 572–591, 2008.
c© International Association for Cryptologic Research 2008

Founding Cryptography on Oblivious Transfer – Efficiently 573

1 Introduction

Secure multiparty computation (MPC) [4, 11, 22, 40] allows several mutually
distrustful parties to perform a joint computation without compromising, to the
greatest extent possible, the privacy of their inputs or the correctness of the
outputs. MPC protocols can be roughly classified into two types: (1) ones that
only guarantee security in the presence of an honest majority, and (2) ones that
guarantee security1 against an arbitrary number of corrupted parties.

A qualitatively important advantage of protocols of the second type is that
they allow each party to trust nobody but itself. In particular, this is the only
type of security that applies to the case of secure two-party computation. Un-
fortunately, despite the appeal of such protocols, their efficiency significantly
lags behind known protocols for the case of an honest majority. (For the po-
tential efficiency of the latter, see the recent practical application of MPC in
Denmark [5].) This is the case even when allowing parties to use idealized cryp-
tographic primitives such as bit commitment and oblivious transfer.

In this work we revisit the problem of founding secure two-party computa-
tion and MPC with no honest majority on oblivious transfer. Oblivious transfer
(OT) [19, 38] is a two-party protocol that allows a receiver to obtain one out
of two strings held by a sender, without revealing to the sender the identity of
its selection. More precisely, OT is a secure implementation of the functionality
which takes inputs s0, s1 from the sender and a choice bit b from the receiver,
and outputs sb to the receiver. Kilian [33] showed how to base general secure
two-party computation on OT. Specifically, Kilian’s result shows that given the
ability to call an ideal oracle that computes OT, two parties can securely com-
pute an arbitrary function of their inputs with unconditional security. We refer to
secure computation in the presence of an ideal OT oracle as secure computation
in the OT-hybrid model. Kilian’s result was later generalized to the multi-party
setting (see [15] and the references therein). Unfortunately, these constructions
are quite inefficient and should mainly be viewed as feasibility results.

When revisiting the problem of basing cryptography on OT, we take a very
different perspective from the one taken in the original works. Rather than being
driven primarily by the goal of obtaining unconditional security, we are mainly
motivated by the goal of achieving better efficiency for MPC in “the real world”,
when unconditional security is typically impossible or too expensive to achieve.2

Advantages of OT-based cryptography. There are several important ad-
vantages to basing cryptographic protocols on oblivious transfer, as opposed to
concrete number-theoretic or algebraic assumptions.

1 Concretely, in this type of protocols it is generally impossible to guarantee output
delivery or even fairness, and one has to settle for allowing the adversary to abort
the protocol after learning the output.

2 Our results still imply efficient unconditionally secure protocols under physical as-
sumptions, such as off-line communication with a trusted dealer, secure hardware,
or noisy channels.

574 Y. Ishai, M. Prabhakaran, and A. Sahai

– Preprocessing. OTs can be pre-computed in an off-line stage, before the
actual inputs to the computation or even the function to be computed are
known, and later very cheaply converted into actual OTs [1].

– Amortization. The cost of pre-computing OTs can be accelerated by us-
ing efficient methods for extending OTs [2, 27, 29]. In fact, the results of
the current paper imply additional improvement to the asymptotic cost of
extending OTs, and thus further strengthen this motivation.

– Security. OTs can be realized under a variety of computational assump-
tions, or even with unconditional security under physical assumptions. (See
[37] for efficient realizations of UC-secure OT in the CRS model under var-
ious standard assumptions.) Furthermore, since the methods for extending
OTs discussed above only require protocols to use a relatively small number
of OTs, one could potentially afford to diversify assumptions by combining
several candidate OT implementations [28].

1.1 Our Results

Motivated by the efficiency gap between the two types of MPC discussed above,
we present a simple and efficient general compiler that transforms MPC proto-
cols with security in the presence of an honest majority into secure two-party
protocols in the OT-hybrid model. More generally and precisely, our compiler
uses the following two ingredients:

– An “outer” MPC protocol Π with security against a constant fraction of
malicious parties. This protocol may use secure point-to-point and broadcast
channels. It realizes a functionality f whose inputs are received from and
whose outputs are given to two distinguished parties.

– An “inner” two-party protocol ρ for a (typically simple) functionality gΠ

defined by the outer protocol, where the security of ρ only needs to hold
against semi-honest parties. The protocol ρ can be in the OT-hybrid model.

The compiler yields a two-party protocol ΦΠ,ρ which realizes the functionality
f of the outer protocol with security against malicious parties in the OT-hybrid
model. If the outer protocol Π is UC-secure [9] (as is the case for most natural
outer protocols) then so is ΦΠ,ρ. It is important to note that ΦΠ,ρ only makes
a black-box use of the outer protocol Π and the inner protocol ρ,3 hence the
term “compiler” is used here in a somewhat unusual way. This black-box flavor
of our compiler should be contrasted with the traditional GMW compiler [21,
22] for transforming a protocol with security in the semi-honest model into a
protocol with security in the malicious model. Indeed, the GMW compiler needs
to apply (typically expensive) zero-knowledge proofs that depend on the code
of the protocol to which it applies. Our compiler naturally generalizes to yield
MPC protocols with more than two parties which are secure (in the OT-hybrid
model) in the presence of an arbitrary number of malicious parties.
3 Furthermore, the functionality gΠ realized by ρ is also defined in a black-box way

using the next-message function of Π . This rules out the option of allowing the
compiler access to the code of f by, say, incorporating it in the output of gΠ .

Founding Cryptography on Oblivious Transfer – Efficiently 575

Combining our general compiler with variants of protocols from the literature,
we get several applications for secure two-party computation and MPC with no
honest majority.

Revisiting the classics. As a historically interesting example, one can obtain
a conceptually simple derivation of Kilian’s result [33] by using the BGW proto-
col [4] (or the CCD protocol [11]) as the outer protocol, and the simple version
of the GMW protocol in the semi-honest OT-hybrid model [21, 22, 23] as the in-
ner protocol. In fact, since the outer protocol is not required to provide optimal
resilience, the BGW protocol can be significantly simplified. The resulting pro-
tocol has the additional benefits of providing full simulation-based (statistical)
UC-security and an easy generalization to the case of more than two parties.

Constant-rate two-party computation in the OT-hybrid model. Using
a variant of an efficient MPC protocol of Damg̊ard and Ishai [17] combined with
secret sharing based on algebraic geometric codes due to Chen and Cramer [12]
as the outer protocol, we obtain a statistically UC-secure two-party protocol
in the OT-hybrid model that can evaluate a general circuit C of size s with a
total communication complexity of O(s). (For simplicity, we ignore from here on
additive terms that depend polynomially on the security parameter k, the circuit
depth, and log s. These terms become dominated by the leading term in most
typical cases of large circuits.) This improves over the O(k3s) complexity of the
best previous protocol of Crépeau et al. [15], and matches the best asymptotic
complexity in the semi-honest model.

By using preprocessing to pre-compute OTs on random inputs, the proto-
col in the OT-hybrid model gives rise to a (computationally secure) protocol
of comparable efficiency in the plain model. Following off-line interaction that
results in each party storing a string of length O(s), the parties can evaluate an
arbitrary circuit of size s on their inputs using O(s) bits of communication and
no cryptographic computations. Note that the preprocessing stage can be carried
out offline, before the actual inputs are available or even the circuit C is known.
Furthermore, the cost of efficiently implementing the off-line stage can be signif-
icantly reduced by using techniques for amortizing the cost of OTs on which we
improve. The above results extend to the case of more than two parties, with a
multiplicative overhead that grows polynomially with the number of parties.

Unlike two-party protocols that are based on Yao’s garbled circuit method [40],
the above protocols cannot be implemented in a constant number of rounds and
require O(d) rounds for a circuit of depth d. It seems that in most typical scenarios
of large-scale secure computation, the overall efficiency benefits of our approach
can significantly outweigh its higher round-complexity.

Extending OTs in the malicious model. Somewhat unexpectedly, our tech-
niques for obtaining efficient cryptographic protocols which rely on OT also yield
better protocols for realizing the OTs consumed by the former protocols. This
is done by using an outer protocol that efficiently realizes a functionality which
implements many instances of OT. More concretely, we obtain a protocol for gen-
erating many OTs from few OTs whose amortized cost in communication and

576 Y. Ishai, M. Prabhakaran, and A. Sahai

cryptographic computation is a constant multiple of the efficient protocol for the
semi-honest model given by Ishai, Kilian, Nissim, and Petrank [29]. Using the
protocol from [29] inside the inner protocol, we can upgrade the security of this
OT extension protocol to the malicious model with only a constant communi-
cation and cryptographic overhead. This improves over a recent result from [27]
that obtains similar efficiency in terms of the number of hash functions being
invoked, but worse asymptotic communication complexity. Our OT extension
protocol can be used for efficiently implementing the off-line precomputation of
all the OTs required by our protocols in the OT-hybrid model.

Black-box constructions for constant-round MPC with no honest ma-
jority. We combine our general compiler with a variant of a constant-round
MPC protocol of Damg̊ard and Ishai [16] to obtain general computationally UC-
secure MPC protocols in the OT-hybrid model that use only a constant number
of rounds, and only make a black-box access to a pseudorandom generator. This
provides a very different alternative to a similar result for the two party case that
was recently obtained by Lindell and Pinkas [35], and gives the first constant-
round protocols for three or more parties that only make a black-box use of
cryptographic primitives (and avoid expensive zero-knowledge proofs).

Additional results. In Section 5 we describe two additional applications: a
constant-rate black-box construction of OT for malicious parties from OT for
semi-honest parties (building on a recent black-box feasibility result of [26, 31]),
and a construction of asymptotically optimal OT combiners [28] (improving
over [27]). In the full version we present a two-party protocol in the OT-hybrid
model that uses only a single round of OTs and no additional interaction. (This
applies to functionalities in which only one party receives an output.) The pro-
tocol only makes n + o(n) OT calls, where n is the size of the input of the party
which receives the output.

1.2 Techniques

Our main compiler was inspired by the “MPC in the head” paradigm introduced
by Ishai, Kushilevitz, Ostrovsky, and Sahai [32] and further developed by Harnik,
Ishai, Kushilevitz, and Nielsen [27]. These works introduced the idea of having
parties “imagine” the roles of other parties taking part in an MPC (which should
have honest majority), and using different types of cross-checking to ensure that
an honest majority really is present in the imagined protocol. Our approach is
similar to the construction of OT combiners from [27] in that it uses an outer
MPC protocol to add privacy and robustness to an inner two-party protocol
which may potentially fail.4 A major difference, however, is that our approach
provides security in the malicious model while only requiring the inner protocol
to be secure in the semi-honest model.

4 This idea is also reminiscent of the player virtualization technique of Bracha [6] and
the notion of concatenated codes from coding theory.

Founding Cryptography on Oblivious Transfer – Efficiently 577

The central novelty in our approach is a surprisingly simple and robust en-
forcement mechanism that we call the “watchlist” method (or more appropri-
ately, the oblivious watchlist method). In describing our approach, we will refer
for simplicity to the case of two-party computation involving two “clients” A
and B. In our compiler, an outer MPC protocol requiring an honest majority of
servers is combined with an inner two-party computation protocol with security
against only semi-honest adversaries. This is done by having the outer MPC pro-
tocol jointly “imagined” by the two clients. Each server’s computation is jointly
simulated by the two clients, using the inner semi-honest two-party protocol to
compute the next-message-functions for the servers. The only method we use
to prevent cheating is that both clients maintain a watchlist of some fraction of
the servers, such that client A will have full knowledge of the internal state of
all servers in A’s watchlist, while client B has no idea which servers are on A’s
watchlist. Then client A simply checks that the watchlisted servers behave as
they should in the imagined outer MPC protocol. If a dishonest client tries to
cheat for too many servers, then he will be caught because of the watchlist with
overwhelming probability. On the other hand, since the outer MPC protocol is
robust against many bad servers, a dishonest client must attempt to cheat in the
computation of many servers in order to be able to gain any unfair advantage in
the execution of the protocol. Our watchlist-based method for enforcing honest
behavior should be contrasted with the non-black-box approach of the GMW
compiler [22] that relies on zero-knowledge proofs.

It is instructive to contrast our approach with “cut-and-choose” methods from
the literature. In standard cut-and-choose protocols, one party typically prepares
many instances of some object, and then the other party asks for “explanations”
of several of these objects. A central difficulty in such an approach is to prevent
the compromised instances from leaking information about secrets, while com-
bining the un-compromised instances in a useful way (see e.g. [35]). In contrast,
our approach achieves these goals seamlessly via the privacy and robustness of
the outer MPC protocol. To see how our approach leads to efficiency improve-
ments as well, we will make an analogy to error-correcting codes. In traditional
cut-and-choose, one has to prepare many copies of an object that will only be
used once, analogous to a repetition-based error-correcting code. Underlying our
approach are the more sophisticated error-correcting codes that can be used in
MPC protocols in the honest majority setting. While we have to sacrifice some
working components (our servers) due to the watchlists, the others perform use-
ful work that is not wasted, and this allows us to get more “bang for the buck”,
especially in settings where amortization is appropriate.

2 Preliminaries

Model. We use the Universal Composition (UC) framework [9], although our
protocols can also be instantiated in the stand-alone setting using the compos-
ability framework of [8, 21]. The parties in the protocols have access to (private,
point-to-point) communication channels, as well as possibly one or more ideal
functionalities such as OT or broadcast.

578 Y. Ishai, M. Prabhakaran, and A. Sahai

Oblivious Transfer. The basic oblivious transfer primitive we rely on is a
(2
1

)

string-OT, referred to as OT. Below we will also employ
(

q
1

)
string-OT. There are

efficient and unconditionally UC-secure reductions with constant communication
overhead of these primitives to

(2
1

)
bit-OT (implicit in [7, 13, 14, 18]). Hence, one

could also assume bit-OT as our basic primitive. When settling for computational
security, OT on long strings can be efficiently reduced to a single instance of OT
on short strings via the use of a pseudorandom generator.

Our watchlist initialization protocol will use Rabin string-OT, which delivers
an input string from the sender to the receiver with a fixed probability δ. We
point out how a Rabin-string-OT with rational erasure probability p/q (for pos-
itive integers p < q) can be securely realized using

(
q
1

)
string-OT with constant

communication overhead. The sender inputs q strings to the
(

q
1

)
string-OT, of

which a random subset of p are the message being transferred and the rest are
arbitrary (say the zero string); the receiver picks up one of the q strings uni-
formly at random; then the sender reveals to the receiver which p-sized subset
had the string being transferred; if the receiver picked a string not belonging to
this set, it outputs erasure, and else outputs the string it received.5

Our model of OT is asynchronous: multiple OT’s executed in the same round
can be executed in an arbitrary, adversarially controlled order. (We note, how-
ever, that synchronous OT can be easily and efficiently reduced to asynchronous
OT via simultaneous message exchange.)

3 Protocol Compiler

In this section we describe how to build a protocol ΦOT
Π,ρ that securely realizes a

functionality F against active corruptions, using two component protocols Π and
ρOT of weaker security. Π is a protocol for F itself, but uses several servers and
depends on all but a constant fraction of them being honest. ρOT is a protocol for
a functionality G (which depends on Π), but is secure only against passive corrup-
tions. Below we describe the requirements on Π , ρOT and the construction of ΦOT

Π,ρ.

3.1 The Outer Protocol Π

Π is a protocol among n + m parties (we will use n = Θ(m2k), k being the
security parameter for Π), with m parties Ci (i = 1, . . . , m) designated as the
clients, and the other parties P j (i = 1, . . . , n) designated as the servers.

– Functionality: Π is a protocol for some functionality F (which could be
deterministic or randomized, and possibly reactive) among the m clients. The
servers do not have any inputs or produce any outputs.

– Security: Π UC-securely realizes the functionality F , against adaptive cor-
ruption of up to t servers, and either static or adaptive corruption of any number
5 Note that the sender can “cheat” by using arbitrary inputs to the

(
p
q

)
string-OT

and declaring an arbitrary set as the p-sized subset containing the message. But
this simply corresponds to picking one of the messages in the declared p-sized subset
(considered as a multi-set) uniformly at random, and using it as the input to the
p/q-Rabin-string-OT.

Founding Cryptography on Oblivious Transfer – Efficiently 579

of clients (see Remark 2). We assume static client corruption by default. We will
require t = Ω(n). The corruptions are active (i.e., the corrupt parties can behave
arbitrarily) and the security could be statistical or computational.

– Protocol Structure: The protocol Π proceeds in rounds where in each round
each party sends messages to the other parties (over secure point-to-point chan-
nels) and updates its state by computing on its current state, and then also
incorporates the messages it receives into its state. Each server P j maintains a
state Σj . For the sake of an optimization in our applications, we will write Σj

as (σj , μ1↔j , . . . , μm↔j), where μi↔j is just the collection of messages between
Ci and P j . We will refer to μi↔j as the “local” parts of the state and σj as the
“non-local” part of the state. Note that client Ci is allowed to know the local
state μi↔j of each server P j .

The servers’ program in Π is specified by a (possibly randomized) function π
which takes as input a server’s current state and incoming messages from clients
and servers, and outputs an updated state as well as outgoing messages for the
clients and other servers. That is,6

π(σj ; μj ;w·→j;u·→j) → (σ′
j ,m

′
j→·,u

′
j→·).

where μj = (μ1↔j , . . . , μm↔j) is the vector of local states, w·→j = (w1→j , . . . ,

wm→j) is messages received in this round by server P j from the clients, and sim-
ilarly u·→j = (u1→j , . . . , un→j) is the set of messages P j received from the other
servers. The outputs m′

j→· = (m′
j→1, . . . , m

′
j→m) and u′

j→· = (u′
j→1, . . . , u

′
j→n)

stand for messages to be sent by P j to the clients and to the servers respectively.
The output σ′

j is the updated (non-local) state of the server P j . The local states
are updated (by definition) as μ′

i↔j := μi↔j ◦ (wi→j , m
′
j→i).

Finally, if Π is in the broadcast-hybrid model, one can efficiently implement
each broadcast by having the broadcasting party send the message to all clients.
While this isn’t equivalent to broadcast in the MPC model, our compiler will
provide robustness against inconsistent messages.

3.2 The Inner Functionality G and the Inner Protocol ρOT

We define a (possibly randomized) m-party functionality Gj which will be used
to “implement” server P j by the clients Ci (i = 1, . . . , m). Gj works as follows:

– From each client Ci get input (Si, Mi, μi↔j , wi→j), where Si will be con-
sidered an additive share of the non-local state σj of the server P j , and Mi an
additive share of u·→j, all the messages received by P j from the other servers
in the previous round.7

6 For the sake of brevity we have omitted the round number, server number, and
number of servers as explicit inputs to π. We shall implicitly use the convention
that these are part of each component in the input.

7 By default, this additive sharing uses bitwise XOR. However, it is sometimes benefi-
cial to use a different finite abelian group for this purpose. This allows to implement
group additions performed by the outer protocol non-interactively, by having clients
directly add their shares.

580 Y. Ishai, M. Prabhakaran, and A. Sahai

– Compute S1 + . . . + Sm, and M1 + . . . + Mm to reconstruct σj and u·→j .
Evaluate π (as given in the above displayed equation) to obtain (σ′

j ,m
′
j→·,u

′
j→·).

– To Ci give output (S′
i, m

′
j→i, M

′
i) where (S′

1, . . . , S
′
m) form a random addi-

tive sharing of the updated state σ′
j and (M ′

1, . . . , M
′
m) form a random additive

sharing of the messages to the servers u′
j→·.

We will need a protocol ρOT (in the OT-hybrid model) to carry out this compu-
tation. But the security requirement on this protocol is quite mild: ρOT securely
realizes Gj against passive corruption (i.e., honest-but-curious adversaries). The
security could be statistical or computational. Also, the security could be against
adaptive corruption or static corruption.

In all our applications, we shall exploit an important optimization in an in-
ner protocol to implement Gj . Suppose an invocation of π (i.e., for some server
P j and some round number) depends only on the local state μi↔j and possi-
bly wi→j , does not change the state σj , and is deterministic. We call such a
computation a type I computation (all other computations are called type II
computations). A simple secure implementation of Gj for type I computations
involves the client Ci computing (m′

j→·,u
′
j→·) itself, and sending each client Ci′

as output (Xi′ , m′
j→i′ , M ′

i′) for each party, where Xi′ is a random sharing of 0
and M ′

i′ is a random sharing of u′
j→·. The client Ci′ sets S′

i′ := Si′ + Xi′ . (This
last step of adding a share of 0 is in fact redundant in our compiled protocol; we
include it only for the sake of modular exposition.)

Thus what the compiler needs to be given as the inner protocol is an imple-
mentation of Gj only for type II computations. Then it is the computational
complexity of type II computations that will be reflected in the communication
complexity of the compiled protocol.

3.3 The Compiled Protocol

At a high-level, the compiled protocol ΦOT
Π,ρ has the following structure.

1. Watchlists initialization: Using OT, the following infrastructure is set up
first: each honest client randomly chooses a set of k servers to put on its watch-
list (which only that client knows). For each client i and server P j there is a
“watchlist channel” Wij such that any of the clients can send a message in Wij ,
and client Ci will receive this message if and only if server P j is on its watchlist.
As we shall see, the implementation of this will allow a corrupt client to gain
access (albeit partial) to the watchlist channels of more than k servers. Never-
theless, we note that the total number of servers for which the adversary will
have access to the watchlist channel will be O(km2) < t/2.

We shall also require another variant of watchlist channel (that can be set up
on top of the above watchlist channel infrastructure): for each server P j there is
a “watchlist broadcast channel” Wj such that any client can send a message on
Wj and all the clients who have server P j on their watchlists will receive this
message. (Note that when there are only two clients, this variant is no different
from the previous one.)

Founding Cryptography on Oblivious Transfer – Efficiently 581

If the adversary has access to the watchlist channel for server P j , then we
allow the adversary to learn which other clients have access to their watchlist
channels for server P j . Jumping ahead, we remark that in this case we will
consider server P j as corrupted. By the choice of parameters this will corrupt
at most t/2 servers (except with negligible probability).

2. Simulating the execution of Π: Each client Ci plays the role of Ci in Π . In
addition, the clients will themselves implement the servers in Π as follows. At
the beginning of each round of Π , the clients will hold a secret sharing of the
state of each server. Then they will use the inner protocol to execute the server’s
next-message and state-evolution functions and update the shared state.

The purpose of the watchlists is two-fold: firstly it is used to force (to some
extent) that the clients do not change their inputs to the inner protocol between
invocations; secondly it is used to force honest behavior within the inner protocol
executions. The actual use of watchlists is quite simple:

(a) To enforce consistency between invocations of the inner protocol, each client
Ci is required to report over the watchlist broadcast channel Wj every mes-
sage that it provides as input to or receives as output from every invocation
of the inner protocol for Gj .

(b) To enforce honest behavior within the protocol execution, each client is
required to report over watchlist channels Wij (for all i) every message that
it receives within the invocation of the inner protocol for Gj . Further, for each
invocation of the inner protocol j, the watchlist broadcast channel Wj is used
to carry out a “coin-tossing into the well” to generate the coins for each client
to be used in that protocol. (This coin-tossing step is not necessary when
certain natural protocols with a slightly stronger security guarantee — like
the basic “passive-secure” GMW protocol in the OT-hybrid model — are
used. See Remark 1 below.)

Any honest client who has server P j in its watchlist must check that the reported
values from all clients are according to the protocol and are consistent with the
other messages received in the protocol. Note that at the beginning of the execu-
tion of the inner protocol, all clients are already committed to their inputs and
randomness during the protocol. Further, all honest clients honestly report the
messages received from the other protocols. As such a client watching server P j

has an almost complete view of the protocol execution, and it knows ahead of
time exactly what messages should be reported over the watchlist channels in an
honest execution. This is sufficient to catch any deviation in the execution, if the
protocol uses only communication channels. However, if the protocol involves the
use of OT channels (or more generally, other ideal functionalities) then it cre-
ates room for an adversary to actively cheat and possibly gain an advantage over
passive corruption. Then the adversary can change its inputs to the OT func-
tionality without being detected (or arrange the probability of being detected
to depend on the inputs of honest clients). To prevent this kind of cheating, we
shall force that if the adversary changes its input to the OT functionality, then

582 Y. Ishai, M. Prabhakaran, and A. Sahai

with at least a constant probability this will produce a different output for an
honest client (if the adversary is the sender in the OT), or (if the adversary is
the receiver in the OT) the adversary will end up reporting a different output
over the watchlist. This is easily enforced by using a simple standard reduction
of OT to OT with random inputs from both parties.

Remark 1 (On tossing coins.). A protocol which is secure against passive cor-
ruptions is not necessarily secure when the adversary can maliciously choose the
random tape for the corrupt players. This is the reason our compiler needs to
use a coin-tossing in the well step to generate the coins for the inner protocols.
However, most natural protocols remain secure even if the adversary can choose
the coins. This is the case for perfectly secure protocols like the basic “passive-
secure” GMW protocol (in the OT-hybrid model). When using such an inner
protocol, the compiler can simply omit the coin-tossing into the well step.

Setting up the Watchlist Channels and Broadcast Channels. First we
describe how the watchlist channels described above are set up using OTs, and
then how to obtain watchlist broadcast channels using them. The basic idea is
for the clients to pick up sufficiently long one-time pads from each other using
OT, and later send messages masked with a fresh part of these one-time pads.

For this we shall be using Rabin-string-OT (i.e., erasure channel with a fixed
erasure probability, and adequately long binary strings being the alphabet). See
Section 2 for implementation details.

The construction of the watchlist channels is as follows: First each client
randomly chooses a set of k servers to put on its watchlist. Next, each pair of
clients (i′, i) engages in n instances of δ-Rabin-string-OTs where client Ci′ sends
a random string rj (of length �) to Ci. By choice of δ = Ω(k/n), we ensure that
except with negligible probability Ci obtains the string in more than k of the n
instances. (By the union bound, this will hold true simultaneously for all pairs
(i′, i), except with negligible probability.) Now, client Ci specifies to client Ci′ a
random permutation σ on [n] conditioned on the following: if j is in the watchlist
of Ci and σ(j) = j′, then rj′ was received by Ci. Now, to send a message on
the watchlist channel Wij , the client Ci′ will use (a fresh part of) rσ(j) to mask
the message and send it to Ci. Note that if j is in the watchlist of client Ci,
then this construction ensures that Ci can read all messages sent on Wij by any
client. If the strings rj are � bits long then at most � bits can be sent to the
watchlist channel constructed this way.

Finally, we consider obtaining watchlist broadcast channel Wj from watchlist
channels Wij set up as above. This is similar to how broadcast is obtained from
point-to-point channels in [24]. To send a message on Wj first a client sends the
message on Wij for every i. Then each client Ci on receiving a message on a
watchlist channel Wij sends it out on Wi′j for every i′ �= i. (If Ci does not have
access to Wij , it sends a special message (of the same length) to indicate this.)
Then it checks if all the messages it receives in this step over Wij are the same
as the message it received in the previous step, and if not aborts.

It can be verified that the above constructions indeed meet the specification
of the watchlist infrastructure spelled out in the beginning of this section.

Founding Cryptography on Oblivious Transfer – Efficiently 583

Theorem 1. Let F be a (possibly reactive) m-party functionality. Suppose Π is
an outer MPC protocol realizing F , as specified in Section 3.1, with n = Θ(m2k)
and t = Θ(k), for a statistical security parameter k. Let G be the functionality
defined in Section 3.2 and ρOT a protocol that securely realizes G in the OT-
hybrid model against passive (static) corruptions. Then the compiled protocol
ΦOT

Π,ρ described above securely realizes F in the OT-hybrid model against active
(static) corruptions. If both Π and ρOT are statistically/computationally secure,
then the compiled protocol inherits the same kind of security.

ΦOT
Π,ρ has communication complexity poly(m)·(CΠ +nrΠCρ), round complexity

O(rΠrρ), and invokes OT poly(m)·nrΠqρ times, where CΠ is the communication
complexity of Π, rΠ is the number of rounds of Π, Cρ is the communication plus
randomness complexity of ρOT, rρ is the round complexity of ρOT, and qρ is the
number of invocations of OT in ρOT.

Here by communication complexity of a protocol in the OT-hybrid model we in-
clude the communication with the OT functionality. By randomness complexity
of a protocol we mean the total number of random bits used by (honest) parties
executing the protocol. We remark that the complexity bounds given above can
typically be tightened when analyzing specific inner and outer protocols.

Remark 2 (On adaptive security.). Above we assumed that the inner protocol
ρOT is secure against static corruptions, and Π is secure against static client cor-
ruptions (and up to t adaptive server corruptions). Then the compiled protocol
ΦOT

Π,ρ is secure against static corruptions. However, if ρOT is secure against adap-
tive corruptions, depending on the security of Π we can get ΦOT

Π,ρ to be secure
against adaptive corruptions. If Π is secure against an adversary who can adap-
tively corrupt up to m−1 clients and up to t servers, then ΦOT

Π,ρ is secure against
adaptive corruption up to m−1 clients. All known constant-round protocols are
restricted to this type of adaptive security, unless honest parties are allowed to
erase data. If Π is secure against an adversary which could in addition, after
the protocol execution ends, corrupt all the remaining honest clients and servers
together, then ΦOT

Π,ρ is secure against adaptive corruption of up to all m clients.
This is the typical adaptive security feature of outer protocols whose round
complexity depends on the circuit depth, and even of constant-round protocols
if data erasure is allowed.

Proof sketch: The proof of security for our compiler follows from a conceptually
very simple simulator. Full details will be given in the full version of this paper;
here we sketch a high-level overview of how our simulator works. At a very high
level, the simulator’s job is very simple: Since it simulates the OT channels that
the adversary uses in the protocol, the simulator will have full knowledge of
everything that is sent over the watchlists, as well as in every invocation of OT
used within the inner protocol. Thus, the simulator will know immediately if the
adversary causes any of the imagined servers to behave dishonestly. It is easy
to argue that if the adversary cheats with respect to any server that is on an
honest party’s watchlist, then it will be caught with constant probability (this
is enforced in part by the reduction of OT to OT with random inputs). Since

584 Y. Ishai, M. Prabhakaran, and A. Sahai

each honest party’s watchlist is large, this shows that if the adversary causes too
many servers to behave dishonestly, it will be caught by an honest party with
overwhelming probability.

To make this formal, the simulator will invoke Simouter, the simulator for the
outer MPC protocol. The simulator will be allowed to corrupt up to t servers
when interacting with Simouter. When the simulator observes that the adversary
is trying to cause dishonest behavior by some server, then it corrupts that server
(thereby learning the state and history of that server, allowing the simulator to
finish the interaction with the adversary and provide appropriate output to it).
As argued above, if the adversary causes dishonest behavior in too many servers,
it will get caught with overwhelming probability, and therefore our simulator
will not need to exceed t corruptions. The only caveat here is if the adversary
simultaneously tries to cause cheating in too many servers (e.g. all the servers at
once). To deal with this situation, we ensure that the adversary is caught before
it receives any output, and so we can simulate the interaction with the adversary
before we have to corrupt the corresponding server in the outer protocol. This
follows in a straightforward way from the way that the watchlists are used and
the fact that OT’s are only used with random inputs. ��

4 Instantiating the Building Blocks

For concrete applications of our compiler, we need to choose outer and inner
protocols to which the compiler can be applied. The requirements on these com-
ponents can be considered much easier to meet than security against active
corruption in the case of no honest majority. As such the literature provides a
wide array of choices that we can readily exploit.

Instances of the Outer Protocol. For the purpose of feasibility results, the
classical BGW protocol [4, 9] can be used as the outer protocol. But in our
applications, we shall resort to two efficient variants obtained from more recent
literature [16, 17].8

Using a combination of [12, 17] (as described below) a boolean circuit C of
size s and depth d (with bounded fan-in) can be evaluated with a total com-
munication complexity of O(s) + poly(n, k, d, log s) bits, where k is a statistical
security parameter, for n servers and any constant number of clients.9 The pro-
tocol requires O(d) rounds. For this protocol the only type II functions in the
servers’ program (see Section 3.1) consist of evaluating multiplications in a fi-
nite field F whose size is independent of the number of servers. (Here we do not
consider linear functions over F, which can be handled “for free” by the inner

8 Efficiency aside, by using UC-secure outer protocols, our compiled protocols are also
UC-secure.

9 While we do not attempt here to optimize the additive term, we note that a careful
implementation of the protocol seems to make this term small enough for practical
purposes. In particular, the dependence of this term on d can be eliminated for most
natural instances of large circuits.

Founding Cryptography on Oblivious Transfer – Efficiently 585

protocol provided that the servers’ states are additively shared over F among the
clients.) The total number of multiplications computed by all servers throughout
the protocol execution is O(s) + poly(n, d) (for any constant number of clients).

An MPC protocol as above can be obtained by combining a version of an
MPC protocol from [17] with algebraic geometric secret sharing over fields of
constant size [12].10 This combination directly yields a protocol with the above
properties for NC0 circuits, which was recently used in [32] to obtain constant-
rate zero-knowledge proofs and in [27] to obtain constant-rate OT combiners. In
the full version we present the (natural) extension of this protocol that can be
applied to arbitrary depth-d circuits, at the cost of requiring O(d) rounds.

Another useful instance of an outer protocol is obtained from the constant-
round protocol from [16], as described in Section 5.2. Unlike the previous constant-
round MPC protocol from [3], this protocol only makes a black-box use of a
pseudorandom generator.

Instances of the Inner Protocol. The main choice of the inner protocol, which
suffices for most of our applications, is the simple version of the GMW protocol [21,
22] that provides perfect security against a passive adversary in the OT-hybrid
model. The communication complexity is O(m2s) where m is the number of clients
and s is the size of the boolean circuit being evaluated (excluding XOR gates). The
round complexity is proportional to the circuit depth (where here again, XOR
gates are given for free). When evaluating functions in NC1 (which will always
be the case in our applications) the inner protocol can be implemented using a
single round of OTs in the two-party case, or a constant number of rounds in the
general case, without compromising unconditional security. This is done by using
a suitable randomized encoding of the function being computed, e.g., one based
on an unconditionally secure variant of Yao’s garbled circuit technique [30, 40]. In
the two-party case, the protocol needs to use only as many OTs as the length of
the shorter input. This will be useful for some applications.

5 Applications

In this section we describe the main applications of our general compiler. These
are mostly obtained by applying the compiler to variants of efficient MPC pro-
tocols and two-party protocols from the literature.

5.1 Constant-Rate Secure Computation in the OT-Hybrid Model

Our first application is obtained by instantiating the general compiler with the
following ingredients. The outer protocol is the constant-rate MPC protocol
described in Section 4. The inner protocol can be taken to be the “passive-secure
GMW” protocol in the OT-hybrid model.
10 Using Franklin and Yung’s variant of Shamir’s secret sharing scheme [20, 39], as

originally done in [17], would result in logarithmic overhead to the communication
complexity of the protocol, and a polylogarithmic overhead in the complexity of the
applications.

586 Y. Ishai, M. Prabhakaran, and A. Sahai

Theorem 2. Let C be a boolean circuit of size s, depth d and constant fan-in
representing an m-party deterministic functionality f for some constant m ≥ 2.
Then there is a statistically UC-secure m-party protocol realizing f in the OT-
hybrid model whose total communication complexity (including communication
with the OT oracle) is O(s)+poly(k, d, log s), where k is a statistical security pa-
rameter, and whose round complexity is O(d). Security holds against an adaptive
adversary corrupting an arbitrary number of parties.

The OTs required by the above protocol can be generated during a preprocessing
stage at no additional cost. The above theorem extends to the case of a non-
constant number of parties m, in which case the communication complexity
grows by a multiplicative factor of poly(m). The theorem applies also to reactive
functionalities, by naturally extending the outer protocol to this case, and to
randomized functionalities, provided that they are adaptively well-formed [10]
or alternatively if honest parties are trusted to erase data.

Finally, it can be extended to the case of arithmetic circuits (at the cost of
settling for computational security) by using an inner protocol based on homo-
morphic encryption. We defer further details to the full version.

5.2 Black-Box Constructions for Constant-Round MPC with No
Honest Majority

Traditional MPC protocols for the case of no honest majority followed the so-
called GMW paradigm [21, 22], converting protocols for the semi-honest model
into protocols for the malicious model using zero-knowledge proofs. Since such
proofs are typically expensive and in particular make a non-black-box use of the
underlying cryptographic primitives, it is desirable to obtain alternative con-
structions that avoid the general GMW paradigm and only make a black-box
use of standard cryptographic primitives.

The protocols of [15, 33] (as well as the more efficient constructions from
Section 5.1) achieve this goal, but at the cost of round complexity that depends
on the depth of the circuit. The question of obtaining constant-round protocols
with the same features remained open.

In the case of MPC with honest majority, this problem was solved by Damg̊ard
and Ishai [16], providing a black-box alternative to a previous protocol of Beaver,
Micali, and Rogaway [3] that made a non-black-box use of a pseudorandom gen-
erator. The case of two-party computation was recently resolved by Lindell and
Pinkas [35] (see also [34, 36]), who presented a constant-round two-party proto-
col that makes a black-box use of (parallel) OT as well as a statistically hiding
commitment. The question of extending this result to three or more parties re-
mained open, as the technique of [35] does not seem to easily extend to more
than two parties. Partial progress in this direction was recently made in [25].

By applying our compiler to a variant of the MPC protocol from [16], we
obtain the following theorem:

Theorem 3. For any m ≥ 2 there exists an m-party constant-round MPC pro-
tocol in the OT-hybrid model which makes a black-box use of a pseudorandom

Founding Cryptography on Oblivious Transfer – Efficiently 587

generator and achieves computational UC-security against an active adversary
which may adaptively corrupt at most m − 1 parties.

Note that unlike the protocol of [35] our protocol is UC-secure and does not
rely on statistically hiding commitments. On the down side, it requires a larger
number of OTs which is comparable to the circuit size rather than the input size,
though the latter cost may be amortized using efficient methods for extending
OTs (see Section 5.3) and moved to a preprocessing phase. We defer further
optimizations of the protocol to the full version.

Proof sketch: Theprotocol from [16] is a general constant-roundprotocol involv-
ing n servers and m clients. It is adaptively, computationally UC-secure against an
adversary that may corrupt an arbitrary strict subset of the clients and a constant
fraction of the servers. Furthermore, players in this protocol only make a black-
box use of a PRG, or alternatively a one-time symmetric encryption scheme. If
all the invocations of the encryption scheme were done by clients, the claimed re-
sult would follow by directly applying our compiler with this protocol as the outer
protocol (since local computations performed by clients remain unmodified by the
compiler). While the protocol from [16] inherently requires servers to perform en-
cryptions, it can be easily modified to meet the form required by our compiler. This
is done by making the servers only perform encryptions where both the key and the
message to be encrypted are known to one of the clients. Using the watchlist ap-
proach, the protocol produced by the compiler will make the corresponding client
perform the encryption instead of the server.

For simplicity, we describe this modification for the case of two clients, Alice
and Bob. This easily generalizes to any number of clients m. In any case where
a server in the protocol of [16] needs to broadcast an encryption of the form
Ek(m), it will instead do the following. The server parses the key k as a pair of
keys k = (kA, kB) and additively secret-shares the message m as m = mA +mB.
Now it sends kA, mA to Alice and kB , mB to Bob (this is a dummy operation
that is only used to argue security). Finally, the server broadcasts EkA(mA) and
EkB (mB). Note that each of these two computations is of Type I, namely it is
done on values already known to one of the clients. Moreover, it is easy to see
that the above distributed encryption scheme is still semantically secure from
the point of view of an adversary that corrupts just one of the clients. Thus, the
simulation argument from [16] (that only relies on the semantic security of E)
applies as is. ��

5.3 OT Extension in the Malicious Model

Beaver [2] suggested a technique for extending OTs using a one-way function.
Specifically, by invoking k instances of OT one can implement a much larger
number n of OTs by making use of an arbitrary one-way function. A disadvan-
tage of Beaver’s approach is that it makes a non-black-box use of the one-way
function, which typically makes his protocol inefficient. A black-box approach
for extending OTs was suggested by Ishai, Kilian, Nissim, and Petrank [29]. In
the semi-honest model their protocol has the following features. Following an

588 Y. Ishai, M. Prabhakaran, and A. Sahai

initial seed of k string OTs (where k is a computational security parameter),
each additional string OT only requires to make a couple of invocations of a
cryptographic hash function (that satisfies a certain property of “correlation ro-
bustness”11 as well as a PRG. The amortized communication complexity of this
protocol is optimal up to a constant factor, assuming that each of the sender’s
strings is (at least) of the size of the input to the hash function. To obtain a
similar result for the malicious model, [29] employed a cut-and-choose approach
which multiplies the complexity by a statistical security parameter. A partial
improvement was recently given in [27], where the overhead in terms of the use
of the hash function was reduced to a constant, but the overhead to the com-
munication remained the same. This result was obtained via the use of efficient
OT combiners [28]. We improve the (amortized) communication overhead to be
constant as well. While our result could be obtained via an improvement to
the construction of OT combiners in [27] (see Section 5.4), we sketch here a
simple derivation of the result by applying our compiler to the protocol for the
semi-honest model in [29]. In the full version we will show an alternative, and
self-contained, approach for obtaining a similar result by applying our general
secure two-party protocol to an appropriate NC0 functionality.

The efficient OT extension protocol is obtained as follows. The outer protocol
will be the MPC protocol from Section 4 with two clients, called a sender and a
receiver, and k servers. The protocol will be applied to the following multi-OT
functionality. The sender’s input is an n-tuple of pairs of k-bit strings, and the
receiver’s input is an n-tuple of choice bits. The receiver’s output is the n-tuple
of chosen k-bit strings. This outer protocol can be implemented so that each
of the k servers performs just a single Type II computation, consisting of an
NC0 function with one input of length O(n) originating from the sender and
another input of length O(n/k) originating from the receiver. Using a suitable
randomized encoding (see Section 4), each of these inner computations can be
securely implemented (in the semi-honest model) using O(n/k) OTs on k-bit
strings. However, instead of directly invoking the OT oracle for producing the
required OTs, we use the OT extension protocol for the semi-honest model
from [29]. The two-party protocol obtained in this way realizes the multi-OT
functionality with computational UC-security, and only makes a black-box use
of a correlation-robust hash function as well as a seed of O(k2) OTs (which also
includes the OTs for initializing the watchlists). Its constant communication
overhead (for n � k) is inherited from the outer and inner components. We
defer further optimizations to the full version.

Black-Box Constructions of OT. Note that the above construction (before
plugging in the protocol from [29]) has the feature that the inner protocol can
make a black-box use of any OT protocol for the semi-honest model. This implies
the following black-box approach for converting “semi-honest OTs” into “mali-
cious OTs”. First, make O(k) black-box invocations of an arbitrary malicious OT
11 The correlation robustness property defined in [29] is satisfied by a random function.

Arguably, it is sufficiently natural to render practical hash functions insecure if they
are demonstrated not to have this property.

Founding Cryptography on Oblivious Transfer – Efficiently 589

to generate the watchlists. (Here and in the following, we allow a free black-box
use of a PRG to extend a single OT on short strings, or few bit OTs, into OT
on a long strings.) Then, make O(n) black-box calls to any OT protocol for the
semi-honest model to generate n instances of OT in the malicious model. The
above black-box approach applies both to the UC and to the standalone model.
Together with the black-box constructions of OT of Ishai, Kushilevitz, Lindell,
and Petrank [31] and Haitner [26], we get a black-box construction of malicious
OT in the standalone model from semi-honest OT with a constant amortized
OT production rate. The constant rate applies both to the cases of bit-OT and
string-OT.

5.4 OT Combiners

An OT combiner [28] allows one to obtain a secure implementation of OT from
n OT candidates, up to t of which may be faulty. The efficiency of OT combiners
was recently studied by Harnik, Ishai, Kushilevitz, and Nielsen [27], who obtained
a construction for the semi-honest model that tolerates t = Ω(n) bad candidates
and has a constant production rate, namely produces m good instances of OT
using a total of O(m) calls to the candidates. They also present a similar variant
for the malicious model, but this variant has two weaknesses. First, the OTs
being produced are only computationally secure (even if the good OT candi-
dates have unconditional security, say by using semi-trusted parties or physical
assumptions). Second, the communication complexity of the combiner proto-
col has a multiplicative overhead that grows polynomially with a cryptographic
security parameter. Our approach can be used to eliminate both of these weak-
nesses, obtaining unconditionally secure OT combiners in the malicious model
that tolerate t = Ω(n) bad candidates and have a constant production rate and
a constant communication overhead.

We achieve the above by applying the protocol of Theorem 2 such that each
OT which is associated with server i (both during the actual protocol and during
the watchlist initialization) is implemented by invoking the i-th OT candidate.
Unlike Theorem 2, here we need to rely on the robustness of the outer protocol
(rather than settle for the weaker notion of “security with abort”). Another
modification to the protocol of Theorem 2 is that the protocol is not aborted as
soon as the first inconsistency is detected, but rather only aborts when there are
inconsistencies involving at least, say, t/10 servers. This is necessary to tolerate
incorrect outputs provided by faulty OT candidates. Since the faulty candidates
can be emulated by an adversary corrupting the corresponding servers, we can
afford to tolerate a constant fraction faulty candidates.

References

1. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

2. Beaver, D.: Correlated pseudorandomness and the complexity of private compu-
tations. In: Proc. 28th STOC, pp. 479–488. ACM, New York (1996)

590 Y. Ishai, M. Prabhakaran, and A. Sahai

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC, pp. 503–513. ACM, New York (1990)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proc. 20th STOC, pp.
1–10. ACM, New York (1988)

5. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Multiparty computation goes live. Cryptology ePrint Archive, Report 2008/068
(2008), http://eprint.iacr.org/

6. Bracha, G.: An o(log n) expected rounds randomized byzantine generals protocol.
J. ACM 34(4), 910–920 (1987)

7. Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes.
IEEE Transactions on Information Theory 42(6), 1769–1780 (1996)

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology: the journal of the International Association for Cryptologic
Research 13(1), 143–202 (2000)

9. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Electronic Colloquium on Computational Complexity (ECCC) TR01-
016, 2001. Previous version A unified framework for analyzing security of protocols
availabe at the ECCC archive TR01-016. Extended abstract in FOCS 2001 (2001)

10. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party computation. In: Proc. 34th STOC, pp. 494–503. ACM, New York (2002)

11. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure proto-
cols. In: Proc. 20th STOC, pp. 11–19. ACM, New York (1988)

12. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure
multi-party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006)

13. Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg
(1988)

14. Crépeau, C., Savvides, G.: Optimal reductions between oblivious transfers using
interactive hashing. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 201–221. Springer, Heidelberg (2006)

15. Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and pri-
vate multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 110–123. Springer, Heidelberg (1995)

16. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 378–394. Springer, Heidelberg (2005)

17. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

18. Dodis, Y., Micali, S.: Parallel reducibility for information-theoretically secure
computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 74–92.
Springer, Heidelberg (2000)

19. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

20. Franklin, M.K., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: STOC, pp. 699–710. ACM, New York (1992)

21. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, Cambridge (2004)

http://eprint.iacr.org/

Founding Cryptography on Oblivious Transfer – Efficiently 591

22. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: ACM
(ed.) Proc. 19th STOC, pp. 218–229. ACM, New York (1987); See [21, Chap. 7]
for more details

23. Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency
improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86.
Springer, Heidelberg (1988)

24. Goldwasser, S., Lindell, Y.: Secure computation without agreement. In: Malkhi,
D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 17–32. Springer, Heidelberg (2002)

25. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party compu-
tation against covert adversaries. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 289–306. Springer, Heidelberg (2008)

26. Haitner, I.: Semi-honest to malicious oblivious transfer - the black-box way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008)

27. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure com-
putation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer,
Heidelberg (2008)

28. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for
oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005)

29. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

30. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002)

31. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: STOC, pp. 99–108. ACM, New York (2006)

32. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC, pp. 21–30. ACM, New York (2007)

33. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31.
ACM, New York (1988)

34. Kiraz, M., Schoenmakers, B.: A protocol issue for the malicious case of Yao’s
garbled circuit construction. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.
(eds.) PKC 2006. LNCS, vol. 3958, pp. 283–290. Springer, Heidelberg (2006)

35. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

36. Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party compu-
tation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 458–473. Springer, Heidelberg (2006)

37. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: These proceedings available from Cryptology ePrint
Archive, Report 2007/348 (2008), http://eprint.iacr.org/

38. Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory (1981)

39. Shamir, A.: How to share a secret. Communications of the ACM 11 (November
1979)

40. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th FOCS, pp. 162–
167. IEEE, Los Alamitos (1986)

http://eprint.iacr.org/

	Founding Cryptography on Oblivious Transfer –Efficiently
	Introduction
	Our Results
	Techniques

	Preliminaries
	Protocol Compiler
	The Outer Protocol
	The Inner Functionality G and the Inner Protocol OT
	The Compiled Protocol

	Instantiating the Building Blocks
	Applications
	Constant-Rate Secure Computation in the OT-Hybrid Model
	Black-Box Constructions for Constant-Round MPC with No Honest Majority
	OT Extension in the Malicious Model
	OT Combiners

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

