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Abstract. We extend the class of reversal-bounded counter machines by autho-
rizing a finite number of alternations between increasing and decreasing mode
over a given bound. We prove that extended reversal-bounded counter machines
also have effective semi-linear reachability sets. We also prove that the property
of being reversal-bounded is undecidable in general even when we fixthe bound,
whereas this problem becomes decidable when considering Vector Addition Sys-
tem with States.

1 Introduction

The verification of infinite state systemshas shown in the last years to be an efficient
technique to model and verify computer systems. Various models of infinite-state sys-
tems have also been proposed as for instance counter systems, lossy channel systems,
pushdown automata, timed automata, etc, in order to obtain an automatic verification
procedure. Among them, counter systems which consist in finite automata extended
with operations on integer variables enjoy a central position for both theoretical results
and maturity of tools likeFAST [3], LASH [16] andTREX [1].

Reachability problem for counter systems.It has been proved in [20] that Min-
sky machines, which correspond to counter systems where each counter can be incre-
mented, decremented or tested to zero, have an undecidable reachability problem, even
when they manipulate only two counter variables. Because ofthat, different restrictions
over counter systems have been proposed in order to obtain the decidability. For in-
stance, Vector Addition Systems with States (or Petri nets)are a special class of counter
systems, in which it is not possible to perform equality tests (equivalent to zero-tests),
and for which the reachability problem is decidable [14,19].

Counter systems with semi-linear reachability sets.In many verification problems,
it is convenient not only to have an algorithm for the reachability problem, but also to
be able to compute effectively the reachability set. In the past, many classes of counter
systems with a semi-linear reachability set have been found. Among the VASS (or Petri
nets), we distinguish the BPP-nets [5], the cyclic Petri nets [2], the persistent Petri nets
[15,18], the regular Petri nets [21], the2-dimensional VASS [9]. In [10], the class of
reversal-bounded counter machines is introduced as follows : each counter can only per-
form a bounded number of alternations between increasing and decreasing mode. The
author shows that reversal-bounded counter machines have asemi-linear reachability
set and these results have been extended in [11] authorizingmore complex guards and
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restricting the way the alternations are counted. In [17], it has been shown that most of
the counter systems with a semi-linear reachability set arein fact flattable, which means
that their control graph can be replaced equivalently w.r.t. reachability, by another one
with no nested loops. In fact, it has been proved in [6], that counter machines with no
nested loops in their control structure have a semi-linear reachability set.

Our contribution.In this paper, we first propose an extension of the definition of
reversal-bounded machines saying that a counter machine isk-reversal-b-bounded if
each counter does at mostk alternations between increasing and decreasing mode above
a given boundb. We show that these new reversal-bounded counter machines do also
have a semilinear reachability set, which can be effectively computed. We study the
decidability of the reversal-boundedness of a given counter machine, proving that the
only case, which is decidable, is the one when the two parametersb andk are provided.
Finally, we study reversal-bounded VASS, showing that one can decide using the cov-
erability graph whether a VASS is reversal-bounded or not. Doing so, we propose a
new recursive class of VASS with semi-linear reachability sets which contains all the
bounded VASS. Furthermore, to the best of our knowledge, it is not known whether one
can or cannot decide if a VASS has a semi-linear reachabilityset or if it is flattable.

Due to lack of space, some details are omitted and can be foundin [7].

2 Preliminaries

2.1 Useful notions

Let N (resp.Z) denotes the set of nonnegative integers (resp. integers).The usual total
order overZ is written≤. By Nω, we denote the setN ∪ {ω} whereω is a new symbol
such thatω /∈ N and for allk ∈ Nω, k ≤ ω. We extend the binary operation+ and−
to Nω as follows : for allk ∈ N, k + ω = ω andω − k = ω. Fork, l ∈ Nω with k ≤ l,
we write[k..l] for the interval of integers{i ∈ N | k ≤ i ≤ l}.

Given a setX andn ∈ N, Xn is the set ofn-dim vectors with values inX. For any
indexi ∈ [1..n], we denote byv(i) theith component of an-dim vectorv. We write0
the vector such that0(i) = 0 for all i ∈ [1..n]. The classical order onZn is also denoted
≤ and is defined byv ≤ w if and only if for all i ∈ [1..n], we havev(i) ≤ w(i). We
also define the operation+ overn-dim vectors of integers in the classical way (ie forv,
v′ ∈ Z

n, v + v′ is defined by(v + v′)(i) = v(i) + v′(i) for all i ∈ [1..n]).
Let n ∈ N. A subsetS ⊆ N

n is linear if there existk + 1 vectorsv0, v1, . . . , vk in
N

n such thatS = {v | v = v0 + λ1.v1 + . . . + λk.vk with λi ∈ N for all i ∈ [1..k]}. A
semi-linear setis any finite union of linear sets. We extend the notion of semi-linearity
to subsets ofQ × N

n whereQ is a finite (non-empty) set.
For an alphabetΣ, we denote byΣ∗ the set of finite words overΣ andε represents

the empty word.

2.2 Counter machines

A Minsky machineis a finite control state automaton which manipulates integer vari-
ables, called counters. From each control state, the machine can do the following op-
erations : 1) Increment a counter and go to another control state, 2) Test the value of



a counter, if it is0, it passes to a control state, and if not, it decrements the counter
and goes to another control state. There is also a control state called the final state (or
halting state) from which the machine cannot do anything. The Minsky machine is said
to halt when it reaches this control state. We define here a slight extension of Minsky
machines.

We call an-dim guarded translation(shortly a translation) any functiont : N
n →

N
n such that there exist# ∈ {=,≤}n, µ ∈ N

n andδ ∈ Z
n with 0 ≤ µ + δ and

dom(t) = {v ∈ N
n | µ#v} and for allv ∈ dom(t), t(v) = v + δ. We will sometimes

use the encoding(#, µ, δ) to represent a translation. In the following,Tn will denote
the set of then-dim guarded translations. Lett = (#, µ, δ) be a guarded translation in
Tn. We define the vectorDt ∈ Z

n as follows,∀i ∈ [1..n], Dt(i) = δ(i). We extend
this definition to words of guarded translations, recursively as follows, if σ ∈ T ∗

n and
t ∈ Tn, we haveDtσ = Dt + Dσ and by convention,Dε = 0.

Definition 1. A n-dim counter machine(shortlycounter machine) is a finite valuated
graph S = 〈Q,E〉 whereQ is a finite set of control states andE is a finite relation
E ⊆ Q × Tn × Q.

The semantics of a counter machineS = 〈Q,E〉 is given by its associated transition
systemTS(S) = 〈Q×N

n,→〉 where→⊆ Q×N
n×Tn×Q×N

n is a relation defined
as follows :

(q, v)
t
→ (q′, v′) iff ∃ (q, t, q′) ∈ E such thatv ∈ dom(t) andv′ = t(v)

We write(q, v) → (q′, v′) if there existst ∈ Tn such that(q, v)
t
→ (q′, v′). The relation

→∗ represents the reflexive and transitive closure of→. Given a configuration(q, v) of
TS(S), Reach(S, (q, v)) = {(q′, v′) | (q, v) →∗ (q′, v′)}. Furthermore, we extend the
relation→ to words inT ∗

n . We have then(q, v)
ε
→ (q, v) and if t ∈ Tn andσ ∈ T ∗

n ,

(q, v)
tσ
→ (q′′, v′′) if (q, v)

t
→ (q′, v′) σ

→ (q′′, v′′).
Given a counter machineS = 〈Q,E〉 and an initial configurationc ∈ Q × N

n,
the pair(S, c) is an intialized counter machine. Since, the notations are explicit, in the
following we shall write counter machine for both(S, c) andS.

It is true that any counter machine can be easily encoded intoa Minsky machine.
For instance to encode a test of the formxi = c, the Minsky machine can decrement
c times the counter, test to0 and increment againc times the counter. Note that this
encoding modifies the number of alternations between increasing and decreasing mode
for the counters, which is the factor we are interested in when considering reversal-
boundedness. That is the reason why we propose this extension of Minsky machine.
We do not go further for instance extending the guards, because in [11], it is proved that
the reachability problem for reversal-bounded counter machines with linear guards (of
the formx = y wherex, y are two counters variables) is undecidable.

3 New reversal-bounded counter machines

3.1 Reversal-bounded counter machines

We would like to extend the notion of reversal-bounded to capture and verify a larger
class of counter machines. In fact, if we consider the counter machine represented by
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x
′ = x + 2
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Fig. 1. A simple not reversal-bounded counter machine

the figure 1 with the initial configuration(q1, 0). Its reachability set is finite equal to
{(q1, 0), (q2, 2)} and consequently semi-linear but the counter machine is notreversal-
bounded. We propose here an extension of the notion of reversal-bounded, which allows
us to handle such cases and more generally every bounded counter machines.

Given an integerb ∈ N, we now consider the number of alternations between in-
creasing and decreasing mode when the value of a counter goesabove the boundb. Let
S = 〈Q,E〉 be an-dim counter machine andTS(S) = 〈Q × N

n,→〉. From it, we de-
fine another transition systemTSb(S) = 〈Q×{↓, ↑}n ×N

n ×N
n,→b〉. Intuitively for

a configuration(q, m, v, r) ∈ Q×{↓, ↑}n ×N
n ×N

n, the vectorm is used to store the
current mode of each counter -increasing (↑) or decreasing (↓)-, the vectorv contains
the values and the vectorr the numbers of alternations performed overb. Formally, we

have(q, m, v, r) t
→b (q′, m′, v′, r ′) if and only if the following conditions hold :

1. (q, v)
t
→ (q′, v′)

2. for eachi ∈ [1..n], the relation expresses by the following array is verified :

v(i) − v′(i) m(i) m′(i) v(i) r(i)
> 0 ↓ ↓ − r(i)
> 0 ↑ ↓ ≤ b r(i)
> 0 ↑ ↓ > b r(i) + 1
< 0 ↑ ↑ − r(i)
< 0 ↓ ↑ ≤ b r(i)
< 0 ↓ ↑ > b r(i) + 1
= 0 ↓ ↓ − r(i)
= 0 ↑ ↑ − r(i)

We denote by→∗
b the reflexive and transitive closure of→b. Given a configuration

(q, m, v, r) of TSb(S), Reachb(S, (q, m, v, r)) = {(q′, m′, v′, r ′) | (q, m, v, r , ) →∗
b

(q′, m′, v′, r ′)}. We extend this last notation to the configurations ofTS(S), saying that
if (q, v) ∈ Q × N

n is a configuration ofTS(S), thenReachb(S, (q, v)) is equal to the
setReachb(S, (q, ↑, v, 0)) where↑ denotes here the vector with all components equal
to ↑.

Definition 2. Let b, k ∈ N. A counter machine(S, c) is k-reversal-b-boundedif and
only if for all (q, m, v, r) ∈ Reachb(S, c) and for all i ∈ [1..n], we haver(i) ≤ k.

We then say that :

1. A counter machine isreversal-boundedif there existk, b ∈ N such that it isk-
reversal-b-bounded,



2. For a givenk ∈ N, a counter machine isk-reversal-bounded, if there existsb ∈ N

such that it isk-reversal-b-bounded,
3. For a givenb ∈ N, a counter machine isreversal-b-bounded, if there existsk ∈ N

such that it isk-reversal-b-bounded.

We remark that this definition includes the definition of reversal-bounded given in [10],
which corresponds to reversal-0-bounded. In comparison to what is presented in [10],
there is a slight difference because we do not have here accepting states and conse-
quently we consider all the possible runs of the counter machine as accepted runs. We
will see in section 4 that this difference can change some decidability results. Note that
in later works [11], the counter machines are also defined without any accepting state.

3.2 Reachability set

In [10], it has been proved that the reversal-0-bounded counter machines have an ef-
fectively computable semi-linear reachability set. We extend here this result to all the
reversal-bounded counter machines.

q1 q2

x
′
1 = x1 + 1

x
′
2 = x2 + 1

x
′
1 = x1 − 1

x
′
2 = x2 + 1

q3

x2 ≥ 5 ?

x
′
2 = x2 − 2

Fig. 2.A 1-reversal-1-bounded counter machine

The idea consists in building from ak-reversal-b-bounded counter machine(S, c) a k-
reversal-0-bounded counter machine(S′, c′) as it is done for the counter machine of the
figure 2 (with the initial configuration(q1, (0, 0))) from which we obtain the counter
machine represented in the figure 3 (with the initial configuration ((q1, 0, 0), (0, 0))).
We assumeS = 〈Q,E〉 andS′ = 〈Q′, E′〉. First we introduce two symbols⊥ and
ωb which are not integers.ωb represents a counter value strictly greater thanb and⊥ a
counter value for which it is not known whether it is greater or not thanb. The location
setQ′ is then equal toQ×Bn whereB = {0, . . . , b}∪{ωb,⊥}. Intuitively, the counter
machineS′ encodes the run ofS and when a counter value inS is under the boundb,
its value is stored into the control state ofS′ and the corresponding value of the counter
in S′ is 0, but when the value goes aboveb in S then it is restored in the counter inS′.
Furthermore(S′, c′) beingk-reversal-0-bounded, we use the results of [10] to compute
the reachability setReach(S′, c′) from which we deduceReach(S, c).

Theorem 3. Given a reversal-bounded counter machine, its reachability set is an ef-
fectively computable semi-linear set.
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Fig. 3. A 1-reversal-0-bounded counter machine obtained from the counter machine of Fig. 2

4 Deciding reversal-boundedness

In this section, we will study the decidabilty of reversal-boundedness.

4.1 Undecidability

In [10], the author shows that it is not possible to decide whether a counter machine is
reversal-0-bounded or not. We prove here that this theorem is still truewhen considering
reversal-boundedness.

Theorem 4. Verifying if a counter machine is reversal-bounded is undecidable.

Proof. We reduce the halting problem for2-counters deterministic Minsky Machines.
We consider a deterministic Minsky MachineS with the initial configuration(q0, (0, 0))
working over two counter variablesx1 andx2. “Deterministic” here means that there is
a unique possible run starting on(q0, (0, 0)). FromS, we build a counter machineS′

working over three counter variablesx1,x2 andx3, such that for each(q, t, q′) ∈ E, we
add two control statesq1 andq2 and the transitions(q, t1, q1), (q1, t2, q2) and(q2, t, q

′)
wheret1 and t2 only change the counter variablex3 doing x′

3
= x3 + 2 for t1 and

x′
3

= x3 − 1 for t2. Note thatS′ starting on(q0, (0, 0, 0)) is also deterministic. Fur-
thermore(S′, (q0, (0, 0, 0))) is reversal-bounded if and only if its unique run is finite,
which is equivalent to halting. SinceS′ starting with(q0, (0, 0, 0)) halts if and only ifS
starting from(q0, (0, 0)) halts and since this last problem is undecidable, we conclude
the theorem.�

4.2 Fixing one parameter

We will see here that fixing one of the parameters is not enoughto obtain decidability
for the reversal-boundedness.



Theorem 5. Givenb ∈ N, verifying if a counter machine is reversal-b-bounded is un-
decidable.

Sketch of Proof,For eachb in N, we can reuse the same proof as for the theorem 4, we
can show that the3-counter machine(S′, (q0, (0, 0, 0))) is reversal-b-bounded if and
only if the deterministic Minsky machine(S, c) from which it is built halts.�

Theorem 6. Given k ∈ N, verifying if a counter machine isk-reversal-bounded is
undecidable.

Sketch of Proof.To prove this result we again use the3-counter machineS′ with the
initial configuration(q0, (0, 0, 0)) that we complete so that each run can begin with
doing at leastk alternations between increasing and decreasing mode over any bound.�

4.3 Fixing the two parameters

We will now prove that if the two parametersb andk are fixed, it is possible to decide if a
counter machine isk-reversal-b-bounded. Letb, k ∈ N and(S, c) be a counter machine.
The idea consists in building a counter machine(S′, c′) which will be (k + 1)-reversal-
b-bounded and which will reach a special control stateqerr if and only if (S, c) is notk-
reversal-b-bounded. Note that since(S′, c′) is reversal-bounded, it is possible to decide
whether the control stateqerr is reachable or not. In the control state of(S′, c′), we
store the mode -increasing (↑) or decreasing (↓)- for each counter and also the number
of alternations already performed overb. We also add some control states to test at each
step if each counter value is strictly greater (denoted byb>) or smaller thanb (denoted
by b≤). The figure 4 gives an example of the counter machine we buildto decide if
the counter machine from figure 1 with the initial configuration (q1, 0) is 1-reversal-1-
bounded.

Theorem 7. Givenb, k ∈ N, verifying if a counter machine isk-reversal-b-bounded is
decidable.

This result contrasts with the one given in [10], which says that givenk ∈ N, verifying
if a counter machine isk-reversal-0-bounded is undecidable. This is due to the fact
that in [10], the considered counter machines have accepting control states, whereas
our definition is equivalent to have all the control states asaccepting. In fact, when we
define the reversal-bounded counter machines, we consider all the possible runs and not
only the one ending in an accepting state.

4.4 Computing the parameters

When a counter machine is reversal-bounded, it could be useful to characterize the pairs
(k, b) for which it is k-reversal-b-bounded, first because it gives us information on the
behavior of the counter machine but also because these parameters are involved in the
way the reachability set is built as one can see in the proof oftheorem 3 and in [10].
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Fig. 4. A 2-reversal-1-bounded counter machine to decide if the counter machine of Fig. 2 is
1-reversal-1-bounded

Let (S, c) be a counter machine. We define the following set to talk aboutthe pa-
rameters of reversal-bounded counter machines :

RB(S, c) = {(k, b) ∈ N × N | (S, c) is k-reversal-b-bounded}

Then RB(S, c) = ∅ if and only if (S, c) is not reversal-bounded, hence the non-
emptiness problem forRB(S, c) is in general not decidable, but this set is recursive
(cf. theorem 7). Furthermore, if there exist(k, b) in RB(S, c) and(k′, b′) ∈ N×N such
that(k, b) ≤ (k′, b′) then we know, by definition of reversal-boundedness that(S, c) is
alsok′-reversal-b′-bounded, ie(k′, b′) ∈ RB(S, c). Since the order relation≤ onN×N

is a well-ordering we can deduce :

Lemma 8. Let (S, c) be a reversal-bounded counter machine. The setRB(S, c) is
upward-closed, it has a finite number of minimal elements, which can effectively be
computed.

Sketch of proof.The facts thatRB(S, c) is upward closed is a direct consequence of
reversal-boundedness. And since(N × N,≤) is a well-ordering, each of its upward-
closed set has a finite number of minimal elements [8]. To compute the minimal el-
ements, we add “reversal-bounded” counters either to countthe number of alterna-
tions between increasing and decreasing mode over a boundb or to store the value
of a counter each time it changes mode over a givenb.�



5 Analysis of VASS

In this section, we recall the definition of Vector Addition System with States and show
that the notion of reversal-boundedness we newly introduceis well-suited for the veri-
fication of these systems.

5.1 VASS and their coverability graphs

Definition 9. An-dim counter machine〈Q,E〉 is aVector Addition System with States
(shortly VASS) if and only if for all transitions(q, t, q′) ∈ E, t is a guarded translation
(#, µ, δ) such that# = (≤, . . . ,≤),

Hence in VASS, it is not possible to test if a counter value is equal to a constant but
only if it is greater than a constant.

In [13], the authors provide an algorithm to build from a VASSa labeled tree, the
Karp and Miller tree(the algorithm is provided in [7]). The main idea of this construc-
tion is to cover in a finite way the reachable configurations using the symbolω, when a
counter is not bounded. They have shown that their algorithmalways terminates and that
it enjoys some good properties. In particular, this tree canbe used to decide the bound-
edness of a VASS. In [21], the authors have proposed a furtherconstruction based on
the Karp and Miller tree in order to test the regularity of thelanguage of the unlabeled
traces of a VASS. This last construction is known as thecoverability graph. To obtain
it, the nodes of the Karp and Miller tree with the same labels are grouped together.
Formally if (S, c) is an-dim initialized VASS, we denote byCG(S, c) its coverability
graph defined as follows,CG(S, c) = 〈N,∆〉 where :

– N ⊆ Q × N
n
ω is a finite set of nodes,

– ∆ ⊆ N × Tn × N is a finite set of edges labeled with guarded transitions.

We call acircuit in the coverability graph a path ending in the starting node and a
circuit will be said to beelementaryif all nodes are different with the exception of
the starting and ending nodes. For a vectorw ∈ N

n
ω, we denote byInf(w) the set

{i ∈ [1..n] | w(i) = ω} andFin(w) = [1..n] \ Inf(w). Using these notions, it has
been proved that the coverability graph verifies the following properties.
Let (S, c) be an-dim initialized VASS withS = 〈Q,E〉, TS(S) = 〈Q × N

n,→〉 its
associated transition system andG = 〈N,∆〉 its coverability graph.

Theorem 10. [13,21]

1. If (q, w) is a node inG, then for allk ∈ N, there exists(q, v) ∈ Reach(S, c) such
that for all i ∈ Inf(w), k ≤ v(i) and for all i ∈ Fin(w), w(i) = v(i).

2. Forσ ∈ T ∗
n , if c

σ
→ (q, v) then there is a unique path inG labeled byσ and leading

from c to a node(q, w) and for all i ∈ Fin(w), v(i) = w(i).
3. If σ ∈ T ∗

n is a word labeling a circuit inG and (q, w) is the initial node of this
circuit, then there exist(q, v) ∈ Reach(S, c) and(q′, v′) such that(q, v) σ

→ (q, v′)
and for all i ∈ Fin(w), w(i) = v(i) = v′(i).



From this theorem, we deduce the following lemma, we will then use to decide the
reversal-boundedness of a VASS :

Lemma 11. If there exists an elementary circuit((q1, w1)
t1→ (q2, w2)

t2→ . . .
tf

→
(q1, w1)) in G, then for allk, l ∈ N, there existv1, . . . , vl ∈ N

n such that :

(i) c →∗ (q1, v1)
σ
→ (q1, v2)

σ
→ . . .

σ
→ (q1, vl) in TS(S) with σ = t1 . . . tf , and,

(ii) for all j ∈ [1..l], for all i ∈ Inf(w1), k ≤ vj(i) and for all i ∈ Fin(w1),
w1(i) = vj(i).

5.2 Deciding if a VASS is reversal-b-bounded

In this section, we show that its possible to decide if a VASS is reversal-b-bounded us-
ing a characterization over its coverability graph.

Let S = 〈Q,E〉 be an-dim counter machine. We build a2n-dim counter ma-
chine S̃ = 〈Q′, E′〉 adding for each counter another counter, whose role is to count
the alternation of the first counter between increasing and decreasing mode. Formally,
Q′ = Q × {↑, ↓}n and T ′ is built as follows, for each(q, (#, µ, δ), q′) ∈ E and
m, m′ ∈ {↑, ↓}n, we have((q, m), (#′, µ′, δ′), (q′, m′)) ∈ E′ if and only if :

– for all i ∈ [1..n], #′(i) = #(i), µ′(i) = µi andδ′(i) = δ(i);
– for all i ∈ [n + 1..2n], #′(i) ∈ {≤} andµ′(i) = 0;
– δ, m, m′ andδ′ satisfy for alli ∈ [1..n] the conditions described in the following

array :
δ(i) m(i) m′(i) δ′(n + i)

= 0 ↑ ↑ 0
= 0 ↓ ↓ 0
> 0 ↑ ↑ 0
> 0 ↓ ↑ 1
< 0 ↓ ↓ 0
< 0 ↑ ↓ 1

By construction, we remark that ifS is a VASS theñS is a VASS too. We define then the
relation∼∈ (Q×{↑, ↓}n×N

n×N
n)×(Q×{↑, ↓}n×N

2n) between the configurations
of TS0(S) and the ones ofTS(S̃) saying that(q, m, v, r) ∼ (q′, m′, v′) if and only if :

– q = q′,
– m = m′,
– for all i ∈ [1..n], v(i) = v′(i) andr(i) = v′(n + i).

The relation∼ is a bisimulation betweenTS0(S) andTS(S̃). Given an initial config-
urationc = (q, v), we have(q, ↑, v, 0) ∼ (q, ↑, (v, 0)). Hence, if we denote bỹc the
triple (q, ↑, (v, 0)), we can deduce that the VASS(S, c) is reversal-0-bounded if and
only if there existsk ∈ N such that for all(q, m, v) ∈ Reach(S̃, c̃), for all i ∈ [1..n],
v(n+ i) ≤ k. Using the coverability graph of(S̃, c̃), this last property is decidable for a
VASS. Generalizing this method for anyb ∈ N, counting only the alternations that are
done aboveb, we can deduce that :

Theorem 12. Givenb ∈ N, verifying if a VASS is reversal-b-bounded is decidable.



5.3 Deciding if a VASS is reversal-bounded

We will now show that the analysis of the coverabilty graph of(S̃, c̃) allows us to
decide if a VASS is reversal-bounded (without a fixed bound).Note that this is not a
direct consequence of the previous theorem, because it is not possible to enumerate the
different boundsb and test if the VASS is reversal-b-bounded, since this method never
terminates when the VASS is not reversal-bounded.

Lemma 13. A n-dim VASS(S, c) is reversal-b-bounded if and only if for alli ∈ [1..n],
all nodes(q, w) belonging to an elementary circuit labeled byσ ∈ T ∗

n of CG(S̃, c̃) with
Dσ(n + i) > 0 verify w(i) ≤ b.

In other words, this last lemma states that(S, c) is reversal-b-bounded if and only if for
all i ∈ [1..n], there is no elementary circuit in the coverability graphCG(S̃, c̃) which
strictly increases the(n + i)-th counter and which has a node, whosei-th component is
strictly greater thanb or equal toω. In fact, applying the lemma 11, we deduce that if
such an elementary circuit exists, we can build a run of the VASS(S, c) which does not
respect the definition of reversal-b-boundedness. The details of the proof can be found
in [7].

For a VASS(S, c), the lemma 13 gives us a necessary and sufficient condition over
the coverability graph of(S̃, c̃), and this condition can effectively be tested. This allows
us to deduce the following decidability result.

Theorem 14. Verifying if a VASS is reversal-bounded is decidable.

Unfortunately, the decision algorithm we propose here builds entirely the coverability
graph of a VASS, and this building is known to be non-primitive-recursive in space
(some details can be found in [12]).

6 Perspectives

In [4], the authors have proved that some liveness problems are decidable for reversal-0-
bounded counter machines and others not. For instance, it isdecidable to verify if a run
of a reversal-bounded counter machine passes infinitely often through a semilinear set
of possible configurations; but the same problem becomes undecidable when all the runs
are considered. It seems that this result can easily be extended to the class of reversal-
bounded counter machines, we have introduced. It would thenpave the way to verify
more complex properties than reachability over reversal-bounded counter machines. It
could also be interesting to look at these liveness problemsin the particular case of
reversal-bounded VASS.

An other perspective for our work would be to use reversal-bounded counter ma-
chines to analyze counter machines which are not necessarily reversal-bounded. In fact,
we have seen with the proof of theorem 7, that for anyk, b ∈ N and from any counter
machine, it is possible to build another counter machine, which isk-reversal-b-bounded
and whose runs represent an under-approximation of the set of runs of the first one.
We could consequently build a tool which given a counter machine would build suc-
cessively, incrementing the parametersk andb, the correspondingk-reversal-b-bounded



counter machines, and would test at each step if the reachability set of the initial counter
machine has been built (this can be easily done, since this set is a fixpoint of the transi-
tion relation). This algorithm might never terminate, if the reachability set is not semi-
linear for instance, but it will refine at each step the under-approximation of the reach-
ability set.
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