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Abstract. We extend the class of reversal-bounded counter machines by autho-
rizing a finite number of alternations between increasing and decreasidg m
over a given bound. We prove that extended reversal-boundederanachines

also have effective semi-linear reachability sets. We also prove thatapeny

of being reversal-bounded is undecidable in general even when weefbound,
whereas this problem becomes decidable when considering Vector Adfito

tem with States.

1 Introduction

The verification of infinite state systerhsis shown in the last years to be an efficient
technique to model and verify computer systems. Variousetsoaf infinite-state sys-
tems have also been proposed as for instance counter sy$bssyschannel systems,
pushdown automata, timed automata, etc, in order to obtasugomatic verification
procedure. Among them, counter systems which consist itefmitomata extended
with operations on integer variables enjoy a central pmsitor both theoretical results
and maturity of tools likd=AST [3], LASH[16] and TREX [1].

Reachability problem for counter systentishas been proved in [20] that Min-
sky machines, which correspond to counter systems wheteczamter can be incre-
mented, decremented or tested to zero, have an undeciéalsteability problem, even
when they manipulate only two counter variables. Becausigeof different restrictions
over counter systems have been proposed in order to ob&idetidability. For in-
stance, Vector Addition Systems with States (or Petri rasts i special class of counter
systems, in which it is not possible to perform equalityddequivalent to zero-tests),
and for which the reachability problem is decidable [14,19]

Counter systems with semi-linear reachability setsmany verification problems,
it is convenient not only to have an algorithm for the readitglproblem, but also to
be able to compute effectively the reachability set. In thstpmany classes of counter
systems with a semi-linear reachability set have been foimbng the VASS (or Petri
nets), we distinguish the BPP-nets [5], the cyclic Petrsii2}, the persistent Petri nets
[15,18], the regular Petri nets [21], tledimensional VASS [9]. In [10], the class of
reversal-bounded counter machines is introduced as feli@ach counter can only per-
form a bounded number of alternations between increasidgiaoreasing mode. The
author shows that reversal-bounded counter machines hagmilinear reachability
set and these results have been extended in [11] authorizing complex guards and
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restricting the way the alternations are counted. In [X#as been shown that most of
the counter systems with a semi-linear reachability seirefiaect flattable, which means

that their control graph can be replaced equivalently wedchability, by another one
with no nested loops. In fact, it has been proved in [6], tlmainter machines with no

nested loops in their control structure have a semi-lineachability set.

Our contribution.In this paper, we first propose an extension of the definition o
reversal-bounded machines saying that a counter machikeegersalb-bounded if
each counter does at mdsalternations between increasing and decreasing mode above
a given bound. We show that these new reversal-bounded counter machinatsal
have a semilinear reachability set, which can be effegtieeimputed. We study the
decidability of the reversal-boundedness of a given caungchine, proving that the
only case, which is decidable, is the one when the two paexsieandk are provided.
Finally, we study reversal-bounded VASS, showing that credecide using the cov-
erability graph whether a VASS is reversal-bounded or nain® so, we propose a
new recursive class of VASS with semi-linear reachabiléjsswvhich contains all the
bounded VASS. Furthermore, to the best of our knowledgs nibt known whether one
can or cannot decide if a VASS has a semi-linear reachabdityr if it is flattable.

Due to lack of space, some details are omitted and can be fayit

2 Preliminaries

2.1 Useful notions

Let N (resp.Z) denotes the set of nonnegative integers (resp. inteders)usual total
order overZ is written <. By N,,, we denote the séf U {w} wherew is a new symbol
such thatv ¢ N and for allk € N,,, £ < w. We extend the binary operatiep and —
toN, asfollows : forallk € N, k + w = wandw — k = w. Fork,l € N, with k <,
we write [k..l] for the interval of integer§i e N | k < i <},

Given a setX andn € N, X™ is the set of.-dim vectors with values itX'. For any
indexi € [1..n], we denote by(i) thei’® component of a-dim vectorv. We write0
the vector such thdX(i) = 0 for all < € [1..n]. The classical order dA" is also denoted
< and is defined by < w if and only if for all : € [1..n], we havev(i) < w(i). We
also define the operation overn-dim vectors of integers in the classical way (ie ¥or
v/ € Z™, v + V' is defined by(v + v')(#) = v(i) + V'(¢) for all i € [1..n]).

Letn € N. A subsetS C N” is linear if there existk + 1 vectorsvg, vy, ...,V in
N™ suchthats = {v | v =Vo+ A1.v1 + ...+ \;.vg With \; € Nforalli € [1..k]}. A
semi-linear sets any finite union of linear sets. We extend the notion of skmeiarity
to subsets of) x N™ where( is a finite (non-empty) set.

For an alphabel’, we denote by* the set of finite words over’ ande represents
the empty word.

2.2 Counter machines

A Minsky machines a finite control state automaton which manipulates intege-
ables, called counters. From each control state, the madain do the following op-
erations : 1) Increment a counter and go to another contate,s) Test the value of



a counter, if it is0, it passes to a control state, and if not, it decrements thateo
and goes to another control state. There is also a conttel citled the final state (or
halting state) from which the machine cannot do anything Minsky machine is said
to halt when it reaches this control state. We define heregatstixtension of Minsky
machines.

We call an-dim guarded translatiorishortly a translation) any function: N* —
N" such that there exis# € {=,<}", p € N* andé € Z" with 0 < p + ¢ and
dom(t) = {v € N" | u#v} and for allv € dom(t), t(v) = v + J. We will sometimes
use the encoding#, 1, 0) to represent a translation. In the followiri§, will denote
the set of the:-dim guarded translations. Let= (#, 1, 0) be a guarded translation in
T,.. We define the vectoD; € Z" as follows,Vi € [1..n], D:(i) = §(i). We extend
this definition to words of guarded translations, recutgias follows, ifoc € T, and
t € T,,, we haveD,, = D; + D, and by convention)D, = 0.

Definition 1. A n-dim counter machinéshortly counter machingeis a finite valuated
graph S = (Q, E) where( is a finite set of control states anfd is a finite relation
ECQ@QxT,xQ.

The semantics of a counter machifie= (Q, E) is given by its associated transition
systeml'S(S) = (@ x N, —) where—C @ xN" x T}, x @ x N" is a relation defined
as follows :

(¢,v) 5 (¢/,V) iff 3 (q,t,¢') € E suchthay € dom(t) andv’ = ¢(v)

We write (¢, v) — (¢',V') if there exists € T}, such thalq, v) - (¢/, V). The relation
—* represents the reflexive and transitive closure-0fGiven a configuratiorq, v) of
TS(S),Reach(S,(q,v)) ={(¢,V') | (¢,v) —=* (¢’,V')}. Furthermore, we extend the
relation— to words in7*. We have therfq,v) = (¢,v) and ift € T), ando € T} ,
(V) % (" V") if (g.v) = (¢ V) 2 (" V).

Given a counter maching€ = (Q, E') and an initial configuratiom € @ x N,
the pair(S, c) is an intialized counter machine. Since, the notations spéd, in the
following we shall write counter machine for both, ¢) andSS.

It is true that any counter machine can be easily encodedaimfiinsky machine.
For instance to encode a test of the farm= ¢, the Minsky machine can decrement
¢ times the counter, test @ and increment again times the counter. Note that this
encoding modifies the number of alternations between isgrgand decreasing mode
for the counters, which is the factor we are interested innmt@nsidering reversal-
boundedness. That is the reason why we propose this exteoiMinsky machine.
We do not go further for instance extending the guards, leceu11], it is proved that
the reachability problem for reversal-bounded counterhimas with linear guards (of
the formz = y wherex, y are two counters variables) is undecidable.

3 New reversal-bounded counter machines

3.1 Reversal-bounded counter machines

We would like to extend the notion of reversal-bounded tawagpand verify a larger
class of counter machines. In fact, if we consider the cauntchine represented by
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Fig. 1. A simple not reversal-bounded counter machine

the figure 1 with the initial configuratiofy;,0). Its reachability set is finite equal to
{(¢1,0), (g2, 2)} and consequently semi-linear but the counter machine isewetsal-
bounded. We propose here an extension of the notion of mvieosinded, which allows
us to handle such cases and more generally every boundetécawachines.

Given an integeb € N, we now consider the number of alternations between in-
creasing and decreasing mode when the value of a counteaoes the bound. Let
S = (Q, E) be an-dim counter machine ariflS(S) = (Q x N", —). From it, we de-
fine another transition systefS, (S) = (@ x {], 1}™ x N™ x N —). Intuitively for
a configuratior(¢g, m,v,r) € @ x {[, 1} x N* x N™, the vectom is used to store the
current mode of each counter -increasify ¢r decreasing|()-, the vector contains
the values and the vectotthe numbers of alternations performed okeFormally, we

have(g, m,v,r) LN (¢’,m’,Vv/,r’) if and only if the following conditions hold :

1. (¢,v) = (¢',V)
2. for each € [1..n], the relation expresses by the following array is verified :

Lv(@) — V(@) [mG) [m'() [v@) | r() |
>0 ! 1 - r(z)
>0 T I EANI0)
>0 1 L | >b|r@e)+1
<0 1 T =1 r@
<0 L1 [0 1)
<0 ! T [ >b|r(i)+1
=0 RN
=0 Tl T =1 r@

We denote by—; the reflexive and transitive closure e$,. Given a configuration
(g,m,v,r) of T'Sy(S), Reachy(S, (¢, m,v,r)) = {(¢,m",V',r") | (¢, m,v,r,) —;
(¢',m’, V' r")}. We extend this last notation to the configurationg's%.5), saying that

if (¢,v) € @ x N"™ is a configuration of'S(.S), thenReach;(S, (¢,Vv)) is equal to the
setReach, (S, (¢, T,v,0)) where] denotes here the vector with all components equal
toT.

Definition 2. Letb, k € N. A counter machings, c) is k-reversals-boundedif and
only if for all (¢, m,v,r) € Reach(S,c) and for all: € [1..n], we have (i) < k.

We then say that :

1. A counter machine iseversal-boundedff there existk,b € N such that it isk-
reversalb-bounded,



2. For a giverk € N, a counter machine is-reversal-boundedf there exist$ € N
such that it isk-reversalb-bounded,

3. For a giverb € N, a counter machine igversald-boundedif there existsk € N
such that it isk-reversalé-bounded.

We remark that this definition includes the definition of msad-bounded given in [10],
which corresponds to reversaédbounded. In comparison to what is presented in [10],
there is a slight difference because we do not have here @ogegtates and conse-
quently we consider all the possible runs of the counter inachs accepted runs. We
will see in section 4 that this difference can change somaldbitity results. Note that

in later works [11], the counter machines are also definedowitany accepting state.

3.2 Reachability set

In [10], it has been proved that the rever8abounded counter machines have an ef-
fectively computable semi-linear reachability set. Weeaxt here this result to all the
reversal-bounded counter machines.

Fig. 2. A 1-reversali-bounded counter machine

The idea consists in building fromareversalb-bounded counter machin{é, ¢) a k-
reversald-bounded counter machiri®’, ¢’) as it is done for the counter machine of the
figure 2 (with the initial configuratioriq,, (0,0))) from which we obtain the counter
machine represented in the figure 3 (with the initial configion ((¢1, 0, 0), (0,0))).
We assumées' = (Q, E) andS’ = (Q', E'). First we introduce two symbols and

wp, Which are not integersu, represents a counter value strictly greater thand L a
counter value for which it is not known whether it is greatenot thanb. The location
set@’ is then equal t@) x B™ whereB = {0, ...,b} U{ws, L}. Intuitively, the counter
machineS’ encodes the run of and when a counter value $is under the bound,

its value is stored into the control state$fand the corresponding value of the counter
in S’ is 0, but when the value goes abavin S then it is restored in the counter 1.
FurthermorgS’, ¢') beingk-reversald-bounded, we use the results of [10] to compute
the reachability seReach(S’, ¢’) from which we deduc&each (S, ¢).

Theorem 3. Given a reversal-bounded counter machine, its reachgbsidt is an ef-
fectively computable semi-linear set.
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Fig. 3. A 1-reversalp-bounded counter machine obtained from the counter machine of Fig. 2

4 Deciding reversal-boundedness

In this section, we will study the decidabilty of reversaldndedness.

4.1 Undecidability

In [10], the author shows that it is not possible to decidetivaiea counter machine is
reversalf-bounded or not. We prove here that this theorem is stillwiien considering
reversal-boundedness.

Theorem 4. Verifying if a counter machine is reversal-bounded is undizale.

Proof. We reduce the halting problem f@rcounters deterministic Minsky Machines.
We consider a deterministic Minsky Machifevith the initial configuratior{qo, (0, 0))
working over two counter variables andzx,. “Deterministic” here means that there is
a unique possible run starting dq, (0,0)). From .S, we build a counter maching’
working over three counter variables,z» andzs, such that for eacly, ¢,¢’) € E, we
add two control stateg andg, and the transition&g, t1,¢1), (¢1, t2, g2) and(gz, t,q’)
wheret; andt, only change the counter variablg doing =4 = x3 + 2 for ¢; and
xf = x3 — 1 for t5. Note thatS’ starting on(qy, (0,0,0)) is also deterministic. Fur-
thermore(S’, (qo, (0,0,0))) is reversal-bounded if and only if its unique run is finite,
which is equivalent to halting. Sine® starting with(qo, (0, 0,0)) halts if and only ifS
starting from(go, (0, 0)) halts and since this last problem is undecidable, we coeclud
the theorent]

4.2 Fixing one parameter

We will see here that fixing one of the parameters is not endoigintain decidability
for the reversal-boundedness.



Theorem 5. Givenb € N, verifying if a counter machine is reversabounded is un-
decidable.

Sketch of Proofi-or eachb in N, we can reuse the same proof as for the theorem 4, we
can show that thé-counter machinés’, (¢o, (0,0,0))) is reversab-bounded if and
only if the deterministic Minsky machings, ¢) from which it is built halts[J

Theorem 6. Givenk € N, verifying if a counter machine is-reversal-bounded is
undecidable.

Sketch of ProofTo prove this result we again use tBeounter machine’ with the
initial configuration(qo, (0,0,0)) that we complete so that each run can begin with
doing at leask alternations between increasing and decreasing mode wyd&oand]

4.3 Fixing the two parameters

We will now prove that if the two parametdrandk are fixed, it is possible to decide if a
counter machine is-reversalb-bounded. Leb, k € N and(SS, ¢) be a counter machine.
The idea consists in building a counter machifg ¢’) which will be (k + 1)-reversal-
b-bounded and which will reach a special control state if and only if (S, ¢) is notk-
reversalb-bounded. Note that sind&’, ¢') is reversal-bounded, it is possible to decide
whether the control statg.,.. is reachable or not. In the control state(&f, '), we
store the mode -increasing))(or decreasing|()- for each counter and also the number
of alternations already performed oveiVe also add some control states to test at each
step if each counter value is strictly greater (denoted-byor smaller tharb (denoted
by b<). The figure 4 gives an example of the counter machine we baildecide if
the counter machine from figure 1 with the initial configusatiq, 0) is 1-reversali-
bounded.

Theorem 7. Givenb, k € N, verifying if a counter machine is-reversalb-bounded is
decidable.

This result contrasts with the one given in [10], which sd givenk € N, verifying

if a counter machine ig-reversald-bounded is undecidable. This is due to the fact
that in [10], the considered counter machines have acaeptintrol states, whereas
our definition is equivalent to have all the control statea@septing. In fact, when we
define the reversal-bounded counter machines, we condidlee aossible runs and not
only the one ending in an accepting state.

4.4 Computing the parameters

When a counter machine is reversal-bounded, it could be usafharacterize the pairs
(k,b) for which it is k-reversalb-bounded, first because it gives us information on the
behavior of the counter machine but also because these paare involved in the
way the reachability set is built as one can see in the protifexirem 3 and in [10].
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Fig. 4. A 2-reversali-bounded counter machine to decide if the counter machine of Fig. 2 is
1-reversali-bounded

Let (S, c) be a counter machine. We define the following set to talk abipa-
rameters of reversal-bounded counter machines :

RB(S,c) = {(k,b) € Nx N | (S5, ¢) is k-reversalb-bounded

Then RB(S,c) = 0 if and only if (S,c) is not reversal-bounded, hence the non-
emptiness problem foRB(S, ¢) is in general not decidable, but this set is recursive
(cf. theorem 7). Furthermore, if there ex{at b) in RB(S, ¢) and(k’,b") € N x N such
that(k,b) < (K, b') then we know, by definition of reversal-boundedness (fat) is
alsok’-reversalb’-bounded, i€k’, b') € RB(S, ). Since the order relatiod onN x N

is a well-ordering we can deduce :

Lemma 8. Let (5, ¢) be a reversal-bounded counter machine. The B&(5, ¢) is
upward-closed, it has a finite number of minimal elementsclwban effectively be
computed.

Sketch of prooThe facts thatRB(S, ¢) is upward closed is a direct consequence of
reversal-boundedness. And sind@& x N, <) is a well-ordering, each of its upward-
closed set has a finite number of minimal elements [8]. To admthe minimal el-
ements, we add “reversal-bounded” counters either to cthennumber of alterna-
tions between increasing and decreasing mode over a bipando store the value
of a counter each time it changes mode over a giveh



5 Analysis of VASS

In this section, we recall the definition of Vector Additiogssem with States and show
that the notion of reversal-boundedness we newly introdtieesll-suited for the veri-
fication of these systems.

5.1 VASS and their coverability graphs

Definition 9. An-dim counter machiné?, E) is aVector Addition System with States
(shortly VASS) if and only if for all transitiong, ¢,¢') € E, t is a guarded translation
(#, 1, 0) such thaty = (<,..., <),

Hence in VASS, it is not possible to test if a counter valuegaat to a constant but
only if it is greater than a constant.

In [13], the authors provide an algorithm to build from a VAS%$abeled tree, the
Karp and Miller tree(the algorithm is provided in [7]). The main idea of this ctins-
tion is to cover in a finite way the reachable configurationiegithe symbolv, when a
counter is not bounded. They have shown that their algorihwvays terminates and that
it enjoys some good properties. In particular, this treetmansed to decide the bound-
edness of a VASS. In [21], the authors have proposed a fuctrestruction based on
the Karp and Miller tree in order to test the regularity of theguage of the unlabeled
traces of a VASS. This last construction is known asdbeerability graph To obtain
it, the nodes of the Karp and Miller tree with the same labeésgrouped together.
Formally if (S, c¢) is an-dim initialized VASS, we denote bg'G(S, c) its coverability
graph defined as follows;G(S, ¢) = (N, A) where :

— N C @ x N is afinite set of nodes,
- AC N x T, x N is afinite set of edges labeled with guarded transitions.

We call acircuit in the coverability graph a path ending in the starting nodé a
circuit will be said to beelementaryif all nodes are different with the exception of
the starting and ending nodes. For a veatore N[, we denote byl nf (w) the set
{i € [1..n] | w(i) = w} andFi n(w) = [1..n] \ | nf (w). Using these notions, it has
been proved that the coverability graph verifies the foltayydroperties.

Let (S, ¢) be an-dim initialized VASS withS = (Q, E), TS(S) = (Q x N*, =) its
associated transition system afid= (N, A) its coverability graph.

Theorem 10. [13,21]

1. If (g, w) is a node inG, then for allk € N, there existgq,v) € Reach(S, ¢) such
that for allz € | nf (w), £ < v(¢) and for all: € Fi n(w), w(i) = v(7).

2. Foro € T, if ¢ % (g, V) then there is a unique path i@ labeled by and leading
from c to a node(g, w) and for alli € Fi n(w), v(z) = w(7).

3. If o € T is a word labeling a circuit inG and (¢, w) is the initial node of this
circuit, then there existg, v) € Reach(S,c) and(¢’,V') such that(q,v) % (q,V)
and for alli € Fi n(w), w(i) = v(i) = V(7).



From this theorem, we deduce the following lemma, we willnthese to decide the
reversal-boundedness of a VASS :

Lemma 11. If there exists an elementary circuifq;, w; ) 4, (g2, W2) oY

(g1,wy)) in G, then for allk, ! € N, there existy, ...,v; € N such that :

(i) ¢ —*(q1,v1) 2> (q1,V2) = ... 5 (q1,v) InTS(S) witho =t ... 15, and,

(i) for all j € [1..]], for all ¢ € I nf(wy), & < v;(¢) and for alli € Fi n(w,),
Wl(Z) = VJ(Z)

5.2 Deciding if a VASS is reversalb-bounded

In this section, we show that its possible to decide if a VAS&versab-bounded us-
ing a characterization over its coverability graph.

Let S = (Q, E) be an-dim counter machine. We build 2n-dim counter ma-
chineS = (@, E') adding for each counter another counter, whose role is tatcou
the alternation of the first counter between increasing awdedsing mode. Formally,
Q = Q x {1,1}"* andT” is built as follows, for eacHgq, (#, 1,9),q¢') € E and
m,m’ € {1, [}", we have((g, m), (#', 1/, d"), (¢’,m’)) € E’ ifand only if :

— foralli € [1.n], # (i) = #(4), p' (i) = p; andd’ (i) = 4(i);

—foralli € [n+1..2n], #'(i) € {<}andy/(i) = 0;

— 4, m, m’" and¢’ satisfy for alli € [1..n] the conditions described in the following
array :

\ 0(i) | m(z) | m’ (i) | 0'(n+1) |
=0] 1
=0| |
>0 1
!
!

>0
<0
<ol 7

——|—=|—=|—|—
ad E==) Bl K el Nan] Nan)

By construction, we remark thatif is a VASS therf is a VASS too. We define then the
relation~€ (Q x {1, |}" xN"xN") x (@ x {T, | }" x N?") between the configurations
of T'Sy () and the ones of'S(S) saying thatq, m,v,r) ~ (¢/,m’,V') if and only if :

-q=q,

-m=m,

— foralli € [1..n], v(i) = V/(i) andr (i) = V/(n +9).

The relation~ is a bisimulation betwee®’'Sy(S) and7'S(S). Given an initial config-
urationc = (q,v), we have(q, T,v,0) ~ (¢, T, (v,0)). Hence, if we denote by the
triple (¢, T, (v,0)), we can deduce that the VASS, ¢) is reversalB-bounded if and
only if there existsk € N such that for al(¢, m,v) € Reach(S,¢), for alli € [1..n],
v(n+1i) < k. Using the coverability graph cqﬁ, ¢), this last property is decidable for a
VASS. Generalizing this method for ahye N, counting only the alternations that are
done abové, we can deduce that :

Theorem 12. Givend € N, verifying if a VASS is reversatbounded is decidable.



5.3 Deciding if a VASS is reversal-bounded

We will now show that the analysis of the coverabilty graph(ﬁf&’) allows us to
decide if a VASS is reversal-bounded (without a fixed bouhdte that this is not a
direct consequence of the previous theorem, because it pssible to enumerate the
different bound$ and test if the VASS is reversatbounded, since this method never
terminates when the VASS is not reversal-bounded.

Lemma 13. An-dim VASSS, ¢) is reversalb-bounded if and only if for all € [1..n],
all nodes(q, w) belonging to an elementary circuit labeled by T.F of CG(S, ¢) with
D, (n+1i) > 0 verifyw(i) <b.

In other words, this last lemma states théic) is reversab-bounded if and only if for
all i € [1..n], there is no elementary circuit in the coverability grap&¥(5, ¢) which
strictly increases thén + )-th counter and which has a node, whesk component is
strictly greater tham or equal tow. In fact, applying the lemma 11, we deduce that if
such an elementary circuit exists, we can build a run of th8$AS, ¢) which does not
respect the definition of reversedboundedness. The details of the proof can be found
in [7].

For a VASS(S, c), the lemma 13 gives us a necessary and sufficient conditien ov
the coverability graph o@g, ¢), and this condition can effectively be tested. This allows
us to deduce the following decidability result.

Theorem 14. Verifying if a VASS is reversal-bounded is decidable.

Unfortunately, the decision algorithm we propose heredsudntirely the coverability
graph of a VASS, and this building is known to be non-pringtiecursive in space
(some details can be found in [12]).

6 Perspectives

In [4], the authors have proved that some liveness probleendexidable for reversal-
bounded counter machines and others not. For instanceldgtidable to verify if a run
of a reversal-bounded counter machine passes infinitedy aftrough a semilinear set
of possible configurations; but the same problem becomesaittable when all the runs
are considered. It seems that this result can easily bededeto the class of reversal-
bounded counter machines, we have introduced. It would plaea the way to verify
more complex properties than reachability over reversalrlded counter machines. It
could also be interesting to look at these liveness problentke particular case of
reversal-bounded VASS.

An other perspective for our work would be to use reversaiFled counter ma-
chines to analyze counter machines which are not necessandrsal-bounded. In fact,
we have seen with the proof of theorem 7, that for anly € N and from any counter
machine, it is possible to build another counter machineéghvis k-reversalb-bounded
and whose runs represent an under-approximation of thef sahs of the first one.
We could consequently build a tool which given a counter nreckvould build suc-
cessively, incrementing the parameteendb, the corresponding-reversalb-bounded



counter machines, and would test at each step if the redithabi of the initial counter
machine has been built (this can be easily done, since this adixpoint of the transi-
tion relation). This algorithm might never terminate, ietreachability set is not semi-
linear for instance, but it will refine at each step the uralgproximation of the reach-
ability set.
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