A note onk-colorability of P;-free graphs

Chinh T. Haang Marcin Kamihski' Vadim Lozint J. Sawada X. Shuf

Abstract

A polynomial time algorithm that determines whether or not, for a fiked P;-free graph can
be k-colored is presented in this paper. If such a coloring exists, the algowitproduce a valid
k-coloring.

Keywords: Ps-free, graph coloring, dominating clique

1 Introduction

Graph coloring is among the most important and applicaldglyproblems. Thé-colorability prob-
lem is the question of whether or not the vertices of a graph cacobmed with one of: colors so
that no two adjacent vertices are assigned the same colgenieral, thé:-colorability problem is NP-
complete [10]. Even for planar graphs with no vertex degreeeding 4, the problem is NP-complete
[5]. However, for other classes of graphs, like perfect e8], the problem is polynomial-time solv-
able. For the following special class of perfect graphstelage efficient polynomial time algorithms
for finding optimal colorings: chordal graphs [6], weaklyoctal graphs [9], and comparability graphs
[4]. For more information on perfect graphs, see [1], [3 &n.

Another interesting class of graphs are those thatFafeee, that is, graphs with no chordless paths
vy, Ua, ..., v; Of lengtht — 1 as induced subgraph for some fixedf ¢t = 3 ort = 4, then there exists
efficient algorithms to answer thiecolorability question (see [3]). However, it is known ti@&#RO-
MATIC NUMBER for Ps-free graphs is NP-complete [11]. Thus, it is of some intei@sonsider the
problem ofk-coloring aP;-free graph for some fixedl > 3 and¢ > 5. Taking this parameterization

*Physics and Computer Science, Wilfrid Laurier UniversiBanada. Research supported by NSERE.nai | :
choang@ u. ca

fRUTCOR, Rutgers University, 640 Bartholomew Road, Piseaja NJ 08854, USA. E-mail:
nkam nski @ ut cor. rutgers. edu

fMathematics Institute, University of Warwick, Coventry @VAL UK. E-mai | : V. Lozi n@var wi ck. ac. uk

§Computing and Information Science, University of Guelplan@da. Research supported by NSERG.mai | :
sawada@i s. uoguel ph. ca

YComputing and Information Science, University of Guelphn@daE- mai | : xshu@ioguel ph. ca

E\t 3 4 5 6 7 8 12
3 [O(m)|O(m)|OnY | O(mn>)| ? ? ? ?
4 | O(m) | O(m)| 22 ? 21 2 | 2 |NP,
5 | O(m) | O(m) | 22 ? 2 | NP. | NP. | NP,
6 | O(m) | O(m)| 22 ? 2 | NP, | NP, | NP
7 | O(m)|Oom)| 22 ? ? | NP, | NP, | NP.

Table 1:Known complexities fok-colorability of P;-free graphs

into account, a snapshot of the known complexities forktfu®lorability problem ofP;-free graphs is
given in Table 1. From this chart we can see that there is anpatyal algorithm for the 3-colorability
of Ps-free graphs [12].

In this paper we focus ois-free graphs. Notice that wheén= 3, the colorability question foiP-
free graphs can be answered in polynomial time (see [13])ob¥ain a theorem (Theorem 2) on the
structure ofP;-free graphs and use it to design a polynomial-time algorithat determines whether
a Ps-free graph can bé-colored. If such a coloring exists, then the algorithm wikld a valid -
coloring.

The remainder of the paper is presented as follows. In Setiwe present relevant definitions, con-
cepts, and notations. Then in Section 3, we present ourgigeypsolynomial-time algorithm that an-
swers thek-colorability question forPs-free graphs.

2 Background and Definitions

In this section we provide the necessary background andititfi® used in the rest of the paper. For
starters, we assume that= (V, E) is a simple undirected graph wheii¢| = n and|E| = m. If Ais
a subset oi/, then we letG(A) denote the subgraph 6f induced byA.

DEFINITION 1 A set of vertices A issaid to dominateanother set B, if every vertexin B is adjacent to
at least one vertexin A.

The following structural result about;-free graphs is from Baésand Tuza [2]:
THEOREM 1 Every connected Ps-free graph has either a dominating clique or a dominating Ps.

DEFINITION 2 Given a graph GG, an integer k£ and for each vertex v, alist I(v) of k£ colors, the k-list
coloring problemasks whether or not there is a coloring of the vertices of G such that each vertex
receives a color fromitslist.

DEFINITION 3 The restrictedk-list coloring problemis the £-list coloring problem in which the lists
l(v) of colorsare subsetsof {1, 2, ..., k}.

Our general approach is to take an instance of a specificioglproblem® for a given graph and
replace it with a polynomial number of instances ¢, ¢s, ... such that the answer is “yes” if
and only if there is some instangg that also answers “yes”.

For example, consider a graph with a dominating venteshere each vertex has color ligt, 2, 3,4, 5}.
This listing corresponds to our initial instande Now, by considering different ways to colay the
following set of four instances will be equivalentdo

¢1: l(u) = {1} and the remaining vertices have color li§853, 4,5},
¢ l(u) = {2} and the remaining vertices have color li§is3, 4,5},
o3 l(u) = {3} and the remaining vertices have color li§is2, 4,5},
¢4 l(u) = {4,5} and the remaining vertices have color li§ts2, 3,4, 5}.

In general, if we recursively apply such an approach we weuld up with an exponential number of
equivalent coloring instances @

3 The Algorithm

Let G be a connecteds-free graph. This section describes a polynomial time #lgorthat decides
whether or notG is k-colorable. The algorithm is outlined in 3 steps. Step 2 megusome extra
structural analysis and is presented in more detail in theviong subsection.

1. ldentify and color a maximal dominating clique oPaif no such clique exists (Theorem 1). This
partitions the vertices intfixed setsindexed by available colors. For example, iPafree graph
has a dominatind(; (and no dominatingy,) colored with{1,2,3} andk = 4, then the fixed
sets would be given byS154, S134, Sa34, S14, So4, S34. FOr an illustration, see Figure 1. Note that
all the vertices iS4 are adjacent to the vertex colored 3 and thus have cologlis&s 4}. This
gives rise to our original restricted list-coloring insta. Although the illustration in Figure 1
does not show it, it is possible for there to be edges betwegitveo fixed sets.

2. Two vertices arelependent if there is an edge between them and the intersection of tioéor
lists is non-empty. In this step, we remove all dependenoetaeen each pair of fixed sets.
This process, detailed in the following subsection, widtate a polynomial number of coloring
instanceq ¢y, ¢2, ¢, . . .} equivalent tad.

3. For each instance; from Step 2 the dependencies between each pair of fixed setbdsm
removed which means that the vertices within each fixed sebeaolored independently. Thus,

0%
SN

Figure 1:The fixed sets in &5-free graph with a dominating’s wherek = 4.

for each instance; we recursively see if each fixed set can be colored with theesponding
restricted color lists (the base case is when the colordigs single color). Ibne such instance
provides a valid:-coloring then return the coloring. Otherwise, the graphatk-colorable.

As mentioned, the difficult part is reducing the dependenbatween each pair of fixed sets (Step 2).

3.1 Removing the Dependencies Between Two Fixed Sets

Let S;;; denote a fixed set of vertices with color list given byt. We patrtition each such fixed set
into dynamic setsthat each represent a unique subset of the coloisstn For example:Sis;3 =
Pia3 U Pis U Pi3 U Pys U Py U P, U Ps. Initially, S1o3 = Pjo3 and the remaining sets in the partition are
empty. However, as we start removing dependencies, thesefledynamically change. For example,
if a vertexw is initially in P53 and one of its neighbors gets colored 2, thewill be removed from
Pias and added 3.

Recall that our goal is to remove the dependencies betweeriixed setsS, and.S,. To do this,
we remove the dependencies between each papX where P is a dynamic subset df, and(is
a dynamic subset aof,. Let col(P) andcol(()) denote the color lists for the vertices ih and @)
respectively. By visiting these pairs in order from largessmnallest with respect te@ol(P)| and then
lcol(Q)|, we ensure that we only need to consider each pair once. gpthiis approach, the crux
of the reduction process is to remove the dependencies eeta@air(P, () by creating at most a
polynomial number of equivalent colorings.

Now, observe that there exists a verteftom the dominating set found in Step 1 of the algorithm that
dominates every vertex in one set, but is not adjacent to artgxin the other. This is becauseand
@ are subsets of different fixed sets. WLOG assumextitgminates).

d %y,
P S Q

Figure 2:lllustration for proof of Theorem 2

THEOREM?2 Let H bea Ps-free graph partitioned into three sets P, Q and {v} where v isadjacent to
every vertex in () but not adjacent to any vertexin P. If welet ()’ denote all components of H () that
are adjacent to some vertex in P then one of the following must hold.

1. Thereexistsexactly one specialcomponent C'in G(P) that containstwo vertices a and b such that
a is adjacent to some component Y, € G(()) but not adjacent to another component > € G(Q)
while b is adjacent to Y5 but not Y.

2. Thereisa vertex x that dominates every component in ', except at most one (call it 7).

PROOF Suppose that there are two unique compongntsX, € G(P) with a,b € X; ande,d € X,
and component¥; # Y; andY; # Y, from G(Q) such that:

a is adjacent td; but not adjacent td5,
b is adjacent td% but not adjacent td7,

c is adjacent td’3 but not adjacent td,

d is adjacent td’; but not adjacent ta5.

Let y; (respectivelyys, y3,y4) be a vertex iny; (respectivelyYs, Y3, Y,) that is adjacent ta (respec-
tively, b, ¢, d) and noth (respectivelyg, d, c). SinceH is Ps-free, there must be edgés b) and(c, d),
otherwisea, y1, v, 12, b OF ¢, y3, v, y4, d Would bePss. An illustration of these vertices and components
is given in Figure 2.

Suppose&’; = Y;. Thenb is not adjacent tgs, for otherwise there exists a, b, y3, ¢, d. Now, there
exists aPs y1, a, b, y2, y3 (if 4o is adjacent tayz) or aPs a, b, y», v, y3 (if 12 is not adjacent tgs). Thus,
Y5 andYs; must be unique components. Similarly, we h&ye# Y,. Now sinceb, y», v, y3, ¢ cannot be

5

Procedure RemoveDependencies(F’, Q, ¢)

if no dependencies betweéhand(
then output ¢
elsefind x, T' from Theorem 2
for eachc € col(P) N col(Q) do
output ReduceComponent(7’, ¢ with = coloredc)
RemoveDependencies(P'—{x}, Q, ¢ with [(z) = col(P)—col(C))

Figure 3: Algorithm to remove dependencies between two dynamic Betnd(Q (with no special
component’) by creating an equivalent set of coloring instances with the depeadeamoved.

a Ps, eitherb is adjacent tgj; or c must be adjacent tg,. WLOG, suppose the latter. Nawb, v, v, y4
implies that either, or b is adjacent tay,. If y, is adjacent t@ but nota, thena, b, y4, d, c would be a
Ps which implies that: must be adjacent tg, anyway. Thus, we end up with a, y4, v, y2, ¢ which
is a contradiction to the graph beidy-free. Thus there must be at most one special compdrient

Now suppose that there is no special compoéritet ()’ denote all components i@ that are adjacent

to some vertex inP. Let x be a vertex inP that is adjacent to the largest number of components in
Q'. Suppose that is not adjacent to a componehtof Q' . Thus there is some other verteke P
adjacent td’. The maximality ofr implies there is a componeAftof () such thatr is adjacent t& but

2" is not. If z is not adjacent ta’, then there is &5 with z, s, v, r, ' with some vertices € S,r € T.
Thusx andz’ belongs to a special componérof P - a contradiction. Thus; must be adjacent to all
components of)’.

If there are two componentd, B of ()’ that are not dominated by, then there are adjacent vertices
a,b € A, adjacent vertices,d € B such thatr is adjacent taz, ¢ but not tob, d; but now the five
verticesh, a, x, ¢, d form a Ps. O

Given a list-coloring instance of a Ps-free graph, we will at some points need to reduce the cats li
for a given connected componeafit This can be done by considering all possible ways to cofer
dominating clique orP; (Theorem 1). Since there are a constant number of verticesdh a domi-
nating set, we obtain a constant number of new instancesabether are equivalent ta For future
reference, we call this function that returns this set ofivajant instanceReduceComponent(C, ¢).

If C'is empty, the function simply returns

Using this procedure along with Theorem 2, we can remove dpendencies between two dynamic
setsP and(for a given list-coloring instance. First, we find the special componefitif it exists,
and setC' = () otherwise. Then we calReduceComponent(C, ¢) which will effectively remove
all vertices inC' from P as their color lists change. Then, for each resulting cotpmstance, we
remove the remaining dependencies betwBer- P—C and(@ by applying procedur&emoveDe-
pencencies(F’, @, p) shown in Figure 3.1. In this procedure we find a verteand component’
from Theorem 2, since we know that the special componéhtas already been handled. Tifdoes
not exist, then we seéf' = (). Now by considering each color il(P’) N col(Q) along with the list
col(P")—col(Q) we can create a set of equivalent instance$ {@s described in Section 2). If we

6

modify ¢ by assigninge a color fromeol(P’) N col(Q), then all vertices i) adjacent tor will have
their color list reduced by the color ef Thus, only the vertices i’ may still have dependencies with
the original setP - but these dependencies can be removed by a single d@édaceComponent.

In the single remaining instance where we modifypy assigninge the color listcol(P)—col(Q), we
simply repeat this process (at most| times) by setting® = P’'—{x} until there are no remaining
dependencies betwedhand(). Thus, each iteration dkemoveDependencies produces a constant
number of instances with no dependencies betweamd(and one instance in which the size ©f

is reduced by one at least one.

The output of this step i©(n) list-coloring instances (that are obtained in polynomialet), with no
dependencies betweéhand@, that together are equivalent to the original instapc8ince there are

a constant number of pairs of dynamic sets for each pair ofl feets, and since there are a constant
number of pairs of fixed sets, this proves the following tleeor

THEOREM 3 Determining whether or not a P5-free graph can be colored with &-colors can be decided
in polynomial time.

4 Summary

In this paper, we obtain a theorem (Theorem 2) on the stradliP;-free graphs and use it to design
a polynomial-time algorithm that determines whethédt;&ree graph can bg-colored. The algorithm
recursively uses list coloring techniques and thus its derify is high even though it is polynomial,
as is the case with all list coloring algorithms. In a relgte@er (in preparation), we will give a slightly
faster algorithm also based on list coloring techniquesigver this algorithm provides less insight into
the structure of’s-free graphs. It would be of interest to find a polynomialgiaigorithm tok-color a
Ps-free graph without using list coloring techniques.

Continuing with this vein of research, the following openlgeons are perhaps the next interesting
avenues for future research:

e Does there exist a polynomial time algorithm to determinetibr or not aP;-free graph can
3-colored?

e Does there exist a polynomial time algorithm to determinetivbr or not aPs-free graph can
4-colored?

¢ Is the problem of:-coloring aP;-free graph NP-complete for ay> 3?

Two other related open problems are to determine the cortipexf theMAXIMUM INDEPENDENT
SETandMINIMUM INDEPENDENT DOMINATING SET problems onPs-free graphs.

References

[1] Jorge L. Ramirez Alfonsin, Bruce A. Redekrfect Graphs, John Wiley & Sons, LTD, 2001

[2] G. Bac® and Z. Tuza, Dominating cliques i%-free graphs, Period. Math. Hungar. Vol. 21 No.
4 (1990) 303-308.

[3] C. Berge and V. Chatal (eds.), Topics on perfect graphs, North-Holland, Asrddam, 1984.

[4] S. Even, A. Pnueli and A. Lempel, Permutation graphs aadsitive graphs, J. Assoc. Comput.
Mach. 19 (1972) 400-410.

[5] M. R. Garey, D. S. Johnson and L. Stockmeyer, Some simpIfiE-complete problems, Theo.
Comput. Sci. 1, (1976) 237-267.

[6] F. Gauvril, Algorithms for minimum coloring, maximum gue, minimum coloring by cliques, and
maximum independent set of a chordal graph, SIAM J. CompyL9,2) 180-187.

[7] M. C. Golumbic,Algorithmic graph theory and perfect graphs, Academic Press, New York, 1980.

[8] M. Grotschel, L. Loasz and A. Schrjver, The ellipsoid method and its conseaseimccombina-
torial optimization, Combinatorica 1, (1981) 169-197.

[9] R. Hayward, C. T. Hang and F. Maffray, Optimizing weakly triangulated grap8saphs and
Combinatorics 5 (1989) 339-349.

[10] R. M. Karp, Reducibility among combinatorial problems: IR. E. Miller and J. W. Thatcher
(eds),Complexity of Computer Computations, Plenum Press, New York, (1972) 85-103.

[11] D. Kral, J. Kratochvil, Z. Tuza and G. J. Woeginger, Coaxay of coloring graphs without
forbidden induced subgraphs, in: WG 2001, LNCS 2204, (2004)Z52.

[12] B. Randerath and I. Schiermey8¢Colorability € P for Ps-free graphs, Discrete Applied Math-
ematics, Vol. 136 No. 2-3 (2004) 299-313.

[13] J. Sgall, G.J. Woeginger, The complexity of coloringgins without long induced paths, Acta
Cybernet. Vol. 15 No. 1 (2001) 107-117.

