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Abstract

A polynomial time algorithm that determines whether or not, for a fixedk, aP5-free graph can
bek-colored is presented in this paper. If such a coloring exists, the algorithmwill produce a valid
k-coloring.
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1 Introduction

Graph coloring is among the most important and applicable graph problems. Thek-colorability prob-
lem is the question of whether or not the vertices of a graph can becolored with one ofk colors so
that no two adjacent vertices are assigned the same color. Ingeneral, thek-colorability problem is NP-
complete [10]. Even for planar graphs with no vertex degree exceeding 4, the problem is NP-complete
[5]. However, for other classes of graphs, like perfect graphs [8], the problem is polynomial-time solv-
able. For the following special class of perfect graphs, there are efficient polynomial time algorithms
for finding optimal colorings: chordal graphs [6], weakly chordal graphs [9], and comparability graphs
[4]. For more information on perfect graphs, see [1], [3], and [7].

Another interesting class of graphs are those that arePt-free, that is, graphs with no chordless paths
v1, v2, . . . , vt of lengtht − 1 as induced subgraph for some fixedt. If t = 3 or t = 4, then there exists
efficient algorithms to answer thek-colorability question (see [3]). However, it is known thatCHRO-
MATIC NUMBER for P5-free graphs is NP-complete [11]. Thus, it is of some interest to consider the
problem ofk-coloring aPt-free graph for some fixedk ≥ 3 andt ≥ 5. Taking this parameterization
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k\t 3 4 5 6 7 8 . . . 12 . . .
3 O(m) O(m) O(nα) O(mnα) ? ? ? ? . . .
4 O(m) O(m) ?? ? ? ? ? NPc . . .
5 O(m) O(m) ?? ? ? NPc NPc NPc . . .
6 O(m) O(m) ?? ? ? NPc NPc NPc . . .
7 O(m) O(m) ?? ? ? NPc NPc NPc . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1:Known complexities fork-colorability ofPt-free graphs

into account, a snapshot of the known complexities for thek-colorability problem ofPt-free graphs is
given in Table 1. From this chart we can see that there is a polynomial algorithm for the 3-colorability
of P6-free graphs [12].

In this paper we focus onP5-free graphs. Notice that whenk = 3, the colorability question forP5-
free graphs can be answered in polynomial time (see [13]). Weobtain a theorem (Theorem 2) on the
structure ofP5-free graphs and use it to design a polynomial-time algorithm that determines whether
a P5-free graph can bek-colored. If such a coloring exists, then the algorithm willyield a validk-
coloring.

The remainder of the paper is presented as follows. In Section 2 we present relevant definitions, con-
cepts, and notations. Then in Section 3, we present our recursive polynomial-time algorithm that an-
swers thek-colorability question forP5-free graphs.

2 Background and Definitions

In this section we provide the necessary background and definitions used in the rest of the paper. For
starters, we assume thatG = (V,E) is a simple undirected graph where|V | = n and|E| = m. If A is
a subset ofV , then we letG(A) denote the subgraph ofG induced byA.

DEFINITION 1 A set of vertices A is said to dominateanother set B, if every vertex in B is adjacent to
at least one vertex in A.

The following structural result aboutP5-free graphs is from Bacsó and Tuza [2]:

THEOREM 1 Every connected P5-free graph has either a dominating clique or a dominating P3.

DEFINITION 2 Given a graph G, an integer k and for each vertex v, a list l(v) of k colors, the k-list
coloring problemasks whether or not there is a coloring of the vertices of G such that each vertex
receives a color from its list.
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DEFINITION 3 The restrictedk-list coloring problemis the k-list coloring problem in which the lists
l(v) of colors are subsets of {1, 2, . . . , k}.

Our general approach is to take an instance of a specific coloring problemΦ for a given graph and
replace it with a polynomial number of instancesφ1, φ2, φ3, . . . such that the answer toΦ is “yes” if
and only if there is some instanceφk that also answers “yes”.

For example, consider a graph with a dominating vertexu where each vertex has color list{1, 2, 3, 4, 5}.
This listing corresponds to our initial instanceΦ. Now, by considering different ways to coloru, the
following set of four instances will be equivalent toΦ:

φ1: l(u) = {1} and the remaining vertices have color lists{2, 3, 4, 5},

φ2: l(u) = {2} and the remaining vertices have color lists{1, 3, 4, 5},

φ3: l(u) = {3} and the remaining vertices have color lists{1, 2, 4, 5},

φ4: l(u) = {4, 5} and the remaining vertices have color lists{1, 2, 3, 4, 5}.

In general, if we recursively apply such an approach we wouldend up with an exponential number of
equivalent coloring instances toΦ.

3 The Algorithm

Let G be a connectedP5-free graph. This section describes a polynomial time algorithm that decides
whether or notG is k-colorable. The algorithm is outlined in 3 steps. Step 2 requires some extra
structural analysis and is presented in more detail in the following subsection.

1. Identify and color a maximal dominating clique or aP3 if no such clique exists (Theorem 1). This
partitions the vertices intofixed setsindexed by available colors. For example, if aP5-free graph
has a dominatingK3 (and no dominatingK4) colored with{1, 2, 3} andk = 4, then the fixed
sets would be given by:S124, S134, S234, S14, S24, S34. For an illustration, see Figure 1. Note that
all the vertices inS124 are adjacent to the vertex colored 3 and thus have color lists{1, 2, 4}. This
gives rise to our original restricted list-coloring instanceΦ. Although the illustration in Figure 1
does not show it, it is possible for there to be edges between any two fixed sets.

2. Two vertices aredependent if there is an edge between them and the intersection of theircolor
lists is non-empty. In this step, we remove all dependenciesbetween each pair of fixed sets.
This process, detailed in the following subsection, will create a polynomial number of coloring
instances{φ1, φ2, φ3, . . .} equivalent toΦ.

3. For each instanceφi from Step 2 the dependencies between each pair of fixed sets has been
removed which means that the vertices within each fixed set can be colored independently. Thus,
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Figure 1:The fixed sets in aP5-free graph with a dominatingK3 wherek = 4.

for each instanceφi we recursively see if each fixed set can be colored with the corresponding
restricted color lists (the base case is when the color listsare a single color). Ifone such instance
provides a validk-coloring then return the coloring. Otherwise, the graph isnotk-colorable.

As mentioned, the difficult part is reducing the dependencies between each pair of fixed sets (Step 2).

3.1 Removing the Dependencies Between Two Fixed Sets

Let Slist denote a fixed set of vertices with color list given bylist. We partition each such fixed set
into dynamic setsthat each represent a unique subset of the colors inlist. For example:S123 =
P123 ∪ P12 ∪ P13 ∪ P23 ∪ P1 ∪ P2 ∪ P3. Initially, S123 = P123 and the remaining sets in the partition are
empty. However, as we start removing dependencies, these sets will dynamically change. For example,
if a vertexu is initially in P123 and one of its neighbors gets colored 2, thenu will be removed from
P123 and added toP13.

Recall that our goal is to remove the dependencies between twofixed setsSp and Sq. To do this,
we remove the dependencies between each pair (P,Q) whereP is a dynamic subset ofSp andQ is
a dynamic subset ofSq. Let col(P ) and col(Q) denote the color lists for the vertices inP andQ

respectively. By visiting these pairs in order from largest to smallest with respect to|col(P )| and then
|col(Q)|, we ensure that we only need to consider each pair once. Applying this approach, the crux
of the reduction process is to remove the dependencies between a pair(P,Q) by creating at most a
polynomial number of equivalent colorings.

Now, observe that there exists a vertexv from the dominating set found in Step 1 of the algorithm that
dominates every vertex in one set, but is not adjacent to any vertex in the other. This is becauseP and
Q are subsets of different fixed sets. WLOG assume thatv dominatesQ.

4



Y4

Y3

Y2

Y1

QP

y
1

y
2

y
4

y
3

v

a

c

d

b

Figure 2:Illustration for proof of Theorem 2

THEOREM 2 Let H be a P5-free graph partitioned into three sets P , Q and {v} where v is adjacent to
every vertex in Q but not adjacent to any vertex in P . If we let Q′ denote all components of H(Q) that
are adjacent to some vertex in P then one of the following must hold.

1. There exists exactly one specialcomponent C in G(P ) that contains two vertices a and b such that
a is adjacent to some component Y1 ∈ G(Q) but not adjacent to another component Y2 ∈ G(Q)
while b is adjacent to Y2 but not Y1.

2. There is a vertex x that dominates every component in Q′, except at most one (call it T ).

PROOF: Suppose that there are two unique componentsX1, X2 ∈ G(P ) with a, b ∈ X1 andc, d ∈ X2

and componentsY1 6= Y2 andY3 6= Y4 from G(Q) such that:

• a is adjacent toY1 but not adjacent toY2,

• b is adjacent toY2 but not adjacent toY1,

• c is adjacent toY3 but not adjacent toY4,

• d is adjacent toY4 but not adjacent toY3.

Let y1 (respectively,y2, y3, y4) be a vertex inY1 (respectively,Y2, Y3, Y4) that is adjacent toa (respec-
tively, b, c, d) and notb (respectively,a, d, c). SinceH is P5-free, there must be edges(a, b) and(c, d),
otherwisea, y1, v, y2, b or c, y3, v, y4, d would beP5s. An illustration of these vertices and components
is given in Figure 2.

SupposeY2 = Y3. Thenb is not adjacent toy3, for otherwise there exists aP5 a, b, y3, c, d. Now, there
exists aP5 y1, a, b, y2, y3 (if y2 is adjacent toy3) or aP5 a, b, y2, v, y3 (if y2 is not adjacent toy3). Thus,
Y2 andY3 must be unique components. Similarly, we haveY2 6= Y4. Now sinceb, y2, v, y3, c cannot be

5



ProcedureRemoveDependencies(P ′, Q, ϕ)

if no dependencies betweenP ′ andQ

then output ϕ

elsefind x, T from Theorem 2
for each c ∈ col(P ) ∩ col(Q) do

output ReduceComponent(T , ϕ with x coloredc)
RemoveDependencies(P ′−{x}, Q, ϕ with l(x) = col(P )−col(C))

Figure 3:Algorithm to remove dependencies between two dynamic setsP ′ andQ (with no special
componentC) by creating an equivalent set of coloring instances with the dependences removed.

aP5, eitherb is adjacent toy3 or c must be adjacent toy2. WLOG, suppose the latter. Nowa, b, y2, v, y4

implies that eithera or b is adjacent toy4. If y4 is adjacent tob but nota, thena, b, y4, d, c would be a
P5 which implies thata must be adjacent toy4 anyway. Thus, we end up with aP5 a, y4, v, y2, c which
is a contradiction to the graph beingP5-free. Thus there must be at most one special componentC.

Now suppose that there is no special componentC. LetQ′ denote all components inQ that are adjacent
to some vertex inP . Let x be a vertex inP that is adjacent to the largest number of components in
Q′. Suppose thatx is not adjacent to a componentT of Q′ . Thus there is some other vertexx′ ∈ P

adjacent toT . The maximality ofx implies there is a componentS of Q such thatx is adjacent toS but
x′ is not. If x is not adjacent tox′, then there is aP5 with x, s, v, r, x′ with some verticess ∈ S, r ∈ T .
Thusx andx′ belongs to a special componentC of P - a contradiction. Thus,x must be adjacent to all
components ofQ′.

If there are two componentsA,B of Q′ that are not dominated byx, then there are adjacent vertices
a, b ∈ A, adjacent verticesc, d ∈ B such thatx is adjacent toa, c but not tob, d; but now the five
verticesb, a, x, c, d form aP5. 2

Given a list-coloring instanceφ of aP5-free graph, we will at some points need to reduce the color lists
for a given connected componentC. This can be done by considering all possible ways to colorC ’s
dominating clique orP3 (Theorem 1). Since there are a constant number of vertices insuch a domi-
nating set, we obtain a constant number of new instances thattogether are equivalent toφ. For future
reference, we call this function that returns this set of equivalent instancesReduceComponent(C, φ).
If C is empty, the function simply returnsφ.

Using this procedure along with Theorem 2, we can remove the dependencies between two dynamic
setsP andQ for a given list-coloring instanceφ. First, we find the special componentC if it exists,
and setC = ∅ otherwise. Then we callReduceComponent(C, φ) which will effectively remove
all vertices inC from P as their color lists change. Then, for each resulting coloring instanceϕ we
remove the remaining dependencies betweenP ′ = P−C andQ by applying procedureRemoveDe-
pencencies(P ′, Q, ϕ) shown in Figure 3.1. In this procedure we find a vertexx and componentT
from Theorem 2, since we know that the special componentC has already been handled. IfT does
not exist, then we setT = ∅. Now by considering each color incol(P ′) ∩ col(Q) along with the list
col(P ′)−col(Q) we can create a set of equivalent instances toϕ (as described in Section 2). If we
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modify ϕ by assigningx a color fromcol(P ′) ∩ col(Q), then all vertices inQ adjacent tox will have
their color list reduced by the color ofx. Thus, only the vertices inT may still have dependencies with
the original setP - but these dependencies can be removed by a single call toReduceComponent.
In the single remaining instance where we modifyϕ by assigningx the color listcol(P )−col(Q), we
simply repeat this process (at most|P | times) by settingP ′ = P ′−{x} until there are no remaining
dependencies betweenP andQ. Thus, each iteration ofRemoveDependencies produces a constant
number of instances with no dependencies betweenP andQ and one instance in which the size ofP ′

is reduced by one at least one.

The output of this step isO(n) list-coloring instances (that are obtained in polynomial time), with no
dependencies betweenP andQ, that together are equivalent to the original instanceφ. Since there are
a constant number of pairs of dynamic sets for each pair of fixed sets, and since there are a constant
number of pairs of fixed sets, this proves the following theorem:

THEOREM 3 Determining whether or not a P5-free graph can be colored with k-colors can be decided
in polynomial time.

4 Summary

In this paper, we obtain a theorem (Theorem 2) on the structure of P5-free graphs and use it to design
a polynomial-time algorithm that determines whether aP5-free graph can bek-colored. The algorithm
recursively uses list coloring techniques and thus its complexity is high even though it is polynomial,
as is the case with all list coloring algorithms. In a relatedpaper (in preparation), we will give a slightly
faster algorithm also based on list coloring techniques, however this algorithm provides less insight into
the structure ofP5-free graphs. It would be of interest to find a polynomial-time algorithm tok-color a
P5-free graph without using list coloring techniques.

Continuing with this vein of research, the following open problems are perhaps the next interesting
avenues for future research:

• Does there exist a polynomial time algorithm to determine whether or not aP7-free graph can
3-colored?

• Does there exist a polynomial time algorithm to determine whether or not aP6-free graph can
4-colored?

• Is the problem ofk-coloring aP7-free graph NP-complete for anyk ≥ 3?

Two other related open problems are to determine the complexities of theMAXIMUM INDEPENDENT

SET andMINIMUM INDEPENDENT DOMINATING SET problems onP5-free graphs.
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