
HAL Id: hal-00270815
https://hal.science/hal-00270815

Preprint submitted on 7 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Periodicity and Immortality in Reversible Computing
Jarkko Kari, Nicolas Ollinger

To cite this version:
Jarkko Kari, Nicolas Ollinger. Periodicity and Immortality in Reversible Computing. 2008. �hal-
00270815�

https://hal.science/hal-00270815
https://hal.archives-ouvertes.fr

Periodicity and Immortality

in Reversible Computing⋆

Jarkko Kari1 and Nicolas Ollinger2

1 Department of Mathematics, FIN-20014 University of Turku, Finland,
jkari@utu.fi

2 Laboratoire d’informatique fondamentale de Marseille (LIF),
Aix-Marseille Université, CNRS,

39 rue Joliot-Curie, 13 013 Marseille, France,
Nicolas.Ollinger@lif.univ-mrs.fr

Abstract. We investigate the decidability of the periodicity and the
immortality problems in three models of reversible computation: re-
versible counter machines, reversible Turing machines and reversible one-
dimensional cellular automata. Immortality and periodicity are proper-
ties that describe the behavior of the model starting from arbitrary ini-
tial configurations: immortality is the property of having at least one
non-halting orbit, while periodicity is the property of always eventually
returning back to the starting configuration. It turns out that periodicity
and immortality problems are both undecidable in all three models. We
also show that it is undecidable whether a (not-necessarily reversible)
Turing machine with moving tape has a periodic orbit.

Introduction

Reversible computing is the classical counterpart of quantum computing. Re-
versibility refers to the fact that there is an inverse process to retrace the com-
putation back in time, i.e., the system is time invertible and no information is
ever lost. Much of the research on reversible computation is motivated by the
Landauer’s principal which states a strict lower bound on the amount of energy
dissipation which must take place for each bit of information that is erased [1].
Reversible computation can, in principle, avoid this generation of heat.

Reversible Turing machine (RTM) was the earliest proposed reversible com-
putation model [2, 3]. Since then, reversibility has been investigated within other
common computation models such as Minsky’s counter machines [4, 5] and cel-
lular automata [6]. In particular, reversible cellular automata (RCA) have been
extensively studied due to the other physics-like attributes of cellular automata
such as locality, parallelism and uniformity in space and time of the update rule.

All three reversible computation models are Turing complete: they admit
simulations of universal Turing machines, which naturally leads to various un-
decidability results for reachability problems. In this work we view the systems,

⋆ Work supported by grants of the French ANR and Academy of Finland # 211967

2 J. Kari and N. Ollinger

however, rather differently by investigating their behavior from arbitrary start-
ing configurations. This is more a dynamical systems approach. Each device is
understood as a transformation F : X −→ X acting on its configuration space
X. In all cases studied here (counter machines, two Turing machine models –
with moving head and with moving tape – and cellular automata) space X is
endowed a topology under which F is continuous. In the cases of Turing ma-
chines with moving tape and cellular automata, it is the compact and metrizable
topology obtained as the enumerable infinite product of the discrete topology on
each finite component of a configuration. The action F may be partial, so that
it is undefined for some elements of X. Configurations on which F is undefined
are called halting. We call F immortal if there exists a configuration x ∈ X

that never evolves into a halting configuration, that is, Fn(x) is defined for all
positive integers n. In contrast, a mortal system eventually halts, regardless of
the starting configuration. We call F uniformly mortal if a uniform time bound
n exists such that Fn(x) is not defined for any x ∈ X. If F is continuous, X

compact, and the set of halting configurations open then mortality and uniform
mortality are equivalent concepts. This means that mortal Turing machines and
cellular automata are automatically uniformly mortal. In contrast, a counter
machine may be mortal without being uniformly mortal. (A simple example is
a one-counter machine where the counter value is repeatedly decremented until
it becomes zero and the machine halts.)

Periodicity, on the other hand, is defined for complete systems: systems with-
out halting configurations. We call total F : X −→ X uniformly periodic if there
is a positive integer n such that Fn is the identity map. Periodicity refers to the
property that every configuration is periodic, that is, for every x ∈ X there exists
time n such that Fn(x) = x. Periodicity and uniform periodicity are equivalent
concepts in the cases of cellular automata (Section 3.3) and Turing machines un-
der both modes (Section 2.1), while a counter machine can be periodic without
being uniformly periodic (Example 1 in Section 1.1).

In this work we are mainly concerned with decidability of these concepts.
Immortality of unrestricted (that is, not necessarily reversible) Turing machines
was proved undecidable already in 1966 by Hooper [7]. Our main result (Theo-
rem 7) is a reversible variant of Hooper’s approach where infinite searches during
counter machine simulations by a Turing machine are replaced by recursive calls
to the counter machine simulation itself with empty initial counters. Using re-
versible counter machines, the recursive calls can be unwound once the search
is complete. In a sense this leads to a simpler construction than in Hooper’s
original article.

Our result also answers an open problem of control theory from [8]. That
paper pointed out that if the immortality problem for reversible Turing machines
is undecidable, then so is observability for continuous rational piecewise-affine
planar homeomorphisms.

As another corollary we obtain the undecidability of the periodicity of Tur-
ing machines (Theorem 8). The related problem of determining if a given Turing
machine has at least one periodic orbit (under the moving tape mode) is proved

Periodicity and Immortality 3

undecidable for reversible, non-complete Turing machines, and for non-reversible,
complete Turing machines. The problem remains open under reversible and com-
plete machines. The existence of periodic orbits in Turing machines and counter
machines have been investigated before in [9, 10]. Article [9] formulated a con-
jecture that every complete Turing machine (under the moving tape mode) has
at least one periodic orbit, while [10] refuted the conjecture by providing an
explicit counter example. The counter example followed the general idea of [7]
in that recursive calls were used to prevent unbounded searches. In [10] is was
also shown that it is undecidable if a given complete counter machine has a pe-
riodic orbit. We show that this is the case even under the additional constraint
of reversibility (Theorem 6).

In Theorem 12 we reduce the periodicity problem of reversible Turing ma-
chine into the periodicity problem of one-dimensional cellular automata. The im-
mortality problem of reversible cellular automata has been proved undecidable
in [11]. Our proofs for the undecidability of immortality (Theorem 1) and pe-
riodicity (Theorem 3) among reversible counter machines follow the techniques
of [5]. Interestingly, the uniform variants of both immortality and periodicity
problems are decidable for counter machines (Theorems 2 and 4).

The paper is organized into three parts dealing with RCM (section 1), with
RTM (section 2) and with RCA (section 3). Each part consists of four subsections
on (1) definitions, (2) the immortality problem, (3) the periodicity problem, and
(4) the existence of periodic orbits. Due to page constraints most proofs are short
sketches of the main idea – referees can find full proofs in the appendix.

1 Reversible Counter Machines

1.1 Definitions

Following [5], we define special counter machine instructions for a simpler syntac-
tic characterization of local reversibility and forget about initial and accepting
states as we are only interested in dynamical properties.

Let Υ = {0,+} be the set of test values and Φ = {−, 0,+} be the set
of counter operations whose reverse are defined by −−1 = +, 0−1 = 0 and
+−1 = −. For all j ∈ Zk and φ ∈ Φ, testing τ and modifying θj,φ actions are
defined for all k ∈ Z, i ∈ Zk and v ∈ N

k as:

τ(k) =

{

0 if k = 0
+ if k > 0

θj,φ(v)(i) =







v(i)− 1 if v(i) > 0, i = j and φ = −
v(i) if i 6= j or φ = 0
v(i) + 1 if i = j and φ = +

A k-counter machine M is a triple (S, k, T) where S is a finite set of states,
k ∈ N is the number of counters, and T ⊆ S × Υ k ×Zk ×Φ× S is the transition
table of the machine. Instruction (s, u, i,−, t) is not allowed in T if u(i) = 0. A
configuration c of the machine is a pair (s, v) where s ∈ S is a state and v ∈ N

k

is the value of the counters. The machine can transform a configuration c in a
configuration c

′ in one step, noted as c ⊢ c
′, by applying an instruction ι ∈ T .

4 J. Kari and N. Ollinger

An instruction (s, u, i, φ, t) ∈ T can be applied to any configuration (s, v) where
τ(v) = u leading to the configuration (t, θi,φ(v)). The transitive closure of ⊢ is
noted as ⊢∗.

A counter machine (S, k, T) is a deterministic k-counter machine (k-DCM)
if at most one instruction can be applied from any configuration. Formally, the
transition table must satisfy the following condition:

(s, u, i, φ, t) ∈ T ∧ (s, u, i′, φ′, t′) ∈ T ⇒ (i, φ, t) = (i′, φ′, t′).

The transition function of a deterministic counter machine is the function
G : S × N

k → S × N
k which maps a configuration to the unique transformed

configuration, that is for all (s, v) ∈ S × Z
k,

G(s, v) =

{

(t, θi,φ(v)) if (s, u, i, φ, t) ∈ T and τ(v) = u

⊥ otherwise

The set of reverse instructions of an instruction is defined as follows:

(s, u, i, 0, t)−1 = {(t, u, i, 0, s)},
(s, u, i,+, t)−1 = {(t, u′, i,−, s)}, where u′(i) = +, u′(j) = u(j) for j 6= i,

(s, u, i,−, t)−1 = {(t, u, i,+, s), (t, u′, i,+, s)}, where u′(i) = 0, u′(j) = u(j) for j 6= i.

The reverse T−1 of a transition table T is defined as T−1 =
⋃

ι∈T ι−1. The reverse
of counter machine M = (S, T) is the machine M−1 = (S, T−1). A reversible
k-counter machine (k-RCM) is a deterministic k-counter machine whose reverse
is deterministic.

Example 1. The complete DCM ({l, l′, r, r′} , 2, T) with the following T is locally
periodic but not periodic: T = { (l, (0, ∗), 0, 0, r), (r, (∗, 0), 1, 0, l), (l, (+, ∗), 0,−, l′),
(r, (∗,+), 1,−, r′), (l′, (∗, ∗), 1,+, l), (r′, (∗, ∗), 0,+, r) } (∗: any value). In states
l, l′ tokens are moved from the first counter to the second, and in states r, r′ back
to the first counter. Its reverse is obtained by swapping l↔ r and l′ ↔ r′. ⊓⊔

1.2 Undecidability of the Immortality Problem

Theorem 1. It is undecidable whether a given 2-RCM is immortal.

Proof sketch. By [7] the immortality problem is undecidable among 2-CM, while
[5] provides an effective immortality/mortality preserving conversion of an arbi-
trary k-CM into a 2-RCM. �

Remark. The 2-RCM constructed in the proof through Morita’s construction [5]
can be forced to have mortal reverse. This is obtained by adding in the original
CM an extra counter that is being continuously incremented.

Theorem 2. It is decidable whether a given k-CM is uniformly mortal.

Periodicity and Immortality 5

Proof sketch. Induction on k: The claim is trivial for k = 0. For the inductive
step, let M be a k-CM, k ≥ 1. For i = 1, 2, . . . , k set counter i to be always
positive and test whether the so obtained (k − 1)-CM Mi is uniformly mortal.
If all k recursive calls return a positive answer, set n to be a common uniform
mortality time bound for all k machines Mi. Since counters can be decremented
by one at most, we know that configurations of M with some counter value ≥ n

are mortal. Immortality hence occurs only if there is a period within the finite
number of configurations with all counters < n. �

1.3 Undecidability of the Periodicity Problem

Theorem 3. It is undecidable whether a given 2-RCM is periodic.

Proof sketch. Let M = (S, 2, T) be a given 2-RCM whose reverse is mortal. In
particular, there are no periodic configurations in M . According to the remark
after Theorem 1 it is enough to effectively construct a complete 2-RCM M ′ that
is periodic if and only if M is mortal. Machine M ′ has state set S×{+,−} where
states (s,+) and (s,−) represent M in state s running forwards or backwards
in time, respectively. In a halting configuration the direction is switched. �

Analogously to Theorem 2 one can prove the following result.

Theorem 4. It is decidable whether a given k-CM is uniformly periodic.

1.4 Periodic Orbits

Theorem 5 ([10]). It is undecidable whether a given complete 2-DCM admits
a periodic configuration.

Theorem 6. It is undecidable whether a given complete 3-RCM admits a peri-
odic configuration, and it is undecidable whether a given (not necessarily com-
plete) 2-RCM admits a periodic configuration.

Proof sketch. We first prove the result for complete 3-RCM. The construction
in [5] shows that it is undecidable for a given 2-RCM M = (S, 2, T) without
periodic configurations and two given states s1 and s2 whether there are counter
values n1, n2, m1 and m2 such that (s1, n1, m1) ⊢

∗ (s2, n2, m2). By removing all
transitions from state s2 and all transitions into state s1 we can assume without
loss of generality that all configurations (s1, n1, m1) and (s2, n2, m2) are halting
in M−1 and M , respectively. Using a similar idea as in the proof of Theorem 3
we effectively construct a 3-RCM M ′ = (S × {+,−}, 3, T ′) that simulates M

forwards and backwards in time using states (s,+) and (s,−), respectively, and
counters 1 and 2. The direction is switched at halting configurations. In addition,
counter 3 is incremented at halting configurations, except when the state is s1

or s2.
Machine M ′ is clearly reversible and complete. Moreover, since M has no

periodic configurations, the only periodic configurations of M ′ are those where

6 J. Kari and N. Ollinger

M is simulated back and forth between states s1 and s2. This completes the
proof for 3-RCM.

Using the construction of [5] a three counter RCM can be converted into a
2-RCM and that conversion preserves periodic orbits. �

The 2-RCM provided by the construction in [5] is not complete. It seems
likely that it can be modified to give a complete 2-RCM, but details remain to
be worked out:

Conjecture 1. It is undecidable whether a given complete 2-RCM admits a pe-
riodic configuration.

2 Reversible Turing Machines

2.1 Definitions

The classical model of Turing machines consider machines with a moving head
(a configuration is a triple (s, z, c) ∈ S × Z × ΣZ). Following Kůrka [9], we
consider machines with a moving tape as our base model to endow the space
of configurations with a compact topology. Following [5], we define two kinds of
instructions for a simpler syntactic characterization of local reversibility.

Let ∆ = {←,→} be the set of directions with inverses (←)−1 =→ and
(→)−1 =←. For all δ ∈ ∆ and a ∈ Σ, moving σδ and writing µa actions are
defined for all c ∈ ΣZ and z ∈ Z as:

σδ(c)(z) =

{

c(z + 1) if δ =→
c(z − 1) if δ =←

µa(c)(z) =

{

a if z = 0
c(z) if z 6= 0

A Turing machine M is a triple (S, Σ, T) where S is a finite set of states,
Σ is a finite set of symbols, and T ⊆ S × ∆ × S ∪ S × Σ × S × Σ is the
transition table of the machine. A configuration c of the machine is a pair (s, c)
where s ∈ S is a state and c ∈ ΣZ is the content of the tape. The machine can
transform a configuration c in a configuration c

′ in one step, noted as c ⊢ c
′, by

applying an instruction ι ∈ T . An instruction (s, δ, t) ∈ T ∩S ×∆×S is a move
instruction of the machine, it can be applied to any configuration (s, c), leading
to the configuration (t, σδ(c)). An instruction (s, a, t, b) ∈ T ∩ S × Σ × S × Σ

is a matching instruction of the machine, it can be applied to any configuration
(s, c) where c(0) = a, leading to the configuration (t, µb(c)).

A Turing machine (S, Σ, T) is a deterministic Turing machine (DTM) if
at most one instruction can be applied from any configuration. Formally, the
transition table must satisfy the following conditions:

(s, δ, t) ∈ T ∧ (s′, a′, t′, b′) ∈ T ⇒ s 6= s′

(s, δ, t) ∈ T ∧ (s, δ′, t′) ∈ T ⇒ δ = δ′ ∧ t = t′

(s, a, t, b) ∈ T ∧ (s, a, t′, b′) ∈ T ⇒ t = t′ ∧ b = b′

The local transition function of a DTM is the function f : S ×Σ → S ×∆∪
S×Σ∪{⊥} defined for all (s, a) ∈ S×Σ as follows. The associated partial global

Periodicity and Immortality 7

transition function G : S × ΣZ → S × ΣZ maps a configuration to the unique
transformed configuration, that is for all (s, c) ∈ S ×ΣZ,

f(s, a) =







(t, δ) if (s, δ, t) ∈ T

(t, b) if (s, a, t, b) ∈ T

⊥ otherwise
G(s, c) =

{

(t, σδ(c)) if f(s, c(0)) = (t, δ)
(t, µb(c)) if f(s, c(0)) = (t, b)

Lemma 1. If all configurations of a DTM are periodic or mortal then there
is a uniform bound n such that for all configurations (s, c) either Gn(s, c) is
undefined or Gt(s, c) = (s, c) for some 0 < t < n. In particular, a periodic DTM
is uniformly periodic and a mortal DTM is uniformly mortal.

Proof. For every n > 0 let Un = {(s, c) | Gn(s, c) = (s, c) or Gn(s, c) undef} be
the set of configurations that are mortal or periodic at time n. Sets Un are open
so U1, U2, . . . is an open cover of the compact set of all configurations. It has a
finite subcover. �

One might think that periodicity characterizes a different set of machines if
one considers Turing machines with a moving head instead of a moving tape
but it is not the case. The global transition function with moving head H :
S × Z × ΣZ → S × Z × ΣZ is defined so that for each (s, z, c) ∈ S × Z × ΣZ,
H(s, z, c) = (s′, z′, c′) where G(s, σz

→(c)) = (s′, σz′

→(c′)). A DTM is periodic with
moving head if for each configuration c, there exists t ∈ N such that Ht(c) = c

or equivalently if there exists some t ∈ N such that Ht = Id.

Lemma 2. A DTM is periodic if and only if it is periodic with moving head.

Proof. Assume that Σ has at least two elements. For each t ∈ N and (s, z, c) ∈
S × Z × ΣZ, Ht(s, z, c) = (s′, z′, c′) where Gt(s, σz

→(c)) = (s′, σz′

→(c′)). Thus,
if Ht = Id then Gt = Id. Conversely, let Gt = Id. By definition, Ht(s, z, c) =
(s, z′, c′) for some z′ such that σz

→(c) = σz′

→(c′). Moreover, as the machine acts
locally, for all d and k such that c|[z−t,z+t] = d|[k−t,k+t], Ht(s, k, d) = (s, k +

z′ − z, d′) where d′ = σz′−z
→ (d′). If z′ − z 6= 0, one might choose d such that

d(k + t(z′ − z)) 6= d(k + (t + 1)(z′ − z)), contradicting the hypothesis. Thus,
Ht = Id. �

The reverse of an instruction is defined as follows: (s, δ, t)−1 = (t, δ−1, s) and
(s, a, t, b)−1 = (t, b, s, a). The reverse T−1 of a transition table T is defined as
T−1 =

{

ι−1
∣

∣ι ∈ T
}

. The reverse of Turing machine M = (S, Σ, T) is the ma-
chine M−1 = (S, Σ, T−1). A reversible Turing machine (RTM) is a deterministic
Turing machine whose reverse is deterministic.

Lemma 3. It is decidable whether a given Turing machine is reversible.

Proof. It is sufficient to syntactically check the transition table. �

Lemma 4. The reverse of a mortal RTM is mortal.

Proof. The uniform bound is valid for both the mortal RTM and its reverse. �

8 J. Kari and N. Ollinger

Lemma 5. The reverse of a complete RTM is a complete RTM. In particular,
a complete RTM is surjective.

Proof. A DTM is complete if and only if n|Σ|+ m = |S||Σ| where n and m are
the numbers of move and matching instructions, respectively. The claim follows
from the fact that M and M−1 always have the same numbers of move and
matching instructions. �

2.2 Undecidability of the Immortality Problem

Theorem 7. It is undecidable whether a given RTM is immortal.

Proof sketch. For a given 2-RCM without periodic configurations, and given
initial state s0, we effectively construct a reversible Turing machine that is mor-
tal if and only if the 2-RCM halts from the initial configuration (s0, 0, 0). The
Theorem then follows from [5], where it was shown that the halting problem is
undecidable for 2-RCM. Note that our additional constraint that the 2-RCM has
no periodic configurations can be easily established by having an extra counter
that is incremented on each step of the counter machine. This counter can then
be incorporated in the existing two counters with the methods of [5].

As a first step we do a fairly standard simulation of a 2-CM by a TM.
Configuration (s, a, b) where s is a state and a, b ∈ N is represented as a block
”@1ax2by” of length a + b + 3, and the Turing machine is positioned on the
symbol ”@” in state s. A simulation of one move of the CM consists of (1)
finding delimiters ”x” and ”y” on the right to check if either of the two counters
is zero, and (2) incrementing or decrementing the counters as determined by the
CM. The TM is then returned to the beginning of the block in the new state of
the CM. If the CM halts then also the TM halts. All this can be done reversibly
if the simulated CM is reversible.

The TM constructed as outline above has the problem that it has immortal
configurations even if the CM halts. These are due to the unbounded searches
for delimiter symbols ”@”, ”x” or ”y”. Searches are needed when testing whether
the second counter is zero, as well as whenever either counter is incremented or
decremented.

Unbounded searches lead to infinite searches if the symbol is not present in
the configuration. (For example, searching to the right for symbol ”x” when the
tape contains ”@111. . . ”.) To prevent such infinite searches we follow the idea
of [7], also employed in [10]. Instead of a straightforward search using a loop,
the search is done by performing a recursive call to the counter machine from
its initial configuration (s0, 0, 0). More precisely, we first make a bounded search
of length three to see if the delimiter is found within next three symbols. If the
delimiter is not found, we start a recursive simulation of the CM by writing
”@xy” over the next three symbols, step on the new delimiter symbol ”@”, and
enter the initial state s0. This begins a nested simulation of the CM.

In order to be able to continue the higher level execution after returning from
the recursive search, the present state of the TM needs to be written on the tape

Periodicity and Immortality 9

when starting the recursive call. For this purpose we increase the tape alphabet
by introducing several variants ”@α” of the start delimiter ”@”. Here α is the
Turing machine state at the time the search was begun. When returning from a
successful recursive search, the higher level computation can pick up from where
it left off by reading the state α from the delimiter ”@α”.

If the recursive search procedure finds the delimiter this is signalled by re-
versing the search. Once returned to the beginning, the three symbol initial
segment ”@xy” is moved three positions to the right and the process is repeated.
The repeated applications of recursive searches, always starting the next search
three positions further right, will eventually bring the machine on the delimiter
it was looking for, and the search is completed.

On the other hand, if the CM halts during a recursive search then the TM
halts. This always happens when a sufficiently long search is performed using a
CM that halts from its initial configuration.

With some additional tricks one can make the TM outlined above reversible,
provided the CM is reversible. Now we reason as follows: If the initial configura-
tion (s0, 0, 0) is immortal in the CM then the TM has a non-halting simulation
of the CM. So the TM is not mortal. Conversely, suppose that the CM halts in k

steps but the TM has an immortal configuration. The only way for the TM not
to halt is to properly simulate the CM from some configuration (s, a, b), where
the possibilities a = ∞ and b = ∞ have to be taken into account. Since the
CM has no periodic configurations, one of the two counters necessarily obtains
arbitrarily large values during the computation. But this leads to arbitrarily long
recursive searches, which is not possible since each such search halts within k

steps. �

Remarks. (1) The RTM constructed in the proof has no periodic configurations.
So the undecidability of the immortality problem holds among RTM without any
periodic configurations. (2) Add to the 2-RCM a new looping state s1 in which
the first counter is incremented indefinitely. We can also assume without loss of
generality that the 2-RCM halts only in state s2. Then the RTM constructed in
the proof has computation (s1, c1) ⊢

∗ (s2, c2) for some c1, c2 ∈ ΣZ if and only if
the 2-RCM halts from the initial configuration (s0, 0, 0).

These detailed observations about the proof will be used later in the proofs
of Theorems 8 and 9.

2.3 Undecidability of the Periodicity Problem

Theorem 8. It is undecidable whether a given complete RTM is periodic.

Proof sketch. For a given RTM A = (S, Σ, T) without periodic configurations we
effectively construct a complete RTM A′ = (S × {+,−}, Σ, T ′) that is periodic
if and only if every configuration of A is mortal. States (s,+) and (s,−) of
A′ are used to represent A in state s running forwards or backwards in time,
respectively. In a halting configuration the direction is switched. The result now
follows from Theorem 7 and the first remark after its proof. �

10 J. Kari and N. Ollinger

2.4 Periodic Orbits

Theorem 9. It is undecidable whether a given (non-complete) RTM admits a
periodic configuration.

Proof. Remark (2) after the proof of Theorem 7 pointed out that it is unde-
cidable for a given RTM A = (S, Σ, T) without periodic configurations, and
two given states s1, s2 ∈ S whether there are configurations (s1, c1) and (s2, c2)
such that (s1, c1) ⊢

∗ (s2, c2). By removing all transitions from state s2 and
all transitions into state s1 we can assume without loss of generality that all
configurations (s1, c1) and (s2, c2) are halting in A−1 and A, respectively. Us-
ing a similar idea as in the proof of Theorem 8 we effectively construct an RTM
A′ = (S×{+,−}, Σ, T ′) in which A is simulated forwards and backwards in time
using states (s,+) and (s,−), respectively. But now the direction is swapped from
”-” to ”+” only in state s1, and from ”+” to ”-” in state s2. In other halting
situations of A, also A′ halts. Clearly ((s1,+), c1) is periodic in A′ if and only if
(s1, c1) ⊢

∗ (s2, c2) for some c2 ∈ ΣZ. No other periodic orbits exist in A′. �

Theorem 10. It is undecidable whether a given complete DTM admits a peri-
odic configuration.

Proof. In [10] a complete DTM over the binary tape alphabet was provided that
does not have any periodic configurations. This easily gives an analogous DTM
for any bigger tape alphabet. For a given RTM A = (S, Σ, T) we effectively
construct a complete DTM that has a periodic configuration if and only if A

has a periodic configuration. The result then follows from Theorem 9. Let B =
(S′, Σ, T ′) be the fixed complete DTM without periodic configurations from [10],
S∩S′ = ∅. The complete DTM we construct has state set S∪S′ and its transitions
includes T ∪ T ′, and in addition a transition into a state s′ ∈ S′ whenever A

halts. It is clear that the only periodic configurations are those that are periodic
already in A. �

Conjecture 2. A complete RTM without a periodic point exists. Moreover, it is
undecidable whether a given complete RTM admits a periodic configuration.

3 Reversible Cellular Automata

3.1 Definitions

A one-dimensional cellular automaton A is a triple (S, r, f) where S is a finite
state set, r ∈ N is the neighborhood radius and f : S2r+1 −→ S is the local update
rule of A. Elements of Z are called cells, and a configuration of A is an element of
SZ that assigns a state to each cell. Configuration c is turned into configuration
c′ in one time step by a simultaneous application of the local update rule f in
the radius r neighborhood of each cell:

c′(i) = f(c(i− r), c(i− r + 1), . . . , c(i + r − 1), c(i + r)) for all i ∈ Z.

Periodicity and Immortality 11

Transformation G : c 7→ c′ is the global transition function of A. The Curtis-
Hedlund-Lyndom -theorem states that a function SZ −→ SZ is a global transi-
tion function of some CA if and only if it is continuous and commutes with the
shift σ, defined by σ(c)i = ci+1 for all c ∈ SZ and i ∈ Z.

Cellular automaton A is called reversible if the global function G is bijective
and its inverse G−1 is a CA function. We call A injective, surjective and bi-
jective if G is injective, surjective and bijective, respectively. Injectivity implies
surjectivity, and bijectivity implies reversibility. See [6] for more details on these
classical results.

3.2 Undecidability of the Immortality Problem

Let some states of a CA be identified as halting. Let us call a configuration c

halting if c(i) is a halting state for some i. We call c locally halting if c(0) is a
halting state. These two definitions reflect two different ways that one may use
to define an accepting computation in CA: either acceptance happens when a
halting state appears somewhere, in an unspecified cell, or one waits until a halt-
ing state shows up in a fixed, predetermined cell. A configuration c is immortal
(locally immortal) for G if Gn(c) is not halting (locally halting, respectively)
for any n ≥ 0. CA function G is immortal (locally immortal) if there exists an
immortal (locally immortal) configuration.

Theorem 11 ([11]). It is undecidable whether a given reversible one-dimensional
CA is immortal (locally immortal).

3.3 Undecidability of the Periodicity Problem

In cellular automata periodicity and uniform periodicity are equivalent. Indeed,
suppose that a period n that is common to all configurations does not exist.
Then for every n ≥ 1 there is cn ∈ SZ such that Gn(cn) 6= cn. Each cn has a
finite segment pn of length 2rn+1 that is mapped in n steps into a state that is
different from the state in the center of pn. Configuration c that contains a copy
of pn for all n, satisfies Gn(c) 6= c for all n, and hence such c is not periodic.

Theorem 12. It is undecidable whether a given one-dimensional CA is periodic.

Proof sketch. For a given complete reversible Turing machine M = (S, Σ, T)
we effectively construct a one-dimensional reversible CA A = (Q, 2, f) that is
periodic if and only if M is periodic. The result then follows from Theorem 8.
The state set

Q = Σ × ((S × {+,−}) ∪ {←,→})

consists of two tracks: The first track stores elements of the tape alphabet Σ

and it is used to simulate the content of the tape of the Turing machine, while
the second track stores the current state of the simulated machine at its present
location, and arrows ← and → in other positions pointing towards the position
of the Turing machine on the tape. The arrows are needed to prevent several

12 J. Kari and N. Ollinger

Turing machine heads accessing the same tape location and interfering with
each other’s computation. The state is associated a symbol ’+’ or ’-’ indicating
whether the reversible Turing machine is being simulated forwards or backwards
in time. The direction is switched if the Turing machine sees a local error, i.e.,
an arrow pointing away from the machine.

It follows from the reversibility of M that A is a reversible CA. If M has
a non-periodic configuration c then A has a non-periodic configuration which
simulates the computation from c. Conversely, if M is periodic it is uniformly
periodic under the moving head mode. It easily follows that all configurations of
A are periodic. �

A one-dimensional RCA is equicontinuous if and only if it is periodic, so we have

Corollary 1. It is undecidable whether a given one-dimensional reversible CA
is equicontinuous.

3.4 Periodic Orbits

Every cellular automaton has periodic orbits so the existence of periodic orbits
is trivial among cellular automata.

References

1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development 5 (1961) 183–191

2. Lecerf, Y.: Machines de turing réversibles. C. R. Acad. Sci. Paris 257 (1963)
2597–2600

3. Bennett, C.B.: Logical reversibility of computation. IBM Journal of Research and
Development 17(6) (1973) 525–532

4. Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall, Englewoods
Cliffs (1967)

5. Morita, K.: Universality of a reversible two-counter machine. Theor. Comput. Sci.
168(2) (1996) 303–320

6. Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334 (2005)
3–33

7. Hooper, P.K.: The undecidability of the turing machine immortality problem. J.
Symb. Log. 31(2) (1966) 219–234

8. Collins, P., van Schuppen. J. H.: Observability of hybrid systems and turing ma-
chines. In: 43rd IEEE Conference on Decision and Control. Volume 1., IEEE Press
(2004) 7 – 12

9. Kůrka, P.: On topological dynamics of turing machines. Theor. Comput. Sci.
174(1-2) (1997) 203–216

10. Blondel, V.D., Cassaigne, J., Nichitiu, C.M.: On the presence of periodic configu-
rations in turing machines and in counter machines. Theor. Comput. Sci. 289(1)
(2002) 573–590

11. Kari, J., Lukkarila, V.: Some undecidable dynamical properties for one-dimensional
reversible cellular automata. To appear (2008)

Periodicity and Immortality 13

A Full Proofs

These appendices contains material for the referees. Appendix A contains full
proofs for some sketched proofs omitted due to page constraints. Appendix B
contains basic syntax and reference to further material developed by the au-
thors for programming reversible turing machines and simulate the machine of
theorem 7.

14 J. Kari and N. Ollinger

Proof of Theorem 1 (RCM immortality)

Hooper’s article [7] contains a comment that the immortality problem of Turing
machines can be reduced to the immortality problem of counter machines. But
there is a simple direct argument for the undecidability of counter machine
immortality, based on an idea from [10]: For a given 2-CM M = (S, 2, T) and
initial state s0 ∈ S one effectively construct the following 4-CM M ′ that is
mortal if and only if M halts from the initial configuration (s0, 0, 0).

Machine M ′ performs bounded simulations of M using 4 counters: Counters
1 and 2 represent the two counters of M . Counters 3 and 4 bound the length of
the simulation of M : Tokens are moved from counter 3 to counter 4 and back.
Simulation of M is restarted from the initial configuration (s0, 0, 0) whenever
counter 3 becomes empty. The length of the simulation cycle is n3 + n4, i.e. the
total number of tokens in counters 3 and 4. Whenever the simulation is restarted
a new token is added to counter 4, so that the length of the simulation cycle
keeps increasing. It is clear that M ′ has an immortal configuration if and only
if configuration (s0, 0, 0) is immortal in M .

Due to Minsky’s classical result on counter machines [4] the halting problem
of 2-CM from initial configuration (s0, 0, 0) is known to be undecidable — hence
we conclude that it is undecidable whether a given 4-CM is immortal.

Using the techniques of [5] the counter machine can effectively be made
reversible and the number of counters can effectively be reduced to two without
changing the mortality status of the machine. Hence Theorem 1 follows.

�

Periodicity and Immortality 15

Proof of Theorem 4 (decidability of uniform periodicity in CM)

Let M be a given k-CM. We prove using induction on k that an algorithm exists
that tests M for uniform periodicity and that returns a period.

1◦ If k = 0 then the configuration space if finite and can be effectively checked.

2◦ (Inductive step) Let k > 0 and suppose that an algorithm exists to check
the unform periodicity of given (k − 1)-CM. For every i = 1, 2, . . . k, construct
the (k − 1)-CM Mi obtained from M by removing counter i and pretending in
all transitions that counter i has always positive value. This corresponds to the
idea of having a very large value in counter i. Clearly, if M is uniformly periodic
then Mi are uniformly periodic. So we recursively check if all Mi are uniformly
periodic. If any one is not, we can conclude that M is not uniformly periodic
either.

Suppose then that each Mi is uniformly periodic with period pi. Note that
this does not yet imply that all configurations of M with large value in counter i

are periodic – it can namely happen that the value in counter i gets incremented
or decremented in otherwise periodic orbits. To remove that possibility we set
counter i to value pi, set other k − 1 counters to values ≤ pi (and repeat the
test for all combinations of such values in all counters) and test whether after
pi iterations of M counter i has returned to value pi. If not, we know that M is
not uniformly periodic.

Next we set p = lcm(p1, p2, . . . , pk) so that we know that all configurations
where some counter has value ≥ p is periodic with period p. All that remains to
be done is to check for every configuration c with all counters < p that either
c is periodic with period p or that c is periodic in such a way that all counter
values remain < p through the iteration starting at c. �

16 J. Kari and N. Ollinger

Proof of Theorem 7 (RTM immortality)
In the core of the paper, we gave a sketch of the proof involving the proper

transformation of a given 2-RCM into a RTM. We will explain here the details
of the construction and how it should be precisely done so that the obtained
RTM verifies all hypothesis.

We provide the reader with two main arguments. First, we describe the syn-
tactic form of the part of the tape already visited by the head of the machine
since the beginning of the computation. Second, we describe precisely the ma-
chine by giving building blocks and their invariants.

Terra cognita The machine is constructed in such a way that the terra cognita,
the part of the configuration that has been visited by the machine head since
the beginning of the computation, always (re)enters a k-depth well-parenthesis
word S as described by the following grammar in a bounded number of steps.

S ← S1 | S2 | S12 | S12

S1 ← 1∗Pk1
∗ | @α1

∗Pk1
∗

S2 ← 2∗Pk2
∗ | 2∗Pk2

∗y

S12 ← 1∗Pk1
∗x2∗ | @α1

∗Pk1
∗x2∗ | 1∗Pk1

∗x2∗y

S12 ← 1∗x2∗Pk2
∗ | @α1

∗x2∗Pk2
∗ | 1∗x2∗Pk2

∗y

Pk ← @α1
∗Pk−11

∗x2∗y | @α1
∗x2∗Pk−12

∗y

P0 ← @αxy

Moreover, the only local transformations the head does on terra cognita are:

– replace 111 or 222 by @αxy (add a new level);
– replace 1x2 by 11x (during increment counter 1);
– replace 2y1 or 2y2 by 22y (increment counter);
– replace @αxy by 111 or 222 as expected by surroundings (remove a level);
– replace 11x by 1x2 as expected by surroundings (during decrement counter

1);
– replace 22y by 2y1 or 2y2 as expected by surroundings (decrement counter);

These transformations ensure terra cognita is always well formed.

Constructing the machine We start with some hypothesis on checking and
from there build counter machine simulator and effective checking machine. All
the constructed machines are reversible and halt on unspecified configurations.
The syntax for the following descriptions use the Gni programming language
described in appendix B. The program and simulators can be found following
instructions in appendix B.

Checking 1 When it returns, [s|check1|t〉 verifies s. @α1
mx ⊢ @α1

mx, t . If it
does not return, either it diverges on s. @α1

ω or it halts.

Periodicity and Immortality 17

Checking 2 When it returns, [s|check2|t〉 verifies s. x2ny ⊢ x2ny, t . If it does
not return, either it diverges on s. x2ω or it halts.

Bounded search Bounded search is the key part of the construction calling
checking recursively.

Bounded search 1 When it does not halt, [s|search1|t0, t1, t2〉 verifies s. @α1
mx ⊢

@α1
mx, t where k = m mod 3 or diverges into check1 on s. @α1

ω. Notice that if
the first call to check1 in the loop returns, all subsequent calls will also return
and the search will eventually return.

1 def [s|search1|t0, t1, t2〉 :
2 s. @α ⊢ @α, l
3 l .→, u
4 u. x ⊢ x, t0

5 | 1x ⊢ 1x, t1

6 | 11x ⊢ 11x, t2

7 | 111 ⊢ 111, c
8 call [c|check1|p〉 from 1

9 p. 111 ⊢ 111, l

Bounded search 2 When it does not halt, [s|search2|t0, t1, t2〉 verifies s. x2ny ⊢
x2ny, t where k = n mod 3 or diverges into check2 on s. x2ω. Notice that if the
first call to check2 in the loop returns, all subsequent calls will also return and
the search will eventually return.

1 def [s|search2|t0, t1, t2〉 :
2 s. x ⊢ x, l
3 l .→, u
4 u. y ⊢ y, t0

5 | 2y ⊢ 2y, t1

6 | 22y ⊢ 22y, t2

7 | 222 ⊢ 222, c
8 call [c|check2|p〉 from 2

9 p. 222 ⊢ 222, l

CM instruction The counter machine simulation is quite standard, one has
to ensure that bounded searches are used and that the instruction machines are
reversible.

CM instruction test counter 1 [s|test1|z , p〉 verifies s. @αx ⊢ @αx, z and
s. @α1 ⊢ @α1, p.

18 J. Kari and N. Ollinger

1 def [s|test1|z , p〉 :
2 s. @αx ⊢ @αx, z
3 | @α1 ⊢ @α1, p

CM instruction test counter 2 [s|test2|z , p〉 verifies s. @α1
nxy ⊢ @α1

nxy, z
and s. @α1

nx2 ⊢ @α1
nx2, p and diverges into check1 on s. @α1

ω.

1 def [s|endtest2|z , p〉 :
2 s. xy ⊢ xy, z
3 | x2 ⊢ x2, p

1 def [s|test2|z , p〉 :
2 [s|search1|t0, t1, t2〉
3 [t0|endtest2|z 0, p0〉
4 [t1|endtest2|z 1, p1〉
5 [t2|endtest2|z 2, p2〉
6 〈z 0, z 1, z 2|search1|z]
7 〈p0, p1, p2|search1|p]

CM instruction increment/decrement counter 1/2 The principle is the
same as form testing: we use bounded search and ensure reversibility. The full
details are given in the Gnirut toolkit.

CM simulator After initializing the tape, just use the instruction machines
using one small trick on test instructions to ensure reversibility if the CM is
reversible.

Checking Checking simply consists in simulating CM until collision and then
reverting back to initial position.

1 fun [s|checkα|t〉 :
2 [s|RCMα|h1, h2, . . .〉
3 〈h1, h2, . . .|RCMα|t]

When it does not halt, [s|check1|t〉 verifies s. @α1
mx ⊢ @α1

mx, t or diverges
on (or halts on a prefix of) s. @α1

ω. If it diverges, it executes [s|RCMα|h1, h2, . . .〉
on segments of unbounded size, thus the RCM does not halt.

Symmetrically, when it does not halt, [s|check2|t〉 verifies s. x2ny ⊢ x2ny, t or
diverges on (or halts on a prefix of) s. x2ω. If it diverges, it executes [s|RCMα|h1, h2, . . .〉
on segments of unbounded size, thus the RCM does not halt.

Periodicity and Immortality 19

Proof of Theorem 8 (RTM periodicity)

For a given RTM A = (S, Σ, T) we effectively construct a complete RTM A′ =
(S×{+,−}, Σ, T ′) that is periodic if and only if every configuration of A is either
periodic or mortal. States (s,+) and (s,−) are used to represent A in state s

running forwards or backwards in time, respectively. In a halting configuration
the direction is switched. More precisely, let f and f−1 be the local transition
functions of A and A−1, respectively. Then the transition table T ′ is constructed
so that the local transition function f ′ of A′ is

f ′((s,+), a) =







((t, +), δ) if f(s, a) = (t, δ)
((t, +), b) if f(s, a) = (t, b)
((s,−), a) if f(s, a) = ⊥

f ′((s,−), a) =







((t,−), δ) if f−1(s, a) = (t, δ)
((t,−), b) if f−1(s, a) = (t, b)
((s,+), a) if f−1(s, a) = ⊥

It is easy to see that A′ is complete and reversible. If all configurations are
periodic or mortal in A then they are also periodic or mortal in A−1. It follows
that all configurations are periodic in A′. Conversely, suppose that (s, c) is a
configuration of A that is neither periodic nor mortal. Then ((s,+), c) is not
periodic in A′. We conclude that A′ is periodic if and only if all configurations of
A are either periodic or mortal. According to the first remark after Theorem 7
we may assume that A has no periodic configurations. In this case periodicity of
A′ is equivalent to mortality of A, and the result follows from Theorem 7. �

20 J. Kari and N. Ollinger

Proof of Theorem 12 (RCA periodicity)

For a given complete reversible Turing machine M = (S, Σ, T) we effectively
construct a one-dimensional reversible CA A = (Q, 2, f) that is periodic if and
only if M is periodic. The state set

Q = Σ × ((S × {+,−}) ∪ {←,→})

consists of two tracks: The first track stores elements of the tape alphabet Σ

and it is used to simulate the content of the tape of the Turing machine, while
the second track stores the current state of the simulated machine at its present
location, and arrows ← and → in other positions pointing towards the position
of the Turing machine on the tape. The arrows are needed to prevent several
Turing machine heads accessing the same tape location and interfering with
each other’s computation. The state is associated a symbol ’+’ or ’-’ indicating
whether the reversible Turing machine is being simulated forwards or backwards
in time.

The local update rule f only can change the state of a cell whose radius-one
neighborhood contains a Turing machine state on the second track. Let i be a
cell that contains Turing machine state on the second track, and let i + δ be the
position of the Turing machine after its next move, where δ ∈ {−1, 0, 1}. Note
that the next move is forward or backward in time depending on whether the
symbol associated with the state is ’+’ or ’-’, respectively.

The move consists of possibly changing the tape symbol on the first track
in position i, writing the new state of M in cell i + δ and writing a left or
right arrow in position i depending on whether δ = −1 or δ = +1, respectively.
These instructions are as indicated by the local transition function of the Turing
machine.

But the move is executed in the CA only if the tape looks locally correct,
that is, the nearby cells have arrows pointing towards the TM. More precisely,
the second track of cells i − 1 and i + 1 must contain a right and left arrow,
respectively, and

• if δ = −1 then position i− 2 contains a right arrow, and
• if δ = +1 then position i + 2 contains a left arrow.

These conditions guarantee that the surrounding arrows correctly point to the
Turing machine head before and after the move. If any of these conditions is not
satisfied then instead of the regular move by the Turing machine, the symbol
’+’ or ’-’ is swapped so that the direction of the simulation is reversed.

It follows from the reversibility of M that A is a reversible CA. If M is not
periodic then it has a non-periodic configuration (s, c) ∈ S×ΣZ. Clearly A then
has a non-periodic configuration whose first tract reads c and the second track
reads ω → s←ω.

Conversely, assume that M is periodic, with period p. Let c ∈ QZ be an
arbitrary configuration of A. Configuration c is only changed around cells that
contain a TM state, but there may be any number of such cells. However, due to

Periodicity and Immortality 21

the left and right arrows of the second track, different Turing machine simulations
cannot interfere with each other: All activity is constrained within segments of
the form →n s←m where n, m ∈ N ∪ {∞} and s ∈ S. In each such segment the
Turing machine either acts periodically with period p, or before time p reaches
the end of the segment and reverses. As the inverse TM is also periodic with
period p, it is clear that in the second case another reverse will take place and
the action is periodic with period at most 2p. Since all segments are periodic
with period at most 2p, the CA is periodic with period (2p)!.

The result now follows from Theorem 8. �

22 J. Kari and N. Ollinger

Periodicity and Immortality 23

B Programming with RTM

In order to precisely define and test our constructions for theorem 7, the need
for a specific programming language quickly came to our mind. In order to
achieve these goal, we developed the Gnirut toolkit. The toolkit and precise
informations on how to use it, plus sample programs associated to theorem 7
can be found at the following address:

http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/

To facilitate reading of the construction for theorem 7, we copy here the main
syntax description from the Gnirut manual:

B.1 Basics statements

A Gni program is a sequence of statements. Each statement is written on a
separate line. As we will see when discussing macros, the indentation matters in
a Gni program. Comments can be added to statements: starting by a # symbol,
the comment run until the end of the line. Comments are just ignored by the
interpreter.

In a Gni program, states and symbols are represented by identifiers: non-
empty sequences of letters (lowercase or uppercase, case-sensitive), digits, un-
derscore, dot and prime (more precisely, any sequence matching the regular
expression [.a-zA-Z0-9_’]*[a-zA-Z0-9_’]). The set of states and symbols of
the machine defined by a program is the set of states and symbols appearing in
its statements.

The syntax of basic statements is the following:

s. <-, s’ move instruction (s,←, s′);
s. ->, s’ move instruction (s,→, s′);
s. a:b, s’ matching instruction (s, a, b, s′).

When not describing precise syntax, we will give programs in a stylized form
like in the following example. Notice that the line numbers are just given to help
reading and should not be typed.

1 begin. x:x, search
2 search. →, loop
3 loop. : , search
4 loop. x:x, end

B.2 Compound statements

To simplify the writing of matching statements, several matching with the same
initial state can be merged into a compound statement. With the same phi-
losophy, default behavior can be defined to facilitate the writing of compound

24 J. Kari and N. Ollinger

matchings of the kind replace a by b and enter state t but if the letter is not a

neither b or c then replace it by x and enter state u. The syntax of compound
statements is the following:

s. a:b, t | b:c, u | d:e, v sequence of matching instructions (s, a, b, t),
(s, b, c, u), (s, d, e, v);

s. a:b, s’ else t same as before but with a default behavior: on any letter
not defined in the compound matching instructions, do not modify the letter
but jump to state t: it is syntactically equivalent to replace else t by |w :
w, t for each letter w of the program (already defined or appearing in latter
statements) not already appearing in the statement;

s. a:b, s’ else t but b,c same as an else modifier but the modifier does
not apply for letters appearing after the but keyword;

s. a:b, s’ else t write a same as an else modifier but instead of not mod-
ifying the letter, any letter is replace by a: syntactically like |w : a, t;

s. a:b, s’ else t write a but b,c is a combination of all the modifiers.

B.3 Using macros

As such, the language is clearly sufficient to encode any machine but it can be
boring to repeat over and over the same patterns, copies of the same sub-machine
performing a given task like go to the first x on the right. To help on this, the
language provides a macro definition system.

Defining a macro is really the same as defining the main machine. The same
instructions are used. In both cases what you obtain a Turing machine. But for
macro definitions all states loose their names after definition but the one you
select as relevant to the outside world. Moreover, the machine associated to the
macro is not added to the current main machine but stored for future use. Once
the macro defined, to use it, you ask the interpreter to add a fresh copy of the
machine states in the current environment.

Indentation plays a big role in macro definition. After the def starting the
macro definition, all the lines corresponding to that macro should BE indented
by the same amount of spaces and/or tabulations, which should be more than
the indentation of the def line. When the indentation goes back to the original
level, the macro definition ends.

The syntax for macro definition and usage is the following:

def [i1,...,im|toto|o1,...,on>: begin the definition of a macro called toto;
the only states that will be visible from outside are i1, . . . , im and o1, . . . ,
on. There is no technical distinction between i and o but it is good practice
to consider i as input states and o as output states, to facilitate reading of
source code.

[a,b|titi|c,d,e> inserts a copy of the macro machine titi in the current
machine definition: the fresh copy of the machine titi will use a, b as input
states for its i1, i2 and c, d, e as output states for its o1, o2, o3.

Periodicity and Immortality 25

The following code defines a macro and uses it:

1 def [s|search|t〉 :
2 s. x:x, u
3 u. →, r
4 r. : , u | x:x, t
5

6 [s|search|a〉
7 [a|search|b〉
8 b. →, c
9 c. a:b, d | b:a, d

B.4 Applying transforms

Sometimes, one would like to reuse a machine with slight syntactical transforma-
tions. Currently, two such transforms are defined in Gni. The syntax and usage
is the following:

[a,b|lr titi|c,d,e> inserts a copy of the macro machine titi where the
move instruction have inverted directions: ← is replaced with → and recip-
rocally.

<o1,...,on|toto|i1,...,im] inserts a copy of the inverse of the machine
toto, provided that toto is reversible.

B.5 Hooper’s style recursive calls

Macros are fine but co-recursive machines would lead to infinite state machine,
which is forbidden. One way to avoid this is to use the tape of the Turing machine
as a place to push entry point information before calling a machine and popping
from that same place to know where to go back. Gni provides that kind of
feature, with the following assumptions. It is the programmers responsibility to
ensure that the called machine will never modify the tape cell from which it starts
and will come back to that particular position at the end of the computation.
The syntax and usage is the following:

fun [i1,...,im|toto|o1,...,on>: defines a callable function: the syntax and
principle are the same as for defining macros but the obtained machine is
not usable as a macro, it is used through calls and just one copy of it will
be put into the main machine if it is called from at least one place.

call [i1,...,im|toto|o1,...,on> from a insert a function call: when en-
tering states i1 to im, the machine will push entry point information on the
tape, replacing the letter a that is written on it; on return from the call it
will pop the entry point information, replace it by a and change state to
o1,. . . ,on depending on the return state. The function does not need to exist
at the time the call is inserted, so co-recursive calls are allowed.

call [i1,...,im|lr toto|o1,...,on> from a calls the lr version of toto.

26 J. Kari and N. Ollinger

call <o1,...,on|toto|i1,...,im] from a calls the inverse version of toto.
call <o1,...,on|lr toto|i1,...,im] from a calls the inverse of the lr ver-

sion of toto.
@link issuing a call instruction in the interpreter does not effectively modify

the machine but stores calling informations. The @link command is taking
care of wiring all calls, putting copies of used functions and lr and/or inverse
of them as appropriate, recursively inserting all needed functions that might
be called by inserted functions.

Periodicity and Immortality 27

Table 1: The following code defines a function and uses it to recursively compute a
recursive function on positive integers represented as blocks of x

1 def [s|test|z, p〉 :
2 s. →, r

3 r. : , za | x:x, pa
4 za. ←, z

5 pa. ←, p

6

7 def [s|dec|t〉 :
8 s. →, a

9 a. : , b | x:x, s
10 b. ←, c

11 c. x: , r

12 r. ←, u

13 u. : , t | x:x, r
14

15 def [s|copy|t〉 :
16 s. →, a

17 a. : , b | x:o, s
18 b. ←, c

19 c. o:o, b else d

20 d. →, e

21 e. : , t | o:x, f
22 f. →, g

23 g. : , h | o:o, f
24 h. →, i

25 i. :x, j | x:x, h
26 j. ←, k

27 k. : , b | x:x, j
28

29 fun [s|f|t〉 :
30 [s|test|t, p〉
31 [p|copy|a〉
32 [a|dec|b〉
33 call [b|f|c〉 from

34 c. :x, l
35 l. ←, o

36 o. x:x, l else t

37

38 @link [s|f|t〉

