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Abstract. In MaxSat, we ask for an assignment which satisfies the
maximum number of clauses for a boolean formula in CNF. We present

an algorithm yielding a run time upper bound of O∗(2
1

6.2158
K) for Max-

2-Sat (each clause contains at most 2 literals), where K is the number
of clauses. The run time has been achieved by using heuristic priorities
on the choice of the variable on which we branch. The implementation of
these heuristic priorities is rather simple, though they have a significant
effect on the run time. The analysis is done using a tailored non-standard
measure.

1 Introduction

Our Problems. MaxSat is an optimization version of the well-known deci-
sion problem SAT: given a boolean formula in CNF, we ask for an assignment
which satisfies the maximum number of clauses. The applications for MaxSat

range over such fields as combinatorial optimization, artificial intelligence and
database-systems as mentioned in [6]. We put our focus on Max-2-Sat, where
every formula is constrained to have at most two literals per clause, to which
problems as Maximum Cut and Maximum Independent Set are reducible.
Therefore Max-2-Sat is NP-complete.

Results So Far. Max-2-Sat: The best published upper bound of O∗(2
1

5.88
K)

has been achieved by Kulikov and Kutzov in [7] consuming only polynomial
space. They build up their algorithm on the one of Kojevnikov and Kulikov [6].
They were the first who used a non-standard measure yielding a run time of
O∗(2

1

5.5 ). If we measure the complexity in the number n of variables the current
fastest algorithm is the one of R. Williams [10] having run time O∗(2

ω

3
n), where

ω < 2.376 is the matrix-multiplication exponent. A drawback of this algorithm is

its requirement of exponential space. Fuerer et al. [1] presented a O∗(21−
1

d−1
n)-

algorithm consuming polynomial space, where d is the average degree of the
variable graph. Max-2-Sat has also been studied with respect to approximation
[4,8] and parameterized algorithms [2,3].

Our Results. The major result we present is an algorithm solving Max-2-Sat

in time O∗(2
1

6.2158
K). Basically it is a refinement of the algorithm in [6], which

also in turn builds up on the results of [2]. The run time improvement is twofold.

http://arxiv.org/abs/0803.3531v1


2

In [6] an upper bound of O∗(1.1225n) is obtained if the variable graph is cubic.
Here n dentoes the number of variables. We could improve this to O∗(1.11199n)
by a more accurate analysis. Secondly, in the case where the maximum degree
of the variable graph is four, we chose a variable for branching according to
some heuristic priorities. These two improvements already give a run time of
O∗(2

1

6.137
K). Moreover we like to point out that these heuristic priorities can be

implemented such that the only consume O(n) time. The authors of [7] improve
the algorithm of [6] by having a new branching strategy when the variable graph
has maximum degree five. Now combining our improvements with the ones from
[7] gives the claimed run time.

Basic Definitions and Terminology. Let V (F ) be the set of variables of a
given boolean formula F . For a variable v by v̄ we denote the negation of v.
If a variable v is set, then it will be assigned the values true or false. By the
word literal, we refer to a variable or its negation. A clause is a disjunction
of literals. We consider formulas in conjunctive normal form (CNF), that is
a conjunction of clauses. We allow only 1- and 2-clauses, i.e., clauses with at
most two literals. The weight of v, written #2(v), refers to the number of 2-
clauses in which the variable v or its negation occurs. For a set U of variables
we define #2(U) :=

∑
u∈U #2(u). If v occurs in some clause C we write v ∈ C.

A set A of literals is called assignment if for every v ∈ A it holds that v̄ 6∈ A.
Loosely speaking if l ∈ A for a literal l, than l receives the value true. We
allow the formula to contain truth-clauses of the form {T } that are always
satisfied. Furthermore, we consider a Max-2-Sat instance as multiset of clauses.
A variable x is a neighbor of v, written x ∈ N(v), if they occur in a common
2-clause. Let N [v] := N(v) ∪ {v}. The variable graph Gvar(V,E) is defined as
follows: the vertices are represented by the variables V (F ) of the given formula F .
Between two vertices is an undirected edge if they are neighbors in the formula.
Observe that Gvar is a undirected multigraph and that it neglects clauses of
size one. We will not distinguish between the words “variable” and “vertex”.
Every variable in a formula corresponds to a vertex in Gvar and vice versa. By
writing F [v], we mean the formula which emerges from F by setting v to true

the following way: First, substitute all clauses containing v by {T }, then delete
all occurrences of v̄ from any clause and finally delete all empty clauses from F .
F [v̄] is defined analogously: we set x to false.

2 Reduction Rules & Basic Observations

We state well-known reduction rules from previous work [2,6]:

RR-1 Replace any 2-clause C with l, l̄ ∈ C, for a literal l, with {T }.
RR-2 If for two clauses C,D and a literal l we have C \ {l} = D \ {l̄}, then

substitute C and D by C \ {l} and {T }.
RR-3 A literal l occurring only positively (negatively, resp.) is set to true (false).
RR-4 If l̄ does not occur in more 2-clauses than l in 1-clauses, such that l is a

literal, then set l to true.



3

RR-5 Let x1 and x2 be two variables, such that x1 appears at most once in
another clause without x2. In this case, we call x2 the companion of x1.RR-3

orRR-4 will set x1 in F [x2] to α and in F [x̄2] to β, where α, β ∈ {true, false}.
Depending on α and β, the following actions will be carried out:
– If α = false, β = false, set x1 to false.
– If α = true, β = true, set x1 to true.
– If α = true, β = false, substitute every occurrence of x1 by x2.
– If α = false, β = true, substitute every occurrence of x1 by x̄2.

From now on we will only consider reduced formulas F . This means that to
a given formula F we apply the following procedure: RR-i is always applied
before RR-i+1, each reduction rule is carried out exhaustively and after RR-5

we start again with RR-1 if the formula changed. Concerning the reduction
rules we have the following lemma:

Lemma 1. 1. If #2(v) = 1, then v will be set.
2. Let v ∈ V (F ) such that #2(v) = 3 and u ∈ V (F ) is its companion, i.e., there

are clauses C1, C2, C3 with u, v ∈ C1, C2 and v, z ∈ C3 for z ∈ V (F ), z 6= u.
Then either v is set or the common edges of u and v will be contracted in
Gvar.

3. After the exhaustive application of the reduction rules, we have:
(a) Any variable u with #2(u) = 3 has at least three different neighbors.
(b) If the variables a and x are neighbors and #2(a) = 3, then in at least

one of the formulas F [x] and F [x̄], the reduction rules set a.

Proof. 1. After applying RR-2 exhaustively, either RR-3 or RR-4 applies.
2. If v is not set it will be substituted by u or ū due to RR-5. The emerging

clauses C1, C2 will be reduced either by RR-1 or become 1-clauses. Also we
have an edge between u and z in Gvar as now u, z ∈ C3.

3. (a) Otherwise, RR-5 can be applied. (b) See Lemma 3.2.5 in [6].
⊓⊔

We need some auxiliary notions: A sequence of vertices a1, v1, . . . , vj , a2
(j ≥ 0) is called lasso if #2(vi) = 2 for 1 ≤ i ≤ j, a1 = a2, #2(a1) ≥ 3 and
Gvar[a1, v1, . . . , vj , a2] is a cycle. A quasi-lasso is a lasso with the difference that
#2(vj) = 3. A lasso is called 3-lasso (resp. 4-lasso) if #2(a1) = 3 (#2(a1) = 4,
resp.). 3-quasi-lasso and 4-quasi-lasso are defined analogously.

Observation 1. The reduction rules delete the variables v1, . . . , vj of a lasso
(quasi-lasso, resp.) and the weight of a1 drops by at least two (one, resp.).

Proof. We give the proof by induction on j. In the lasso case for j = 0, there
must be a 2-clause C = {a1, ā1}, which will be deleted by RR-1, so that the
initial step is shown. So now j > 0. Then on any vi, 1 ≤ i ≤ j, we can apply
RR-5 with any neighbor as companion, so, w.l.o.g., it is applied to v1 with a1
as companion. RR-5 either sets v1, then we are done with Lemma 1.1, or v1 will
be substituted by a1. By applying RR-1, this leads to the lasso a1, v2, . . . , vj , a2
in Gvar and the claim follows by induction. In the quasi-lasso case for j = 0, the
arguments from above hold. For j = 1, Lemma 1.2 is sufficient. For j > 1, the
induction step from above also applies here. ⊓⊔
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3 The Algorithm

We set di(F ) := |{x ∈ V (F ) | #2(x) = i}|. To measure the run time, we choose
a non standard measure approach with the measure γ defined as follows:

γ(F ) =

n∑

i=3

ωi · di(F ) with ω3 = 0.9398, ω4 = 1.8077, ωi =
i

2
for i ≥ 5.

Clearly, γ(F ) never exceeds the number of clauses K in the corresponding for-
mula. So, by showing an upper bound of cγ(F ) we can infer an upper bound
cK . We set ∆3 := ω3, ∆i := wi − wi−1 for i ≥ 4. Concerning the ωi’s we have
∆i ≥ ∆i+1 for i ≥ 3 and ω4 ≥ 2 · ∆4. The algorithm presented in this paper
proceeds as follows: After applying the above-mentioned reduction rules exhaus-
tively, it will branch on a variable v. That is, we will reduce the problem to the
two formulas F [v] and F [v̄]. In each of the two branches, we must determine by
how much the original formula F will be reduced in terms of γ(F ). Reduction in
γ(F ) can be due to branching on a variable or to the subsequent application of
reduction rules. By an (a1, . . . , aℓ)-branch, we mean that in the i-th branch γ(F )
is reduced by at least ai. We will also speak of the i-th component of a branch
when we mean the search tree evolving from the i-th branch (i.e., ai). By writing
({a1}

i1 , . . . , {aℓ}
iℓ)-branch we mean a (a11, . . . , a

i1
1 , . . . , a1ℓ , . . . , a

iℓ
ℓ )-branch where

asj = aj with 1 ≤ s ≤ ij. A (a1, . . . , aℓ)-branch dominates a (b1, . . . , bℓ)-branch
if ai ≥ bi for 1 ≤ i ≤ ℓ.

Heuristic Priorities If the maximum degree of Gvar is four, variables v with
#2(v) = 4 will be called limited if there is another variable u appearing with
v in two 2-clauses (i.e., we have two edges between v and u in Gvar). We call
such u, v a limited pair. Note that also u is limited and that at this point by
RR-5 no two weight 4 variables can appear in more than two clauses together.
We call u1, . . . uℓ a limited sequence if ℓ ≥ 3 and ui, ui+1 with 1 ≤ i ≤ ℓ − 1 are
limited pairs. A limited cycle is a limited sequence with u1 = uℓ. To obtain an
asymptotically fast algorithmic behavior we introduce heuristic priorities (HP),
concerning the choice of the variable used for branching.

1. Choose any v with #2(v) ≥ 7.
2. Choose any v with #2(v) = 6, preferably with #2(N(v)) < 36.
3. Choose any v with #2(v) = 5, preferably with #2(N(v)) < 25.
4. Choose any unlimited v with #2(v) = 4 and a limited neighbor.
5. Choose the vertex u1 in a limited sequence or cycle .
6. Pick a limited pair u1, u2. Let c ∈ N(u1)\{u2} with s(c) := |(N(c)∩N(u1))\

{c, u1}|maximal. If s(c) > 1, then choose the unique vertex inN(u1)\{u2, c},
else choose u1.

7. From Y := {v ∈ V (F ) | #2(v) = 4, ∃z ∈ N(v) : #2(z) = 3 ∧N(z) 6⊆ N(v)}
choose v, preferably such that #2(N(v)) is maximal.

8. Choose any v, with #2(v) = 4, preferably with #2(N(v)) < 16.
9. Choose any v, with #2(v) = 3, such that there is a ∈ N(v), which forms a

triangle a, b, c and b, c 6∈ N [v] (we say v has pending triangle a, b, c).
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10. Choose any v, such that we have a (6ω3, 8ω3)- or a (4ω3, 10ω3)-branch.

From now on v denotes the variable picked according to HP.
Key Ideas The main idea is to have some priorities on the choice of a weight

4 variable such that the branching behavior is beneficial. For example limited
variables tend to be unstable in the following sense: If their weight is decreased
due to branching they will be reduced due to Lemma 1.2. This means we can
get an amount of ω4 instead of ∆4. In a graph lacking limited vertices we want a
variable v with a weight 3 neighbor u such that N(u) 6⊆ N(v). In the branch on
v where u is set (Lemma 1.3b) we can gain some extra reduction (at least ∆4)
from N(u)\N(v). If we fail to find a variable according to priorities 5-7 we show
that either v as four weight 4 variables and that the graph is four regular, or
otherwise we have two distinct situations which can be handled quite efficiently.
Further, the most critical branches are when we have to chose v such that all
variables in N [v] have weight ωi. Then the reduction in γ(F ) is minimal (i.e.,
wi+ i ·∆i). We analyze this regular case together with its immediately preceding
branch. Thereby we prove a better branching behavior compared to a separate
analysis. Our algorithm proceeds as follows:

Algorithm 1 An algorithm for solving Max-2-Sat.

Procedure: SolMax2Sat(F )

1: Apply SolMax2Sat on every component of Gvar separately.
2: Apply the reduction rules exhaustively to F .
3: Search exhaustively on any sub-formula being a component of at most 9 variables.
4: if F = {T }. . .{T } then
5: return |F |
6: else
7: Choose a variable v according to HP.
8: return max{SolMax2SAT(F [v]),SolMax2Sat(F [v̄])}.

4 The Recurrences and their Analysis

We now investigate the cases when we branch on vertices picked according to
items 1-8 of HP. For each item we will derive a branching vector which upper
bounds this case in terms of K.

4.1 The Case when the Maximum Degree of Gvar is at least four

Priority 1 Choosing a variable v with #2(v) ≥ 7, we first obtain a reduction of
ω7 because v will be deleted. Secondly, we get an amount of at least 7 ·∆7 = 3.5
as the weights of the neighboring variables each drops by at least one and we
have ∆i ≥ ∆i+1. Therefore, the measure γ is reduced by at least 7 in either of
the two branches (i.e., we have a ({7}2)-branch).
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Regular Branches We call a branch h-regular if we branch on a variable v such
that for all u ∈ N [v] we have #2(u) = h. We will handle those in a separate
part. The following subsections handle non-regular branches, which means that
we can find a u ∈ N(v) with #2(u) < #2(v). Observe that we already handled
the h-regular branches for h ≥ 7.

Priorities 2 and 3 Choosing v ∈ V (F ) with #2(v) = 6 there is a u ∈ N(v)
with #2(u) ≤ 5 due to non-regularity. Then by deletion of v, there is a reduction
by ω6 and another of at least 5∆6 + ∆5, resulting from the dropping weights
of the neighbors. Especially, the weight of u must drop by at least ∆5. This
leads to a ({6.1923}2)-branch. Choosing a variable v with #2(v) = 5, the same
observations as in the last choice lead to a reduction of at least ω5+4 ·∆5+∆4.
Thus we have a ({6.1371}2)-branch.

Priority 4 Let u1 ∈ N(v) be the limited variable. u1 appears together with the
weight 4 variable u2 in two 2-clauses. Since priorities 1-3 did not apply we have
#2(u1) = 4. After branching on v, the variable u1 has weight at most 3. At this
point, u1 appears only with one other variable z in a 2-clause. Then, RR-5 is
applicable to u1 with u2 as its companion. According to Lemma 1.2, either u1

is set or the common edges of u1 and u2 will be contracted. In the first case, we
receive a total reduction of at least 3ω4 + 2∆4, in the second of 2ω4 + 4∆4. We
can estimate this case by a ({2ω4 + 4∆4}2)-branch, i.e., a ({7.087}2)-branch.

Priority 5 If u1, . . . , uℓ is a limited cycle, then ℓ ≥ 10. Otherwise it is a com-
ponent of at most 9 variables which are solved directly beforehand. By RR-5

this yields a (10w4, 10w4)-branch. If u1, . . . , uℓ is a limited sequence, then due
to priority 4 the neighbors of u1, uℓ lying outside the sequence have weight 3.
By RR-5 the branch on u1 is a ({3ω4 + 2ω3}2)-branch. A ({7.3027}2)-branch
upper bounds both.

Priority 6 At this point every limited variable u1 has two neighboring variables
y, z with weight 3 and a limited neighbor u2 with the same properties (due to
priorities 4 and 5). We now examine the local structures arising from this fact
and by the values of |N(y) \N(u1)| and |N(z) \N(u1)|.

1. |N(y) \ N(u1)| = 0, |N(z) \ N(u1)| = 0: N(u1) is a component, which will
be solved directly beforehand.

2. |N(y) \N(u1)| = 0, |N(z) \N(u1)| = 1: Then, N(y) = {u2, z, u1}, N(u2) =
{u1, y, s1} and N(z) = {u1, y, s2}, see Figure 1(a). In this case we branch on
z as s(y) > 0 and s(y) > s(z). Then due to RR-5 y and u1 disappear; either
by being set or replaced. Thereafter due to RR-1 and Lemma 1.1 u2 will
be set. Additionally we get an amount of min{2∆4, ω4, ω3+∆4} from s1, s2.
This depends on whether u1 6= u2 or u1 = u2 and in the second case on the
weight of u1. In total we have at least a (2ω4+2ω3+2∆4, 2ω4+2ω3+2∆4)-
branch. Analogously the case |N(y) \N(u1)| = 1, |N(z) \N(u1)| = 0 can be
upper bounded.

3. |N(y) \N(u1)| = 1, |N(z) \N(u1)| = 1: Here two possibilities occur:
(a) N(y) = {u1, u2, s1}, N(z) = {u1, u2, s2} and N(u2) = {u1, y, z}, see

Figure 1(b): Then w.l.o.g., we branch on z. Similarly to item 2. we obtain
a (2ω4 + 2ω3 + 2∆4, 2ω4 + 2ω3 + 2∆4)-branch.
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(b) N(y) = {u1, z, s1} and N(z) = {u1, y, s2}, see Figure 1(c): W.l.o.g.,
we branch on z. Basically we get a total reduction of 2ω3 + ω4 + 2∆4.
That is 2ω3 from y and z, ω4 from u1 and 2∆4 from s2 and u2. In the
branch where y is set (due to Lemma 1.3b) we additionally get ∆4 from
s1 and ω4 from u2 as it will disappear due to Lemma 1.3a. This is a
(2ω4 + 2ω3 + 2∆4, 2ω3 + ω4 + 2∆4)-branch.

4. |N(y) \ N(u1)| = 1, |N(z) \ N(u1)| = 2, see Figure 1(d): We branch on z

yielding a ({2ω4 + 2ω3 + 2∆4}2)-branch.
5. |N(y)\N(u1)| = 2, |N(z)\N(u1)| = 2: In this case we chose u1 for branching.

Essentially we get a reduction of 2ω4+2ω3. In the branch setting z we receive
an extra amount of 2∆4 from z’s two neighbors outside N(u1). Hence we
have a (2ω4 + 2ω3 + 2∆4, 2ω4 + 2ω3)-branch. (Analogous is the case where
|N(y) \N(u1)| = 2, |N(z) \N(u1)| = 1).

We have at least a (2ω4+2ω3+2∆4, ω4+2ω3+2∆4)-branch, i.e., (7.3332, 5.5258)-
branch.

Priority 7 We need further auxiliary notions: A 3-path (4-path, resp.) for an
unlimited weight 4 vertex v is a sequence of vertices u0u1 . . . ulul+1 (u0u1 . . . ul,
resp.) forming a path, such that 1 ≤ l ≤ 4 (2 ≤ l ≤ 4, resp.), ui ∈ N(v) for
1 ≤ i ≤ l, #2(ui) = 3 for 1 ≤ i ≤ l (#2(ui) = 3 for 1 ≤ i ≤ l − 1,#2(ul) = 4,
resp.) and u0, ul+1 6∈ N(v) (u0 6∈ N(v), resp.). Examine that due to the absence
of limited vertices, every vertex v, chosen due to priority 7 must have a 3- or
4-path of length l.

3-path If u0 6= uℓ+1 we basically get a reduction of ω4 + ℓω3 + (4 − ℓ)∆4.
In the branch where u1 is set, u2 . . . ul will be also set due to Lemma 1.1.
Therefore, we gain an extra amount of at least 2∆4 from u0 and ul+1, leading
to a (ω4+ l ·ω3+(6− l)∆4, ω4+ l ·ω3+(4− l)∆4)-branch. If u0 = uℓ+1 then
in F [v] and in F [v̄], u0u1 . . . ulul+1 is a lasso. So by Observation 1, u1, . . . , ul

are deleted and the weight of u0 drops by 2. If #2(u0) = 4 this yields a
reduction of l · ω3 + ω4. If #2(u0) = 3 the reduction is (l + 1) · ω3 but then
v0 is set. It is not hard to see that this yields a bonus reduction of ∆4 (see
Appendix A). Thus, we have a ({ω4 + (l + 1) · ω3 + (5− l)∆4}2)-branch.

4-path We get an amount of ω4 + (l − 1)ω3 + (5 − l)∆4 by deleting v. In the
branch where u1 is set we get a bonus of ∆4 from u0. Further uℓ will be
deleted completely. Hence we have a (2ω4 + (l − 1)ω3 + (5− l)∆4, ω4 + (l−
1)ω3 + (5 − l)∆4)-branch.

The first branches is worst for ℓ = 1, the second and third for ℓ = 2 (as ℓ = 1 is
impossible). Thus, we have a (7.087, 5.3512)-branch for the first and third case,
and a ({7.2308}2)-branch for the second.

Priority 8 Note that when we are forced to pick a variable v according to
priority 8, then either v has four neighbors of weight 4 or for every weight 3
neighbor z we have N(z) ⊆ N(v).

Lemma 2. If we have chosen a variable v with #2(v) = 4 according to priority
8, such that #2(N(v)) < 16, then we have : (a) only situations 1(e) and 1(f) of
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Figure 1 can occur, (b) branching on v, we get at least a ({2ω4 + 2ω3 + 2∆4}
2)-

branch.

The 4- 5- and 6-regular case The part of the algorithm when we branch on
variables of weight h 6= 4 will be called h-phase. Branching according to priorities
4-8 is the 4-phase, according to priorities 9 and 10 the 3-phase. Any h-regular
branch which was preceded by a branch from the (h+1)-phase can be neglected.
This situation can only occur once on each path from the root to a leaf in the
search tree. Hence, the run time is only affected by a constant multiple.
We now classify h-regular branches: An internal h-regular branch is a h-regular
branch such that another h-regular branch immediately follows in the search
tree in at least one component. A final h-regular branch is a h-regular branch
such that no h-regular branch immediately succeeds in either of the components.
When we are forced to do an h-regular branch (h ∈ {4, 5, 6}), then according to
HP the whole graph must be h-regular at this point. Hence, it follows:

Observation 2. If a branch is followed by a h-regular branch in at least one
component, say in in F [v], then in F [v] any variable u with #2(u) < h will be
reduced.

Due to Observation 2 every vertex in N(v) must be completely deleted in F [v].

Proposition 1. Any internal h-regular branch (h ∈ {4, 5, 6}) can be upper
bounded by O∗(1.1102).

Proof. By Observation 2 for h = 4 this yields at least a (5ω4, ω4 + 4∆4)-branch
as v must have 4 different weight 4 neighbors due to HP. If both components are
followed by an h-regular branch we get a total reduction of 5ω4 in both cases.
The same way we can analyze internal 5- and 6-regular branches. This yields
(3ω5, ω5 + 5∆5)-, (3ω5, 3ω5)-, (3ω6, ω6 + 6∆6)- and (3ω6, 3ω6)-branches as any
variable has at least two neighbors. ⊓⊔

We now analyze a final h-regular (b1, b2)-branch with its preceding (a1, a2)-
branch. For the (a1, a2)-branch there are three possibilities: the final h regular
branch might follow in the first, the second or both components. So, the combined
analysis would be a ({a1 + b1}2, a2), a (a1, {a2 + b2}2)- and a ({a1 + b1}2, {a2 +
b2}2)-branch.
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Proposition 2. Any final h-regular branch (h ∈ {5, 6}) considered together with
its preceding branch can be upper bounded by O∗(1.1191K).

Proof. We will apply a combined analysis for both branches. Due to Observa-
tion 2 N(v) will be deleted in the corresponding component of the preceding
branch. Due to Appendices C.1 and C.2 the least amount we can get by deleting
N(v) is ω5+ω4 in case h = 5 and ω6+ω4 in case h = 6. Hence, we get four differ-
ent branches: A ({3ω5+ω4+5∆5}2, ω5+5∆)-, a ({3ω6+ω4+6∆6}2, ω6+6∆)-,
a ({3ω5 + ω4 + 5∆5}4)- and a ({3ω6 + ω4 + 6∆6}4)-branch, respectively. ⊓⊔

Proposition 3. Any final 4-regular branch considered with its preceding branch
can be upper bounded by O∗(2

1

6.137
K).

Proof. Here we must analyze a final 4-regular branch together with any possible
predecessor. These are all branches derived from priorities 4-8:

Internal 4-regular branch The two corresponding branches are a ({6ω4 +
4∆4}2, ω4 + 4∆4)-branch and a ({6ω4 + 4∆4}4)-branch.

Priorities 4,5 and 8 are all dominated by a ({2ω4+4∆4}2)-branch. Analyzing
these cases together with a succeeding final 4-regular branch gives a ({3ω4+
8∆4}2, 2ω4 + 4∆4)-branch and a ({3ω4 + 8∆4}4)-branch.

Priority 7 Let o be the number of weight 4 neighbors of v not lying on the
4-path or 3-path, respectively. If in one component a final 4-regular branch
follows then the worst case is when o = 0 as any such vertex would be deleted
completely and ω4 > ω3. On the other hand if there is a component without
an immediate 4-regular branch succeeding then the worst case appears when
o is maximal (i.e., o = 4) as ω3 ≥ ∆4. So in the analysis we will consider for
each case the particular worst case even though both together never appear.
4-path In this case we have the following branches: a) ({3ω4+4ω3+4∆4}2, ω4+
ω3 + 3∆4), b) (2ω4 + ω3 + 3∆4, {3ω4 + 3ω3 + 4∆4}

2), c) ({3ω4 + 4ω3 +
4∆4}2, {3ω4 +3ω3 +4∆4}2). The cases a) and c) are not upper bounded by

O∗(2
1

6.137
K) and hence need further discussion.

Suppose there is a vertex y ∈ D := N(v)∪{u0, . . . , ul−1} with weight 4. Then
by Observation 2 we have branches a′) ({4ω4+3ω3+4∆4}2, ω4+ω3+3∆4) and
c′) ({4ω4+3ω3+4∆4}2, {3ω4+3ω3+4∆4}2) which are both upperbounded

by O∗(2
1

6.137
K). For the remaining case we need the next proposition. For

U ⊆ V (F ) we define E3(U) = {{u, v} | u ∈ U,#2(u) = 3, v 6∈ U}.

Claim. Suppose for all y ∈ D we have #2(y) = 3. Then there must be some
y′ ∈ V \ (D ∪ {v, ul}) with #2(y

′) = 3.

Proof. Assume the contrary. Now due to the choice of v and as ul ∈ Y

we have that ul must be adjacent to v, ul−1 and to two further weight 3
vertices in D. Therefore and as D ∪ {v, ul} can not be a component we
have l < 4. Also for any 2 ≤ l ≤ 3 we always have E3(D ∪ {ul}) = 8 − 2l.
There must some weight 4 vertex r 6∈ D ∪ {v, ul} adjacent to some weight 3
vertex in D. Notre that r ∈ Y . Due to the choice of v, r must have at least
three weight 3 neighbors. Hence l = 2. If r has 4 weight 3 neighbors then
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(D∪{v, ul, r}) forms a component which is a contradiction. Because we have
E3(D ∪ {v, ul, r}) = 1 we find again some r′ ∈ Y \ (D ∪ {v, ul, r}) which is
adjacent to at least 3 weight 3 vertices where at most one is from D. Thus
there must be some weight 3 vertex in V \ (D∪{v, ul}), a contradiction. ⊓⊔

If for all y ∈ D we have #2(y) = 3 from the last claim we can derive two
branches a′′) ({3ω4 + 5ω3 + 4∆4}2, ω4 + ω3 + 3∆4) and c′′) ({3ω4 + 5ω3 +

4∆4}2, {3ω4 + 3ω3 + 4∆4}2) which are upper bounded by O∗(2
1

6.137
K).

⊓⊔

4.2 The Cubic Case

Priority 9 Observe that when we have arrived at this point, the graph Gvar

must be 3-regular and each variable has three different neighbors, due to Gvar

being reduced and due to Lemma 1.3a. Also, any 3-regular graph has an even
number of vertices, because we have 3n = 2m. Thus any branching must be of
the form (2i · ω3, 2j · ω3) for some 1 ≤ i, j. Also, branching on any variable will
at least result in a (4ω3, 4ω3)-branch (see Lemma 1.3a). Note that any u ∈ N(v)
will be either set in F [v] or in F [v̄], due to Lemma 1.3b.

Lemma 3. Let v have a pending triangle a, b, c and N(v) = {a, p, q}. Then by
branching on v, we have an (8ω3, 6ω3)-branch.

Proof. In F [v] and F [v̄], the variables a, b, c form a 3-quasi-lasso, and by Ob-
servation 1, we know that, w.l.o.g., only b remains with #2(b) = 2. Also, in
both branches, q and p are of weight two and therefore deleted. Note that if
N({q, p}) ∪ {q, p} ⊆ {v, a, b, c, q, p}, then q, p, v, a, b, c form a component of six
vertices. These are handled separately by the algorithm. Therefore, w.l.o.g., there
is a variable z ∈ N(q) such that z 6∈ {v, a, b, c, q, p}. So, in the branch where q is
set, also z will be deleted. Thus in this branch, seven variables will be deleted.

⊓⊔

Priority 10 From now on due to HP Gvar is a triangle-free 3-regular graph.
We have to show that if we are forced to choose a vertex v to which none of the
precedences 1-8 fits, we can choose v in a way that we obtain either a (6ω3, 8ω3)-
or a (4ω3, 10ω3)-branch.

Lemma 4. Let v be a vertex in Gvar and N(v) = {a, b, c}. Suppose that, w.l.o.g.
in F [v] a, b and in F [v̄] c will be set. Then we have a (6ω3, 8ω3)-branch.

Proof. If |(N(a)∩N(b))\{v}| ≤ 1, then by setting a and b in F [v], five variables
will be reduced. Together with v and c, this is a total of seven. If |(N(a)∩N(b))\
{v}| = 2, then situation 2(a) or 2(b) of Figure 2 must occur (note the absence of
triangles). In case we have situation 2(a) then in F [v] due to Lemma 1.1 d, f, e, q

will be deleted. If we have situation 2(b) then d, y and f, z will be deleted.
Together with F [v̄] where c is set, we have a (6ω3, 8ω3)-branch. ⊓⊔
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Lemma 5. If for any v ∈ V (Gvar) all its neighbors are set in one branch (say,in
F [v]), we can perform a (6ω3, 8ω3)- or a (4ω3, 10ω3)-branch due to cubicity.

Proof. If |N(a, b, c) \ {v}| ≥ 5, then in F [v], 9 variables are deleted, so that we
have a (4ω3, 10ω3)-branch. Otherwise, either one of the two following situations
must occur: a) There is a variable y 6= v, such that N(y) = {a, b, c}, see Figure.
2(c). Then branch on b. In F [b̄], v, y, a, c, z will disappear (due to RR-5 and
Lemma 1.2). In F [b], due to setting z, additionally a neighbor f 6∈ {a, b, c, v, y}
of z will be deleted as the vertices a, b, c, v, y, z do not form a component.. This
is a total of seven variables.
b) There are variables p, q, such that |N(p) ∩ {a, b, c}| = |N(q) ∩ {a, b, c}| = 2,
see Figure 2(d) and 2(e). In F [v], the variables a, b, c, p, q will be set. Then, at
least 3 additional variables will be deleted (even if there are 1 ≤ i < j ≤ 4 with
hi = hj). Theorem 4.2 of [6] contains also an alternative proof of b). ⊓⊔

Due to the last three lemmas, branchings according to priorities 9 and 10 are
upper bounded by O∗(2

1

6.137
K). Especially the (4ω3, 10ω3)-branch is sharp for

the given measure.

5 Combining Two Approaches

Kulikov and Kutzov [7] achieved a run time of O∗(2
1

5.88
K). This was obtained by

speeding up the 5-phase by a concept called ’clause learning’. As in our approach
the 3- and 4-phase was improved we will show that if we use both strategies we
can even improve our previous time bound. This means that in HP we substitute
priority 3 by their strategy. For the analysis we redefine the measure γ(F ): we
set ω3 = 0.9521, ω4 = 1.8320, ω5 = 2.488 and keep the other weights. Let’s call
this measure γ̃(F ). We will reproduce the analysis of [7] briefly with respect to
γ̃(F ) to show that their derived branches for the 5-phase are upper bounded by

O∗(2
1

6.2158
K). It also can be checked that this is also true for the branches derived

for the other phases by measuring them in terms of γ̃(F ). Let kij denote the
number of weight j variables occurring i times in a 2-clause with some v ∈ V (F )
chosen for branching. Then we must have: k13+k14+k15+2k24+2k25+3k35 = 5.
If F ′ is the the formula obtained by assigning a value to v and by applying the
reduction rules afterwards we have:
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γ̃(F )− γ̃(F ′) ≥ 5∆5 + ω5 + (ω3 −∆5)k13 + (∆4 −∆5)k14 + (
ω4

2
−∆5)2k24

+(∆4 −∆5)k25 + (
ω5

2
−

3

2
∆5)2k35

= 5.768 + 0.2961k13 + 0.2239(k14 + k25) + 0.26 · 2(k24 + k35)

Basically we reduce γ̃(F ) by at least ω5 + 5∆5. Now the coefficients of the kij
in the above equation express how the reduction grows if kij > 0. If k13 + k14 +
2k24 + k25 + 2k35 ≥ 2 we are done as γ̃(F )− γ̃(F ′) ≥ 6.2158.
If k13 = 1 and k15 = 4 then [7] stated a (5∆5+ω5+(ω3−∆5), 5∆5+ω5+(ω3−
∆5)+ 2∆5)-branch and for k25 = 1 and k15 = 4 a (5∆5+ω5+(∆4 −∆5), 5∆5+
ω5 + (∆4 −∆5) + ω3)-branch.
If k14 = 1 and k15 = 4 a branching of the kind F [v], F [v̄, v1], F [v̄, v̄1, v2, v3, v4, v5]
is applied, where v1, . . . , v5 ∈ N(v). From this follow a (5∆5 + ω5 + (∆4 −
∆5), 4∆5+ω5+∆4+ω4+3∆4+∆5, 5ω5+ω4+∆5)- and a (ω5+4∆5+∆4, ω5+
4∆5 +∆4 + ω4 + 4∆5, 5ω5 + ω4 + 3ω3)-branch. This depends whether v1 has at
least three neighbors of weight less than 5 in F [v̄] or not. We observed that we
can get a additional reduction of ∆5 in the third component of the first branch
as N(v) cannot be a component in V (F ) after step 3 of Alg. 1. For the analysis
of the 5-regular branch (i.e. k15 = 5) we refer to Appendix E.1. It proceeds
the same as in the simple version of the algorithm except that we have to take
in account the newly introduced branches. We point out that in that case in
contrast to [7] we do a simple branching on v. But also we prefer any other
variable as a candidate for branching such that k15 ≤ 4.

Theorem 3. Max-2-SAT can be solved in time O∗(2
1

6.2158
K) ≈ 1.118K.

6 Conclusion

We presented an algorithm solving Max-2-Sat in O∗(2
1

6.2158
K), with K the

number of clauses of the input formula. This is currently the end of a sequence
of polynomial-space algorithms each improving on the run time: beginning with
O∗(2

K

2.88 ) which was achieved by [9], it was subsequently improved toO∗(2
1

3.742
K)

by [3], to O∗(2
1

5
K) by [2], to O∗(2

1

5.217
K) by [5], to O∗(2

1

5.5
K) by [6] and finally to

the hitherto fastest upper bound ofO∗(2
1

5.88
K) by [7]. Our improvement has been

achieved due to heuristic priorities concerning the choice of variable for branching
in case of a maximum degree four variable graph. As [7] improved the case where
the variable graph has maximum degree five, it seems that the only way to speed
up the generic branching algorithm is to improve the maximum degree six case.
Our analysis also implies that the situation when the variable graph is regular
is not that harmful. The reason for this that the preceding branch must have
reduced the problem size more than expected. Thus considered together these
two branches balance each other.



13

References
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A Additional Arguments concerning 3-paths in the

non-regular Case

Proposition 4. Let v ∈ V (F ) be chosen due to HP such that #2(v) = 4 and v has a
3-path of length l such that u0 = ul+1. Then we have at least a ({ω4 + 3ω3 + 3∆4}

2)-
branch.

Proof. In F [v] and in F [v̄], u0u1 . . . ulul+1 is a lasso. So by Observation 1, u1, . . . , ul are
deleted and the weight of u0 drops by 2. If #2(u0) = 4 this yields a reduction of l·ω3+ω4.
If #2(u0) = 3 the reduction is (l+1)·ω3 but then u0 is set. If N(u0)\N(v) is non-empty
then we obtain a reduction of ∆4 in addition due to setting u0. Otherwise there is a
unique r ∈ N(u0)\{u1, ul}. If #2(r) = 4 we get a ({2ω4+(l+1)ω3+(3−l)∆4}

2)-branch.
If #2(r1) = 3 then r is set. As (4 − l) ≤ 2 and by applying the same arguments to r

which previously where applied to u0 we get at least a ({ω4+(l+1) ·ω3+(5− l)∆4}
2)-

branch. Observe that we used the fact that ω4 ≥ 2∆4. ⊓⊔

B Proof of Lemma 2

Proof. From #2(N(v)) < 16 follows that, for every weight 3 neighbor z, we have
N(z) ⊆ N(v) due to the choice of v according to HP. Let N4 (resp. N3) be the set
of weight four (three) neighbors of v. We analyze different cases induced by k := |N3|.
Let k = 1. If N3 = {b}, then there are vertices a, c ∈ N4, such that b ∈ N(a) and
b ∈ N(c). We must have a ∈ N(c), or else a would violate our assumption. Thus, we
get the situation of Figure 1(e).
Let k = 2. Then N3 = {b, c} and assume that b and c are neighbors. If b, c ∈ N(a) for
a ∈ N4, we have situation 1(f). Otherwise b ∈ N(a) and c ∈ N(d) for a, d ∈ N4. But
then, priority 7 applies to both a and d, which is a contradiction. In the case where b

and c are not neighbors, it can be easily observed that we must have the situation in
Figure 3(a), where priority 7 applies to a and c.
If k = 3 it is easy to verify that we must have situation 3(b) in Figure 1. But then
priority 7 applies to a. If k = 4 then clearly N [v] forms a component of five vertices
which cannot appear after step 2 of Alg. 1.
In Figure 1(e) in either branch F [v] or F [v̄], the variables a, b, c form a 3-quasi-lasso,
so by Observation 1 we get a reduction of ω3 + 3ω4 +∆4 = 4ω4.
In Figure 1(f) in both branches the variables a, b, c form a 3-lasso, so by Observation 1
b, c are deleted and a is set due to Lemma 1.1. We get a reduction of ω4 + 2ω3 from
this. If d 6∈ N(a) we additionally get 2∆4, otherwise ω4. Altogether, we reduce γ(F )
by at least 2ω4 + 2ω3 + 2∆4. ⊓⊔
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C Analysis of internal 5- and 6-regular branches

We will consider branches which are immediately followed by a h-regular branch in
at least one component. In this component of the branch we can delete any variable
in N(v) additionally due to Observation 2. The subsections C.1 and C.2 will explore
by how much we additionally can decrement γ(F ) in the corresponding component in
case h ∈ {5, 6}. Let kij denote the number of weight j variables occurring i times in a
2-clause with some v ∈ V (F ) chosen for branching.

C.1 Internal 5-regular branch

Proposition 5. Let v ∈ V (F ) be the variable chosen due to HP such that #2(v) = 5.
If this branch is followed by a 5-regular branch in one component, then we can decrement
γ(F ) by at least ω5 + ω4 in addition to the weight of v in that component.

Proof. According to [7] we must have the following relation:

k13 + k14 + k15 + 2k24 + 2k25 + 3k35 = 5 (1)

We now have to determine an integer solution to (1) such that ω3k13+ω4k14+ω5k15+
ω4k24 +ω5k25 +ω5k35 is minimal. We can assume k14 = k15 = 0 as we have ω3 < ω4 <

ω5. For any solution violating this property we can find a smaller solution by setting
k′

13 = k13+k14+k15, k
′

14 = 0 and k′

15 = 0 and keeping the other coefficients. The same
way we find that k25 = 0 must be the case as ω4 < ω5.
If k13 ≥ 2 we set k′

13 = k13 − 2⌊ k13

2
⌋, k′

24 = k24 + ⌊ k13

2
⌋ and keep the other coefficients.

By 2ω3 > ω4 this is a smaller solution. Now suppose k13 = 1, then we have k24 = 0 in
a minimal solution as ω3 + ω4 > ω5 (i.e., if k24 ≥ 1 we set k′

13 = 0, k′

24 = k24 − 1 and
k′

35 = k35 + 1) . But then no k35 could satisfy (1). Thus, we have k13 = 0. Then the
only solution is k24 = 1 and k35 = 1. Hence, the minimal reduction we get from N(v)
is ω5 + ω4. ⊓⊔

C.2 Internal 6-regular branch

Proposition 6. Let v ∈ V (F ) be the variable chosen due to HP such that #2(v) = 6.
If this branch is followed by a 6-regular branch in one component, then we can decrement
γ(F ) by at least ω6 + ω4 in addition to the weight of v in that component.

Proof. In this case the following relation holds:

k13 + k14 + k15 + k16 + 2k24 + 2k25 + 2k26 + 3k35 + 3k36 + 4k46 = 6 (2)

We now have to determine an integer solution to (2) such that ω3k13+ω4k14+ω5k15+
ω6k16+ω4k24+ω5k25+ω6k26+ω5k35+ω6k36+ω6k46 is minimal. As ω3 < ω4 < ω5 < ω6

we conclude that k1ℓ = 0 for 4 ≤ ℓ ≤ 6, k2ℓ′ = 0 for 5 ≤ ℓ′ ≤ 6 and k36 = 0. We also
must have k13 ≤ 1 as in the section above. By 2ω4 > ω6 we must have k24 ≤ 1. By (2)
we also have k35 ≤ 2 and k46 ≤ 1.
If k13 = 0 the only solutions under the given restrictions are k35 = 2 and k24 = 1, k46 =
1. If k13 = 1 the only solution is k35 = 1, k24 = 1. Thus, the minimal amount we get
by reduction from N(v) is ω6 + ω4. ⊓⊔
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D Omitted Cases of the Analysis of the final 4-regular

Case

Proposition 7. Any final 4-regular branch considered with its preceding branch can

be upper bounded by O∗(2
1

6.137
K).

Proof. Here we must analyze a final 4-regular branch together with any possible pre-
decessor. These are all branches derived from priorities 4-8:

Internal 4-regular branch The two corresponding branches are a ({6ω4+4∆4}
2, ω4+

4∆4)-branch and a ({6ω4 + 4∆4}
4)-branch.

Priorities 4,5 and 8 are all dominated by a ({2ω4+4∆4}
2)-branch. Analyzing these

cases together with a succeeding final 4-regular branch gives a ({3ω4+8∆4}
2, 2ω4+

4∆4)-branch and a ({3ω4 + 8∆4}
4)-branch.

Priority 6 Cases 2, 3(a) and 4 of our non-regular priority-6 analysis can be analyzed
similar to priorities 4,5 and 8.
Case 1 Here we deal with small components which are directly solved without
any branching. Therefore we get a ({3ω4 + 2ω3 + 4∆4}

2) -branch in the combined
analysis. We now analyze the remaining cases.
Consider now cases 5 and 3(b). Let u1, u2 be the picked limited pair. Due to HP
the variable u2 has two weight 3 neighbors. Thus, if a final 4-regular branch is
following in these cases we get a reduction of 2ω3 in addition (with respect to the
component of the branch). For both cases we derived a non symmetric branch, e.g.,
an (a, b)-branch with a 6= b. Depending whether the final 4-regular branch follows
in the first, the second or both components we derive three combined branches: a)
({3ω4 +4ω3 +4∆4}

2, 2ω3 +ω4 +2∆4), b) (2ω3 +2ω4 +2∆4, {3ω4 +4ω3 +4∆4}
2)-

and c) ({3ω4 + 4ω3 + 4∆4}
2, {3ω4 + 4ω3 + 4∆4}

2). As O∗(2
1

6.137
K) not proper

upperbounds a) we need a further discussion for the two cases. Remember that a)
corresponds to the case where some weight 3 neighbor t of v is set.
Case 3b First suppose that N(z) \ (N(u1) ∪ N(u2)) = ∅ and N(y) \ (N(u1) ∪
N(u2)) = ∅, see Figure 4(a). Then by either branching on y or z we get a ({2ω4 +
4ω3}

2)-branch. In this case the combined analysis is similar to priorities 4, 5 and 8.
Secondly, w.l.o.g. we have N(z) \ (N(u1)∪N(u2)) 6= ∅, see Figure 4(b). We might
have picked y = v or z = v. But observe that in both cases in the branch where
the particular weight 3 neighbor t is set such that in this component a 4-regular
branch follows we have a ({3ω4 + 4ω3 + 5∆4}

2, ω4 + 2ω3 + 2∆4)-branch in the
combined analysis instead of a).
Case 5 As the vertices in N(u1) ∪ N(u2) can not form a component w.l.o.g. we
have that N(z) \ (N(u1) ∪N(u2)) 6= ∅. In this case we branch on u1. Now in the
branch where we set z (i.e., z = t) such that a 4-regular branch follows in that
component we have a ({3ω4 + 4ω3 + 5∆5}

2, 2ω4 + 2ω3)-branch in the combined
analysis insted of a)

Both branches replacing a) have an upper bound of O∗(2
1

6.137
K).

Priority 7 Let o be the number of weight 4 neighbors of v not lying on the 4-path
or 3-path, respectively. If in one component a final 4-regular branch follows then
the worst case is when o = 0 as any such vertex would be deleted completely
and ω4 > ω3. On the other hand if there is a component without an immediate
4-regular branch succeeding then the worst case appears when o is maximal (i.e.,
o = 4) as ω3 ≥ ∆4. So in the analysis we will consider for each case the particular
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worst case even though both together never appear.
3-path In the case of 3-path such that u0 = uℓ+1 the branch with ℓ = 2 is dominated
by all other choices. Since this is a ({7.2308}2)-branch we refer to priorities 4, 5
and 8 from above.
The remaining case, a 3-path with u0 6= ul+1, will be treated separately:
First if there is a weight 4 variable in N(u) we have at least the following branches:
a) ({3ω4 + 5ω3 + 4∆4}

2, ω4 + ω3 + 3∆4), b) (ω4 + ω3 + 5∆4, {3ω4 + 3ω3 + 4∆4}
2)

and c) ({3ω4 +5ω3 +4∆4}
2, {3ω4 + 3ω3 +4∆4}

2). Any of those is upper bounded

by O∗(2
1

6.137
K).

Now suppose for all y ∈ N(V ) we have #2(y) = 3. Table 1 captures the derived
branches for certain combinations. Here we will also consider the weights of u0 and
uℓ.

left component right component both components

#2(u0) = 3 ({2ω4 + 6ω3 + 4∆4}
2, (ω4 + 6ω3, ({2ω4 + 6ω3 + 4∆4}

2,

#2(ul+1) = 3 ω4 + 4ω3) {2ω4 + 6ω3 + 4∆4}
2) {2ω4 + 6ω3 + 4∆4}

2)

#2(u0) = 3 ({3ω4 + 5ω3 + 4∆4}
2, (ω4 + 5ω3 +∆4, ({3ω4 + 5ω3 + 4∆4}

2,

#2(ul+1) = 4 ω4 + 4ω3) {2ω4 + 5ω3 + 4∆4}
2) {2ω4 + 5ω3 + 4∆4}

2)

#2(u0) = 4 ({4ω4 + 4ω3 + 4∆4}
2, (ω4 + 4ω3 + 2∆4, ({4ω4 + 4ω3 + 4∆4}

2,

#2(ul+1) = 4 , ω4 + 4ω3) {2ω4 + 4ω3 + 4∆4}
2) {2ω4 + 4ω3 + 4∆4}

2)

Table 1.

Any entry is upper bounded by O∗(2
1

6.137
K) except α) ({2ω4 + 6ω3 + 4∆4}

2, ω4 +
4ω3) the left upper entry and β) (ω4 +4ω3 +2∆4, {2ω4 +4ω3 +4∆4}

2) the middle
entry of the last row. For the further discussion of cases α) and β) we need the
next claims.

Claim. Suppose for all y ∈ N(v)∪{u0, ul+1} we have #2(y) = 3. Then there must
be some y′ ∈ V \ (N(v) ∪ {u0, ul+1}) with #2(y

′) = 3.

Proof. Assume the contrary. For any 1 ≤ l ≤ 4 we have E3(N(v)∪{u0, ul+1}) ≤ 10.
As N(v) ∪ {u0, ul+1} can not form a component there is a weight 4 vertex r ad-
jacent to some vertex in N(v) ∪ {u0, ul+1}. Observe that we must have r ∈ Y . r
has 4 weight 3 neighbors due to the choice of v. Hence we must have E3(N(v) ∪
{u0, ul+1, r}) ≤ 6. Using the same arguments again we find some r′ ∈ Y with
E3(N(v)∪{u0, ul+1, r, r

′}) ≤ 2. As N(v)∪{u0, ul+1, r, r
′} can not be a component

we find a r′′ ∈ Y with 4 weight 3 neighbors. But due toE3(N(v)∪{u0, ul+1, r, r
′}) ≤

2 there must be at least one weight 3 vertex outside (N(v)∪ {u0, ul+1}), a contra-
diction. ⊓⊔
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Due to the last claim we have a ({2ω4 + 7ω3 + 4∆4}
2, ω4 + 4ω3)-branch for case

α). This branch is upperbounded by O∗(2
1

6.137
K).

Claim. Suppose for all y ∈ N(v) we have #2(y) = 3 and #2(u0) = #2(ul+1) = 4.
Then there must be some y′ ∈ V \ (N(v) ∪ {u0, ul+1}) with #2(y

′) = 3.

Proof. Assume the contrary. Observe that uo, ul+1 ∈ Y and due to the choice of v
both have 4 weight 3 neighbors which must be fromN(v). As we haveE3(N(v)) ≤ 8
it follows that E3(N(v) ∪ {u0, ul+1}) = 0. Therefore N(v) ∪ {u0, ul+1} forms a
connected component which is a contradiction. ⊓⊔

Due to the last claim we have a (ω4 + 4ω3 + 2∆4, {2ω4 + 5ω3 + 4∆4}
2)-branch for

case β). This branch is upperbounded by O∗(2
1

6.137
K).

⊓⊔

E Additional Analysis of the Combined Approach

E.1 5-regular branches in the combined approach

Internal 5-regular branches yield the same recurrences as in the simple approach. Final
5-regular branches must be analyzed together with their immediate preceding branch.
Thus they have to be analyzed together with the introduced branches of [7]. Table 2
captures some cases. For the case k14 = 1 and k15 = 4 there are two recurrences for

case one component both components upper bound

k15 = 5 ({7ω5 + 5∆5}
2, ω5 + 5∆5) ({7ω5 + 5∆5}

4) O∗(1.0846)

k13 = 1, k15 = 4 ({6ω5 + ω3 + 5∆5}
2, ω5 + 4∆5 + ω3) {6ω5 + ω3 + 5∆5}

4) O∗(1.0878)

k25 = 1, k15 = 3 ({6ω5 + 5∆5}
2, ω5 + 3∆5 + (ω5 − ω3) ({6ω5 + 5∆5}

4) O∗(1.0914)

Table 2.

the branching F [v], F [v̄, v1], F [v̄, v̄1, v2, v3, v4, v5]. The first recurrence assumes that v1
has at least three neighbor of weight less than five in F [v̄]: (A) (5∆5 + ω5 + (∆4 −
∆5), 4∆5+ω5+∆4+ω4+3∆4+∆5, 5ω5+ω4+∆5). The other (B) (ω5+4∆5+∆4, ω5+
4∆5+∆4+ω4+4∆5, 5ω5+ω4+3ω3) captures the remaining case. Both branches have
three components. Table 3 captures the combined branches of a immediately following
internal 5-branch and branches (A) and (B). This depends whether the final 5-regular
branch follows after the first (1), the second (2) or the third (3) component or in any
combination of them.

Proposition 8. Let v ∈ V (F ) be the variable chosen for branching by Alg. 1 such that
#2(v) = 5. Assume v induces a solution to equation 1 such that it is different from
k13 = 1, k15 = 4; k15 = 5; k25 = 1, k15 = 3; k14 = 1, k15 = 4 (⋆). If a 5-regular branch
follows in one component we have at least a ({3ω5+ω4+5∆5}

2, ω5+3∆5+2∆4)-branch
and if it follows in both a ({3ω5 + ω4 + 5∆5}

4)-branch
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Branch-type components combined branch upper bound

(A) (1) ({6ω5 + ω4 + 5∆5}
2, O∗(1.0912)

5∆5 + ω5 + (∆4 −∆5) + ω4 + 3∆4 +∆5,

5∆5 + ω5 + (∆4 −∆5) + 4ω4 + ω3 +∆5)

(A) (2) (5∆5 + ω5 + (∆4 −∆5), {6ω5 + ω4 + 5∆5}
2, O∗(1.1094)

5∆5 + ω5 + (∆4 −∆5) + 4ω4 + ω3 +∆5)

(A) (3) (5∆5 + ω5 + (∆4 −∆5), O∗(1.1175)
5∆5 + ω5 + (∆4 −∆5) + ω4 + 3∆4 +∆5,

{6ω5 + ω4 + 5∆5 + ω3}
2)

(B) (1) ({6ω5 + ω4 + 5∆5}
2, O∗(1.0894)

5∆5 + ω5 + (∆4 −∆5) + ω4 + 4∆5,

5∆5 + ω5 + (∆4 −∆5) + 4ω4 + ω3 + 3ω3)

(B) (2) (5∆5 + ω5 + (∆4 −∆5), {6ω5 + ω4 + 5∆5}
2, O∗(1.1052)

5∆5 + ω5 + (∆4 −∆5) + 4ω4 + ω3 + 3ω3)

(B) (3) (5∆5 + ω5 + (∆4 −∆5), O∗(1.1159)
5∆5 + ω5 + (∆4 −∆5) + ω4 + 4∆5,

{6ω5 + ω4 + 5∆5 + 3ω3}
2)

(A) or (1)(2)/(1)(3) ({6ω5 + ω4 + 5∆5}
4, ω5 + 4∆5 +∆4) O∗(1.1126)

(B) /(2)(3)

(A) or (1)(2)(3) ({6ω5 + ω4 + 5∆5}
6) O∗(1.0936)

(B)

Table 3. The second column indicates after which components an final 5-regular
branch immediately follows.

Proof. If a component is followed by a final 5-regular branch the least amount we get
by reduction from N(v) is ω5 + ω4. This refers to the case k35 = 1 and k24 = 1 which
follows analogously from section C.1.
The least reduction from N(v) without a following final 5-regular branch can be found
as follows: Consider any solution of equation (1) expect the ones in (⋆). From them
find one which minimizes

∆3k13 +∆4k14 +∆5k15 + (∆4 +∆3)k24 + (∆5 +∆4)k25 + (∆5 +∆4 +∆3)k35 (3)

We can assume k24 = 0 as we have ∆4 + ∆3 > ∆5 + ∆4. As were excluding (⋆)
we must have k15 ≤ 4. If k15 = 4 we conclude that either k14 = 1 oder k13 = 1. Both
solutions are forbidden (see (⋆)). Thus we must have k15 ≤ 3.
If k35 = 1 then there is a better solution as ∆5 + 2∆4 < ∆5 + ∆4 + ∆3: set k′

35 =
0, k′

15 = k15 + 1, k′

14 = k14 + 2 and keep the other coefficients. Note that in this case
we must have k15 ≤ 2 which assures that the new solutions is different from the ones
in (⋆). Therefore it follows that k35 = 0.
Now suppose k25 = 2, then k15 = 1 holds. But then k′

25 = k25−1, k′

15 = k15+1, k′

14 = 1
is a no worse solution. Thus k25 ≤ 1. If k25 = 1 then with k15 = 2 and k14 = 1 this is
minimal (since k15 = 3 is forbidden (⋆)).
Suppose k25 = 0, then clearly the best solution is k15 = 3 and k14 = 2. Both solutions
provide a reduction of 3∆5 + 2∆4 which is minimal.
Now we analyze a final 5-regular branch and a branch different form (⋆) satisfying
equation 3. If the final 5-regular branch follows in only one component then we have
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at least a ({3ω5 + ω4 + 5∆5}
2, ω5 + 3∆5 + 2∆4)-branch in the combined analysis. If it

follows in both then a ({3ω5 + ω4 + 5∆5}
4)-branch upper bounds correctly. ⊓⊔

Due to Proposition 8 we can upper bound the 5-regular branches whose predecessors
are different from k13 = 1, k15 = 4; k15 = 5; k25 = 1, k15 = 3; k14 = 1, k15 = 4 by
O∗(1.1171) in their combined analysis.

E.2 Additional Analysis of the combined approach

Here we provide the run times under γ̃(F ) for the cases we did not consider in sec-
tion 5. The run time has been estimated with respect to γ̃(F ). Names will refer to the
corresponding ones in the analysis of Alg. 1.

Non-regular Branches In Table 4 we find the derived recurrences for each priority
of HP if we have a non-regular branch. You can find them together with their run
times.

Priorities branch upper bound

Priority 1 (7, 7) O∗(1.1042)

Priority 2 ({ω6 + 5∆6 +∆5}
2) O∗(1.118)

Priority 3 ({ω5 + 4∆5 +∆4}
2) O∗(1.123)

Priority 4 ({2ω4 + 4∆4}
2) O∗(1.102)

Priority 5 ({3ω4 + 2ω3}
2) O∗(1.1099)

Priority 6 (2ω4 + 2ω3 + 2∆4, ω4 + 2ω3 + 2∆4) O∗(1.1143)

Priority 7 (ω4 + ω3 + 5∆4, ω4 + ω3 + 3∆4) O∗(1.1172)
({ω4 + 3ω3 + 3∆4}

2) O∗(1.1)
(2ω4 + ω3 + 3∆4, ω4 + ω3 + 3∆4) O∗(1.1165)

Priority 8 ({2ω4 + 2ω3 + 2∆4}
2) O∗(1.1)

Priority 9 (8ω3, 6ω3) O∗(1.1105)

Priority 10 (8ω3, 6ω3) O∗(1.1105)
(4ω3, 10ω3) O∗(1.118)

Table 4. The non-regular cases

Regular Branches Table 5 captures the run times of any internal 6,5 or 4-regular
branch. Table 6 consider 4 or 6-final branches together with their preceding branches.
The case where we have chosen v due to priority 7 such that v has a 3-path with
u0 6= ul is treated separately.

3-path Finally we consider the case when a variable chosen to priority 7 has a 3-path
with u0 6= ul+1. The cases a) ({3ω4 + 5ω3 + 4∆4}

2, ω4 + ω3 + 3∆4), b) (ω4 + ω3 +
5∆4, {3ω4 +3ω3 +4∆4}

2) and c) ({3ω4 +5ω3 +4∆4}
2, {3ω4 +3ω3 +4∆4}

2) are upper
bounded by O∗(1.1152), O∗(1.1159) and O∗(1.1147). Table 7 captures the branches of
Table 1 together with their run times in the combined algorithm.
We have a ({2ω4+7ω3+4∆4}

2, ω4+4ω3)-branch for case α) which O∗(1.1132) properly
upper bounds. We also have a (ω4 + 4ω3 + 2∆4, {2ω4 + 5ω3 + 4∆4}

2)-branch for case
β) such that it is upper bounded by O∗(1.1142).
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case branch upper bound

Internal 6-regular (3ω6, ω6 + 6∆6) O∗(1.0978)
({3ω6}

2) O∗(1.0802)

Internal 5-regular (3ω5, ω5 + 5∆5) O∗(1.1112)
({3ω5}

2) O∗(1.0974)

Internal 4-regular (5ω4, ω4 + 4∆4) O∗(1.103)
({5ω4}

2) O∗(1.079)

Table 5. Internal h-regular cases (h ∈ {4, 5, 6}) an their upper bounds.

Preceding branch branch upper bound

Final 6-regular Branch

Any 6-phase branch ({3ω6 + ω4 + 6∆6}
2, ω6 + 6∆6) O∗(1.11)

({3ω6 + ω4 + 6∆6}
4) O∗(1.105)

Final 4-regular Branch

Internal 4-regular ({6ω4 + 4∆4}
2, ω4 + 4∆4) O∗(1.1115)

({6ω4 + 4∆4}
4) O∗(1.1003)

Priorities 4,5 and 8 ({3ω4 + 8∆4}
2, 2ω4 + 4∆4) O∗(1.1115)

Cases 2,3(a),4 of Priority 6 ({3ω4 + 8∆4}
4) O∗(1.117)

Priority 6
Case 1 ({3ω4 + 2ω3 + 4∆4}

2) O∗(1.07)
Case 5,3(b) ({2ω4 + 2ω3 + 2∆4, {3ω4 + 4ω3 + 4∆4}

2) b) O∗(1.109)
b) and c) of the analysis ({3ω4 + 4ω3 + 4∆4}

4) c) O∗(1.1143)
Case 3b), case a) of the analysis ({3ω4 + 4ω3 + 5∆4}

2, ω4 + 2ω3 + 2∆4) O∗(1.1151)
Case 5, case a) of the analysis ({3ω4 + 4ω3 + 5∆4}

2, 2ω4 + 2ω3) O∗(1.1145)

Priority 7
Case of a 4-path

Case b) (2ω4 + ω3 + 3∆4, {3ω4 + 3ω3 + 4∆4}
2) O∗(1.1155)

Case a′) ({4ω4 + 3ω3 + 4∆4}
2, ω4 + ω3 + 3∆4) O∗(1.1156)

Case c′) {4ω4 + 3ω3 + 4∆4}
2, {3ω4 + 3ω3 + 4∆4}

2) O∗(1.115)
Case a′′) ({3ω4 + 5ω3 + 4∆4}

2, ω4 + ω3 + 3∆4) O∗(1.1152)
Case c′′) ({3ω4 + 5ω3 + 4∆4}

2, ({3ω4 + 3ω3 + 4∆4}
2) O∗(1.1147)

Case of a 3-path with u0 = ul+1 similar to priorities 4,5 and 8

Table 6. The final h-regular cases (h ∈ {4, 6}) and their combined analysis

left component right component both components

#2(u0) = 3 (ω4 + 6ω3, ({2ω4 + 6ω3 + 4∆4}
2,

#2(ul+1) = 3 {2ω4 + 6ω3 + 4∆4}
2) {2ω4 + 6ω3 + 4∆4}

2)
upper bounds O∗(1.1075) O∗(1.1136)

#2(u0) = 3 ({3ω4 + 5ω3 + 4∆4}
2, (ω4 + 5ω3 +∆4, ({3ω4 + 5ω3 + 4∆4}

2,

#2(ul+1) = 4 ω4 + 4ω3) {2ω4 + 5ω3 + 4∆4}
2) {2ω4 + 5ω3 + 4∆4}

2)
upper bounds O∗(1.1136) O∗(1.1138) O∗(1.1143)

#2(u0) = 4 ({4ω4 + 4ω3 + 4∆4}
2, ({4ω4 + 4ω3 + 4∆4}

2,

#2(ul+1) = 4 , ω4 + 4ω3) {2ω4 + 4ω3 + 4∆4}
2)

upper bounds O∗(1.1088) O∗(1.1088)

Table 7.
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