Skip to main content

Resolution Width and Cutting Plane Rank Are Incomparable

  • Conference paper
Mathematical Foundations of Computer Science 2008 (MFCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5162))

Abstract

We demonstrate that the Cutting Plane (CP) rank of a polytope defined by a system of inequalities derived from a set of unsatisfiable clauses can be arbitrarily larger than the Resolution width of the clauses, thus demonstrating the two measures are incomparable. More specifically, we show there exists an infinite family of unsatisfiable clauses defined over n ∈ ℕ, which have constant Resolution width, but, yield polytopes which have CP rank Ω(log2 n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atserias, A., Dalmau, V.: A combinatorial characterization of Resolution width. In: Proceedings of the 18th IEEE Conference on Computational Complexity, pp. 239–247 (2003)

    Google Scholar 

  2. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - Resolution made simple. Journal of the ACM 48(2), 149–168 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buresh-Oppenheim, J., Galesi, N., Hoory, S., Magen, A., Pitassi, T.: Rank bounds and integrality gaps for cutting planes procedures. Theory of Computing 2, 65–90 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrte Mathematics 4, 205–337 (1973)

    Google Scholar 

  5. Cook, W., Coullard, R., Turan, G.: On the complexity of cutting plane systems. Discrete Applied Maths 18, 25–38 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dantchev, S.: Relativisation Provides Natural Separations for Resolution-Based Proof Systems. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 147–158. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Dantchev, S., Martin, B., Rhodes, M.: Tight rank bounds for the Sherali-Adams proof system (manuscript, 2007)

    Google Scholar 

  8. Galesi, N., Thapen, N.: Resolution and Pebbling Games. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 76–90. Springer, Heidelberg (2005)

    Google Scholar 

  9. Gomory, R.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the AMS 64, 275–278 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grigoriev, D., Hirsch, E., Pasechnik, D.: Complexity of semi-algebraic proofs. Moscow Mathematical Journal 4(2), 647–679 (2002)

    MathSciNet  Google Scholar 

  11. Khachain, L.G.: A polynomial time algorithm for linear programming. Doklady Akademii Nauk SSSR, n.s. 244(5), 1063–1096 (1979); English translation in Soviet Math. Dokl. 20, 191–194

    Google Scholar 

  12. Lovász, L., Schrijver, A.: Cones of matricies and set-functions and 0-1 optimization. SIAM J. Optimization 1(2), 166–190 (1991)

    Article  MATH  Google Scholar 

  13. Rhodes, M.: Rank lower bounds for the Sherali-Adams operator. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 648–659. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Riis, S.: A complexity gap for tree-Resolution (manuscript, 1999), http://citeseer.ist.psu.edu/riis99complexity.html

  15. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal of Discrete Mathematics 3, 411–430 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Warners, J.P.: Nonlinear approaches to satisfiability problems. PhD thesis, Eindhoven University of Technology, The Netherlands (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward Ochmański Jerzy Tyszkiewicz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rhodes, M. (2008). Resolution Width and Cutting Plane Rank Are Incomparable. In: Ochmański, E., Tyszkiewicz, J. (eds) Mathematical Foundations of Computer Science 2008. MFCS 2008. Lecture Notes in Computer Science, vol 5162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85238-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85238-4_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85237-7

  • Online ISBN: 978-3-540-85238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics