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Abstract. To solve problems that require far more memory than a single m
chine can supply, data can be swapped to disk in some mahean be com-
pressed, and/or the memory of multiple parallel machinesbeaused to provide
enough memory and storage space. Instead of implementimgy éiinctionality
anew and specific for each application, or instead of relgimghe operating sys-
tem’s swapping algorithms (which are inflexible, not algfum-aware, and often
limited in their fixed storage capacity), our solution is ade Virtual Machine
(LVM) that transparently provides a large address spac@ptiations and that
is more flexible and efficient than operating system appresch

LVM is a virtual machine for Java that is designed to suppangé address spaces
for billions of objects. It swaps objects out to disk, congzes objects where
needed, and uses multiple parallel machines in a Distrib&feared Memory
(DSM) setting. The latter is the main focus of this paperogdition and collec-
tion performance is similar to well-known JVMs if no swapgiis needed. With
swapping and clustering, we are able to create a list canaih2x 10® elements
far faster than other JVMs. LVM’s swapping is up to 10 timeséathan OS-level
swapping. A swap-aware GC algorithm helps by a factor of 3.

1 Introduction

There are problems that require extremely large numbergjeicts (hundreds of giga-
bytes to terabyte(s)) and that are as such not bound by pacgseed, but rather by the
amount of available memory. Examples are simulations veithd numbers of 'units’,
e.g., either molecular or fluid particles [16]; combina&bsearch problems, e.g., find-
ing the most frequent sub-graph in a set of other graphs,iwieiquires to store all the
graphs already processed; model checkers, which run agrogn top of a (simulated)
non-deterministic Turing machine (NDTM) and for each natedministic choice, the
NDTM creates a copy of the simulated machine to explore bbtices to check that
no illegal program states can occur. Memory requirementstioof the above range
from multiples of hundreds of gigabytes to a terabyte andrabo

Since it is too costly or impossible to plug in enough mematy ia single machine,
programmers squeeze their code and rely on the operatitgnsigsswapping. Both of
which is suboptimal. Reimplementing data structures agdrdthms to reduce memory
consumption takes time that is better spent implementimgtfanality and ensuring
program correctness. Also, the operating system’s vidddless space implementation



not only does not know what data is truly most recently used atso the amount of
virtual memory available (including swap space) is fixed #éndted. Extending the
amount of swap space is a tedious task for the system adraioisand permanently
reduces the amount of disk space available to the user.¥ifel operating systems
compress swap space or exploit the aggregate memory andspaap available in a
cluster.

Our LVM (Large address space Virtual Machine) swaps objextdisk in com-
pressed format and provides a simple distributed shareckasldpace to use all of a
cluster's memory and disk space. While this functionalibyic also be implemented
by the programmer, a virtual machine solution provides assjpn of concerns. The
programmer can concentrate on the correctness and effjcadrtbe application code
instead of optimizing the low-level address space consiompAlso, address space op-
timizations for one particular program are often uselesgie next program whereas
a large address space virtual machine can be reused. As wdme®dify basic VM
data structures, LVM is written from scratch.

In sections 2.1 and 2.2, we describe the virtual addressesp&®1’s object man-
agement is described in Sections 2.3 and 2.5. In Section & diescribe our optimized
class library. Section 3 and 4 present performance numinersaver related work.

2 LVM Implementation

Our compiler frontend [18] generates a register-basedrimgdiate representation which
is similar to LLVM [12]. This is fed into LVM that employs botan interpreter and a
Just-In-Time compiler (JIT) to execute the code. The codeds interpreted, and if
found important enough, it is compiled to native code. Toueaportability, our JIT
is very simple: we compile a LVM-function first to C-code amdrh there to a shared
library that is dynamically linked while the program is rung.

We chose to use our own register-based intermediate for Lidtead of standard
Java bytecodes to easily experiment with language extessamnotations, compiler
optimizations, etc. without being encumbered by Java’'sdxyde verification, conver-
sion from a stack machine to a register machine, etc.

In LVM we focus on memory-conserving compiler optimizatiéor example, LVM
performs escape analysis [7, 13, 19] and allocates objeatslb not escape the allocat-
ing function/thread on the stack instead of the garbagectt heap to reduce pressure
on the garbage collector.

2.1 Implementing the Address Space

The main problem with implementing a huge, distributed addrspace is addressing
objects flexibly and efficiently. Implementing an objectarince as a direct memory
pointer is inflexible because it does not allow objects tdlgasove in memory and

because it provides little information for analysis. On ditieer hand, a reference should
be small, since there usually are many references that ndrxltept in memory and are
manipulated often. For performance, they should not beelatgan the operand width

of machine instructions. For these reasons, we employ 6éefatences to encode an



object’s location in memory in a cluster. Every access to bjea thus first needs to
decode the object reference to retrieve a local object poiithile this translation costs
at run time, it allows us to access an address space that spatigle machines. This
indirection scheme is fully Java compatible as referencegransparent in Java.
Every cluster node’s local address space is divided intoneags (of a megabyte).
Objects are allocated inside such segments. If an (arrdjecblarger than a single
segment is required, a segment is allocated that is largegénio hold it. Otherwise,
arrays are treated as ordinary objects. Note that segnemnissa trade-off between false
sharing (swapping in a segment may also swap in unused data)isk bandwidth.

Machine Segment Obj-ID Flags
16 bits 24 bits 16 bits 8 bits

Fig. 1. Reference layout.

An object reference is structured as shown in Fig. 1. The imadfeld encodes the
number of the cluster node on which the object is allocateglsegment field indicates
which segment on that machine it resides, and the objecelidsfigives the offset (in
multiples of 32 bytes) at which the object is found in the segtn

class Data{ Data_Data__:
int value; %R0.64 =call refToObjectPtr(%R24)
Data(){ (1", (%R0O_64 + 12L) ) = 12345
value = 12345;
Data_main___3Ljava_lang_String_2:
void foo() {} %R2.64 = vtableData
%R0.64 =call new_object(%R2.64)
public static %R2.64 = %R064
void main(String args[J) %R0.64 =call DataData _(%R2.64)
Data d =new Data(); local(’l', _14E,-8 ) = %R064
d.foo(); %R264 = %R064
} %R0.64 =call refToObjectPtr (%R2.64)
} %R0.64 =*('I', (%R0_64 +0))

%R0O.64 = *(I', (%R0_64 + 104) )
%R2.64 = local(l, _14E, - 8)
9%R0.64 =indirect_call %R0.64(%R264)

Fig. 2. Java example and resulting LVM code.

Because references are no direct memory addresses thetortsedecoded. Fig. 2
shows a snippet of Java code and its corresponding LVM codeenthis is required.
The latter is simplified, as we have switched off escape aiglype inference, method
inlining, and the removal of superfluous reference decading



In main(), first a newData instance is created. This results in the invocation of
new_object (which returns aeference). Thereferenceis passed to the constructor in ar-
gument registe?R2_64. The constructor usagfToObjectPtr to decode the reference
to a physical object pointer. Afterwards it performs theigsent. The invocation of
foo() in main() requires thetable that is located in the first 8 bytes of the object. So
again, the reference is decoded to a physical pointeeffpObjectPtr. The vtable is
accessed, the method pointer is extracted, and foo() ikéu;gpassing theeference to
thisin %R2.64. With compiler optimization enabled, the superfluoussdalrefToOb-
jectPtr within a basic block are eliminated.

javaObject * Segment*
refToObjectPtr(objecteferencet ref) { locatesegmentfit index){
if (gc_requested) gdbarrierenter(); Segment *s = &segrr[index];
if (ref == 0) thrownull_pointecexception();  if (s->is_swappedout()) {
testdsm(ref); s->swapin();
Segment*s =locatsegment(ref.segumber) in_core segments++;
s->updatetimestamp(); if (in_coresegments> THRESHOLD)
javaObject *q = s>data + (32 * swapout.oldestsegment();
ref.getsegindex()); }
returnq; returns;
} }

Segment segrr[MAX _SEGMENTSPERMACHINE];

Fig. 3. Decoding a reference to an object.

More interesting is how address encoding and decoding wiarkise presence of
LVM’s garbage collection in a distributed cluster enviroamt, in the presence of mul-
tiple threads, and when swapping is integrated.

Fig. 3 shows the pseudo code fefToObjectPtr. Because of its ubiquityefToOb-
jectPtr is also used as the GC barrier. Whenever the garbage collestas to wait for
all threads to stop, all threads are gathered ibgoierenter();

If it is not a null-pointer that has to be decoded, the curtbrgad will either stay
at the current cluster node tiést_dsm determines that the reference addresses a local
object. Otherwise, if it detects a remote access, the DSkésyis called to migrate the
currently executing thread to the cluster node that holdsattdressed object.

Finally, the segment in which the object resides is retidevenecessary, the seg-
ment is swapped in from disk and decompressed. The offskinitie segment is used
to compute the object’s address.

Whenever the limit of the number of in-memory segments hasbeached, the old-
est segment in memory is compressadd swapped out. This ensures that the operating
system’s swapping mechanism is never triggered, as LVMneier use more memory

! For compression we use the LZO library since it combines kighpression speed with rea-
sonable compression ratios [1].



than core memory. LVM speeds up swapping by delaying all sswgtmperations until
the next swap-in operation. Which segment is least recersyd is determined by a
logical clock that is set bypdate_timestamp() upon each accesSpdate_timestamp()
increments a global variable and sets the segment’s timgsta it. This only takes
a few machine instructions. To further increase perforneah®M can be directed to
swap-out a number of its oldest segments instead of justegraent when a memory
shortage is encountered. The result is that most disk-ICbegperformed in parallel.
Note that after the operating system'’s page level swapmadd a page, the OS does
not track individual page hits. In contrast, LVM knows eXxaathich segments have
been used last.

To ensure safe multi-threaded access to the segments, segotess needs to be
protected by a lock. However, most segments cannot be catiedidor swapping be-
cause they are too new. For such segments, LVM bypassesdkédooperformance
reasons and updates the timestamp with an atomic increment.

2.2 DSM support

Where most DSM systems fetch remote data whenever a nohalooess occurs, LVM
relies solely on thread migration. Upon detecting a noraldata access, the thread (in
its entirety) migrates to the machine that hosts the data tacbessed.

We employ this strategy for two reasons. First, all DSM pcols that fetch data
for their operation (lazy, entry, scope consistency prolcetc.), all require caching
of objects and/or maintenance of copies for later diffing tml fiocal changes. Also,
they need some extra memory to store administrative datpgzes/object (for example,
which machine has a copy, and in which access mode). Thesempererheads impact
memory usage and are unacceptable for our target applsatio

Secondly, we can assume that any non-trivial parallel appétin will touch large
amounts of shared data. If the size of the data is in the rahigeabytes, the bandwidth
requirements for achieving good speedup will be extremigiiirhis again means that
traditional DSM protocols will mostly be a no-go for our tatgpplications.

Hence, conceptually a call tést_dsmreturns at a different node if migration is nec-
essary. Of course, the performance of thread migratiolf itserucial in this approach.
We found that the key is a slightly verbose, machine indepetstack-frame and call
stack format. First, we use a separate call stack that ipemigent of the C call stack.
Second, both the JIT and the interpreter maintain the sarael{ime independent) stack
frame formats. Whenever the intermediate code writes taraual register’, instead of
writing to a physical register, it writes to a thread-localiable. While this slows down
sequential code, it allows very fast thread migration asksteames do not need to be
analyzed to locate live registers/variables; stack-freuan be copied between cluster
nodes verbatim. The complete call stack is kept in a mignati@ndly format for ef-
ficiency (at the cost in baseline-performance). A stack &diself consists of a return
address, a parameter block, and a local variable block. €herr address is a tuple
{function *prevfunction, int previnsn.in_func, int prevframe offset}.

Thread migration traverses the stack using the freme offset links. For each ac-
tivation, a translation table entry of the forfprev_function->name, offsein_stack is
added and sent with the stack to the receiver. The receies the translation table to



plug in new function addresses (as the receiver might hdweadkd functions at differ-
ent addresses). Migration therefore takes a stack travatrdeth sender and receiver
with an additional hash look up per stack frame at the recédv/ind function addresses
for given function names.

To support efficient stack allocation of objects (escapdyais) under thread migra-
tion, we maintain a separate per-thread stack using a nedelse algorithm. Manage-
ment of the non-escaped object stack is then as follows.dtion entry, we record the
top-of-the-stack pointer. Each non-escaped object dilmzhumps the top-of-the-stack
pointer to allocate memory. At function exit, the top-oethtack is restored, thereby
freeing all objects pushed while the function was runningc@urse, the compiler only
generates code for the above if a function actually allacateobject on the stack.

We maintain a separate data structure for non-escapedsbjetwo reasons. First,
it is difficult to allocate objects directly on a thread’slcsthck, because after a thread
has moved, the call stack will likely be at a different addrasd also the stack-allocated
objects. Any references to the object would need to be cttei point to the new
address. Second, the garbage collector needs to be abletode if a value found on
the stack is a reference or not, even if it is to a stack-atkgtabject. For this purpose,
each run of the GC quickly builds a per-thread bitmap. An éthbit here says that
the address in the thread-local stack starts an objectdiBgithe bitmap is easy as all
non-escaped objects are allocated in one single stack latéuse, allocated one after
the other.

At thread migration, the stack-allocated objects are feansd along with the call
stack of the thread. However, at the remote machine, eachk-atbbcated object will
have an invalid method table pointer (which would be at aedéfht address in each
LVM instance). For each stack-allocated object, the seatitire stack therefore sends
along a type descriptor of the object. The receiving machses the type descriptor to
patch in the new machine-local method table references.

For speeding thread migration, we maintain both a threadl @famperating system
threads and a pool of LVM-thread objects. When an LVM-thredgrates away, the
LVM-thread object is put into an object pool and the opexasgstem thread that exe-
cutes the thread’s instructions performs a longjmp bactststart routine where it waits
for its reactivation. When an LVM-thread migrates to a maehiwe thus only need to
pick a preallocated LVM-thread object (which includes itdl stack and thread-local
heap), initialize it with the migrated LVM-thread’s dataychactivate a thread from the
thread pool of operating system threads. Maintaining arailjool saves us the oper-
ating system interaction to allocate enough memory.

In addition to accessing remote objects, there are two déimgruage features that
require DSM support. First, to maintain Java’s global Vales, every write to a global
variable is broadcast to all machines. A read of a globakidei is therefore a purely
local operation. Second, a distributed locking scheme ésled to support Java’'s 'syn-
chronized’ functionality. Each wait, lock, and unlock cassa message to be sent to
the owner of the object on which the operation was called.cier then waits for an
acknowledge message. This acknowledgement is sent aftdodk-owning machine
has successfully executed the lock, unlock, or walit.



2.3 Object Allocation Strategies

LVM implements Java’s automatic memory management. I$ tideallocate objects in
the following order: (1) try first to allocate the object in ancore memory segment.
If that fails due to lack of memory capacity, (2) try to alléedahe object on a remote
node of the cluster. If the cluster’s core memories are feilvall, (3) continue locally
and try to allocate by swapping out some old segment. Onlyefswap space is full
as well, (4) a garbage collection is triggered to free locabanemory. In short, LVM
tries the cheapest allocation method first and proceed&tmtist expensive one. Note
that phases (2) and (3) can be reordered for a differentatilme scenario.

If a program needs arrays larger than a single machine’s mgraor HugeArray
class should be used that internally fragments an array.

Because lack of object locality causes excessive threadatiog, we allow the
programmer to suggest object co-location. We do so by eitgrile semantics afew
to express that the new object is best located near to or fay &wm another object.
Since in general, establishing optimal co-allocation isyveard to perform by static
compiler analysis, we chose to offer this optional annotasicheme to specify locality.

The syntax for our (optional) directive is:

e new /*$close_to(ref) $*/ Type

e new /* $far_from(ref) $/ Type
where ref’ is a reference to a previously allocated objddte directive is enclosed
in Java style comments so that the code still compiles ctiyratien a standard Java
compiler is used. We implementose_to by first trying to allocate the object on the
same segment (potentially swapping it in). If that fails,M\ries to at least allocate
it on the same cluster node. Witar_from, we explicitly try not to allocate the object
on the same segment. However, we make no special effortdosad it on a different
cluster node. This allows the allocating machine to fill ugtfiplus it may reduce thread
migration.

Close_to can also be used for maintaining load-balancing by the @irogner forc-
ing object allocation close-to its thread-objects (whick allocated round-robin by
LVM).

2.4 Reducing Thread Migrations

There are a number of simple Java constructs that can paltgciuse excessive thread
migrations. See, for example, the code in Fig. 4. If the arfayand 'b’ are allocated
on two different cluster nodes, each array element companigll cause two thread
migrations (once to the machine holding 'a’ and once for gdiack to access 'b’).

For this reason, we provide a small class library contairglggmental operations
on arrays. To be exact, we provide methods for fast addigabfraction, multiplica-
tion, and division of two arrays. In addition, Java’s clabsdry already offergava.util.
Arrays.equals() and java.lang.System.arraycopy() to compare and copy two arrays.
LVM's optimized methods test if both arrays are local, anddf they do a local op-
eration. If one of the two arrays is remote and the other oecisl, the local array is
sent to the remote cluster node which then executes thetapelacally. This reduces
the communication load to a total of two messages instead\bhiessages for an N



boolean equalarrays{nt[] a, int[] b) {
for (int i=0; i<a.length; i++)
if (a[i] '= b[i]) return false;
returntrue;

Fig.4. Comparing two arrays.

element array. To reduce the load on the heap, LVM does rutatt the remote copy
on the garbage-collected heap, but instead it is allocatetth® system heap. This re-
duces the pressure on LVM’s garbage collector. Note, thealige we allocate objects
on the system’s heap we bypass LVM’s swapping mechanism ksRee this reason
we reserve a bit of the system’s memory for this purpose iraade.

The same problem occurs when copying a graph of objects on wheparing two
object graphs for equality if the objects are spread acilussluster. LVM solves both
problems by means of a multi-machine object serializatidpject serialization is the
process of converting a graph of connected objects into @ dayty. Deserialization is
the inverse operation. Multi-machine object serializaigspecifically built to deal with
object graphs that are potentially distributed acrossipieltluster nodes. It serializes
as many objects on a single machine as possible. It keepslglserialized objects in a
hash table to guard against cyclic referencing of objectseiiéver a cycle is detected, a
reference to the already serialized object is put into thte byray instead of the object’s
data. Whenever no more references to local objects can tadized, the multi-machine
serialization process continues on the first machine thiatshe remote reference. To
detect cycles that span machine boundaries, the hash sadd@t along. Note that this
scheme relies on LVM’s property that references are clustde valid.

Only when used for cloning of an object graph, the desegtitin creates the object
graph on the LVM heap. Otherwise, when serialization is Usedesting equality of
object graphs, the object graph is deserialized to the systap using the system'’s
malloc instead of LVM'’s garbage-collected heap.

2.5 Distributed Garbage Collection

Java prescribes the use of a garbage collector to autorihvatiemove objects that are
no longer reachable. Unfortunately, most of the (local stributed) garbage collection
schemes proposed in the past have high memory overheads.ISMM must conserve
memory whenever it can, the number of choices for designifig’s GC are limited.
We preferred a distributed mark-and-sweep collector ovagying collector (gen-
erational or otherwise) since the latter waste half of themmey which is intolera-
ble given our project’s goal of an efficient huge object spéineour benchmarks,
intra-segment free-list fragmentation is no problem). btver, unlike some distributed
garbage collector schemes, we do not separate into loca glutbal garbage collection
phases, again due to memory concerns: to support machiaede’s, a machine must
keep track of incoming references, which can grow to a laegeAso, the gains com-
pared to only using a global GC are low [17]. Hence, LVM startgarbage collection



phase whenever a cluster node hits its local heap usage aguiidhen requests a GC
thread to be started on every cluster node.

Instead of marking the objects themselves, mark-and-se@@grtors can also use
mark-bitmaps to store the marks. In addition, we use aiocated-bitmap to mark a
location as allocated whenrew is executed. Only the bit for the start address is set.
The garbage collector can efficiently check that an objdeteace is valid by testing a
single bit in theallocated-bitmap. During the sweep phase, an object is quickly deter-
mined to be garbage if the corresponding bit in thexk-bitmap is unset. Because we
allocate objects in 32 byte increments, we require a 4 Kbiytertay to cover a 1IMByte
segment.

Naive collectors are costly if they cross high latency netwmoundaries too often
(going to another cluster node, swapping a segment in/eutyl uses a number of
optimizations to keep these costs down. First, to reduceatheunt of GC-induced
swapping, as many in-core references as possible are mhdede any objects are
marked that are known to be swapped out. For this reason, weairatwo to-do lists:
one listCore for in-core objects to be marked, and oneSeap for swapped-out objects
to be marked. Second, we sort the references irBiap set based on the reference’s
segment before starting the mark phase for the referredijects. This ensures that
objects on the same segment are marked together, henceisg&pfurther reduced.
To reduce the cost of sorting ti8wap set, we implement th8wvap set as a hash table
of buckets. Only the individual buckets then need to be doktée will hereafter call a
GC using swap set$azy swap GC' in the measurements.

Third, when a remote reference is seen, it is buffered tiliezi the local machine
has no more local marking to do, or the buffer is full (max. 4@@ferences per buffer).
To ensure a level of flow-control, only one outstanding miauler is allowed per target
machine.

After the mark phase has finished, every machine indepelydeneeps its local
memory. Segments that were left untouched during markiadgraed in one go. Seg-
ments that are only partially filled have their free listsuiy?

3 Performance

To demonstrate LVM's effectiveness we first need to show ithiatcompetitive with
a standard JVM for small memory demands and that it outpe$dhe OS swapping
algorithms for larger memory footprints.

We measure on two different machines (as our cluster’s palies not allow long
running jobs). For the micro-benchmarks, we use two 2 GHizoktmachines equipped
with 2 gigabyte RAM each. For the application benchmarksuse a cluster of Intel
machines with 3 GHz Woodcrest CPUs. Each machine is equipfica SATA disk
with at least 80 GByte free space. All machines are equippgdhwth 10 GBit Infini-
band and 1 GBit Ethernet. In all cases, LVM is configured toatsmost 1.7 gigabyte
RAM per machine for storing Java objects and arrays. Thigee®00 megabyte for

2 Instead of using physical pointers that become invalid whesegment is swapped in at a
different memory address, LVM implements the free list dsetf from the start of the segment
to the next free space within the segment.
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the operating system, networking software (communicdiigffers), the LVM garbage
collector, the JIT-ed code, and the interpreter’s data.

3.1 MicroBenchmarks

To measure the performance of object allocation and objemtss, we allocate (see
Fig. 5) and traverse (see Fig. 6) linked lists of increasergths. To be exact, we start
the program, create and traverse a list in a loop (10 itema}icand exit the program.
After a list summation, each list becomes garbage. The VMssarted for each new
list length.

We perform the same test both with SUN’s JDK 1.6 and LVM. 8tgrat 2 Gbhyte
SUN’s VM relies on the operating system’s swapping mechamibereas LVM already
starts to swap at 1.7 GByte. LVM outperforms SUN'’s JVM in blighcreation and list
traversal as soon as swapping is needed. We stop measulig @& formance at lists
with 7.8x 107 elements due to the excessive time needed.
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Fig. 5. LinkedList Creation.

To show that LVM-directed swapping is much more efficientti@S-level swap-
ping we disabled LVM’s swapping module (see LVM+0OS-swap bams) and instead
relied on the OS’s virtual memory implementation. Note ihadS-LVM, the code still
contains calls taefToObjectPtr. It is interesting to see that with OS-level swapping
the system becomes very unresponsive as soon as the OSeteotapete for mem-
ory against the JVM or the LVM-OS version. This competitidsoaimpacts messaging
speed as 1/O buffers compete for memory as well. When LVMerimal swapping is
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Fig. 6. LinkedList Traversal.

enabled, OS performance does not suffer because enoughrsnenabways reserved
forit.

The irregularities in the results are caused by the GC. Famgte, if many GC
passes occur when the lists are almost completely consttugiot of memory must be
scanned, the reverse when lists are still small. The irgaifids are thus a harmonic of
both the heuristics LVM uses to decide when to collect gaetzagl the list sizes.

The builtin-swap version of LVM is slightly slower in objeatlocation due to the
extra code needed (2 if statements) on the fast path to tetidmeed to swap. It is
clear that data compression is not a bottleneck (LZO conspeeat 100 MB/s and de-
compress at 310 MB/s on the 2Ghz Athlons). A 1 MByte LVM segtignin the list
benchmark, on average compressed to a 360 KByte file on digkda 36%) which
reduces disk-1/0 time and frees disk space. Using two mashive first fill one ma-
chine’s core memory, then the other’s. The speedup is naechby parallelism, as
there is still only one active thread in the cluster which ratgs to the machine with
free memory. The List/Node/Data constructors as well ageliset methods are all
inlined. Hence, method call overhead is thus not an issugisrbenchmark.

LVM’s performance greatly depends on the overhead of thraagtation. Here,
our implementation is extremely fast. A one-way thread ign takes just 54.9s
over gigabit Ethernet. With Infiniband, the latency of trdeaigration drops to 19.8s.
These times include thread exit, start, message transi@gistack patching.
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3.2 Application Benchmarks

JCheck is a model checker for a simplified Java dialect called Tapir. The model-
checker tests all possible interleavings of thread-exeesto find program bugs. Each
state consists of a simulated heap and simulated threadspiA @rogram is translated
into a simple bytecode format. At each point in the Tapir pamg where a context
switch may occur, the Tapir compiler inserts a context dwitgtecode instruction.
Bytecode fragments delimited by context switch instrutdiare then emitted as sepa-
rate Java functions.

To reduce the search space, each thread maintains a haslotabé states it has
already seen. Before proceeding with a new state, a threackshn the hash table if
that state has already been visited. JCheck gives eachitiiseavn private hash table
to reduce synchronization costs. Once a new state is foutlead publishes the new
state by adding a reference to it to all the other thread's akles. As each thread
maintains its own hash table, memory usage increases wistetlsize.

For our LVM test, we wrote a simple Tapir program in which twmgesses al-
ternatingly send an RPC to each other (which includes mesdatays and object-
allocations). Note that this is almost the smallest prokiefimit execution time (using
SUN JDK, JCheck requires more than a day).

Table 1. JCheck results

1 machiné2 machines! machine® machines
Time, no-lazy-GC (seconds) 8830.2 3728.2 429.8 1553.6
Time lazy-gc (seconds) 3803.7 1077.9 412.7 1483.1
Avg. Heap (MByte total in cluster) 10196 9152 10857 24152
Avg. #thread migr. per machine(thousand) — 69.7 111. 212.3

The memory requirements (see Table 1) are extreme due toutmder of states
that need to be explored and the corresponding hash tabigleim. To reduce the
number of thread migrations, JCheck heavily uses the opéicharraycopy, treeCopy,
and treeEquals methods (see Section 2.4). Thread migraistly happens whenever
a thread attempts to publish a new state in hash tables betptmother threads.

Lazy swap GC is a big gain for JCheck; GC is three times fast#r itvwhich
shows most clearly on the 1 machine measurements (wher@meng only 2.3 times
faster as GC is only a portion of the run time). When using nibean one machine,
preformance is greatly influenced by the speed in which theattis hash tables are
kept up-to-date to allow pruning of the search space. Wigihteinachines (threads),
this becomes hard. The increased heap usage with eight mesdkicaused by missing
search-space pruning opportunities (and thereby lowepegdup). Swap compression
allows a 1 MB segment to be compressed to a 65 KB file on average.

The Griso sub-graph locator finds occurrences of a graph P in another graph K.
Since nodes and edges may be rotated, a complicated grapbrigioism test is needed.
The algorithm first creates a set of permutations of P withatigoing edges of each
node permuted to create a set. This set is reduced by onlyiaticcanonical forms of
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the graphs into the set (while also converting K to its cacalfiorm). The set is then
partitioned into N parts, so that each of N worker threadsloaate embeddings of a
permutation of P in K.

Table 2. Griso results

1 maching¢2 machinegt machines8 machines
Time (seconds) 274752  17640( 29871 6962
Avg. Heap (MByte total in cluster) 15531 14838 15472 149172
Avg. #thread migrations per machine —| 34644978 25242531 12315766

Memory consumption (see Table 2) is large since all candfiacens of the per-
mutations of P need to be stored (again excluding a standévj. Fortunately, with
increasing numbers of machines, the memory requirementagehine drop such that
with the graph sizes that we have chosen, with 8 machinesréphg almost fit in the
cluster's memory (1864 MByte per node, with an LVM limit of Q0 MByte causes
164 MByte worth of graphs on average that need to be swappéd.results in the
superlinear speedup seen when going from 4 to 8 machinesriunétely, Griso can
take very little advantage of the class-libraries providedis causes the high thread-
migrations counts.

Besides using a lot of objects, Griso also creates a lot dfagge. On 8 machines,
839 seconds is spent on garbage collection using lazy-&@p 50 GC passes. Each
GC pass takes about 16 seconds. Without lazy-swap-GCnttrisdses to 950 seconds
total for GC, or 116 seconds longer. Each GC pass freed algighhyte of memory in
mostly small arrays used to hold references to graph nodesy€le testing in graphs).

4 Related Work

LVM implements a host of techniques to increase availablenorg and performance.
For each of these we will give a few entry points to the related.

Operating systems. Swapping and compression of swap space is a technique usu-
ally associated with operating system implementations @uteof-core applications.
In [8] Linux was adapted to compress MMU pages before swapghiam out to disk.
A small cache is used to store pages being compressed. 18][Birux is adapted to
divide memory into two parts. One holds compressed pageottier uncompressed.
Instead of swapping out an uncompressed page, the systemttepts to compress
the page and to place it into the compressed memory area.aVbats many disk-10
operations. Our system is implemented on top of an OS. Héndd,is not restricted
to the MMU'’s 4K page sizes, it is portable, and allows for riplét techniques to reduce
memory pressure (escape analysis, lazy GC swapping, etc.).

Operating systems can also increase a process’s avail@®mng by remote swap-
ping or remote paging. One approach is described in [10]eH®ispecial I/O device
'nswap’ is registered in the kernel. Related to this is [O9hene the lowest-level page-
manager in an operating system is made cluster-aware. pptbaches perform remote
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paging to allow idle nodes to cache pages of heavily loadei@sto decrease reliance
on slow disks for swapping. In contrast, LVM starts to rermallecate objects once lo-
cal memory is full and performs thread migration to accesstlafterwards.

Distributed garbage collection. A modified Linux notifies the Jikes RVM in [11]
that a page is about to be swapped out. Whenever this hapgherGC creates a list of
outgoing references from that page. Objects on that pagtharepart of the root-set
for the GC’s marking phase. All references to objects on pedpout pages are ignored
in subsequent collections. In contrast to LVM, RVM s red&d to a single machine
and to the size of the OS level virtual address space. Cltsestr distributed garbage
collector is the system of [17]. However, it targets ABCLifiead of Java, uses a tra-
ditional data fetching DSM system (with the associated nrgrogerheads discussed
above), and assumes that all data fits into core memory.

Locality directives. Related to our locality based directives is ccmalloc [6]a&n
ternative to malloc that allows to allocate something clisssome other ccmalloced
block of memory. However, the authors’ goal is cache optation instead of swap op-
timization. Moreover, they target C instead of Java.

Out-of-core& DSM. There have been a number of Java-based DSM systems. An
overview of DSM systems can be found in [14]. We will, howewencentrate on out-
of-core in combination with DSM.

The interaction between, out-of-core applications, cdenpj and execution on a
DSM system is investigated in [2]. The authors perform sewade analysis to add
an inspector-executor style parallelization method. Aspector finds probable data us-
ages and hands these over to the executor for the executibe pfogram. We perform
no source code analysis to detect parallelism but rely oa traeads explicitly created
by the programmer. Moreover, our different DSM style thdieseon thread migration
instead of data fetching is advantageous for memory-grapgiications. The compiler
analysis for out-of-core applications in [3] inserts ptefeinstructions to fetch array
data from disk. The techniques described here are orthdtmheM: instead of insert-
ing prefetch instructions, the LVM front-end compiler cduiy to call refToObjectPtr
as early as possible.

LOTS [4] is closest to LVM. It is also a DSM that can swap outeait$ to disk.
However, the mechanisms and techniques are quite diffdréM compresses data on
disk while LOTS does not. Furthermore, LOTS can only use altbf the available
memory/disk space for storing objects. LVM uses a virtuathiae approach, while
LOTS is provided as a C++ library. LOTS is an object-based D migrates data
and that therefore pays the memory penalty for storing pabjgcts, diffs, and twins of
pages. These overheads sum up significantly so that LOT Stanpport large address
spaces, especially when large numbers of small objects sed. WVM uses thread
migration and has no per-object DSM overheads. Finally, LMishages standard Java
code and migrates threads through a cluster automati¢ally.S requires manually
inserted acquire and release statements to control datistemcy and to use the C++
library constructs provided.
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