
Supporting Huge Address Spaces in a Virtual Machine
for Java on a Cluster

Ronald Veldema and Michael Philippsen

University of Erlangen-Nuremberg, Computer Science Department 2,
Martensstr. 3• 91058 Erlangen• Germany

{veldema, philippsen}@cs.fau.de

Abstract. To solve problems that require far more memory than a single ma-
chine can supply, data can be swapped to disk in some manner, it can be com-
pressed, and/or the memory of multiple parallel machines can be used to provide
enough memory and storage space. Instead of implementing either functionality
anew and specific for each application, or instead of relyingon the operating sys-
tem’s swapping algorithms (which are inflexible, not algorithm-aware, and often
limited in their fixed storage capacity), our solution is a Large Virtual Machine
(LVM) that transparently provides a large address space to applications and that
is more flexible and efficient than operating system approaches.
LVM is a virtual machine for Java that is designed to support large address spaces
for billions of objects. It swaps objects out to disk, compresses objects where
needed, and uses multiple parallel machines in a Distributed Shared Memory
(DSM) setting. The latter is the main focus of this paper. Allocation and collec-
tion performance is similar to well-known JVMs if no swapping is needed. With
swapping and clustering, we are able to create a list containing 1.2×10

8 elements
far faster than other JVMs. LVM’s swapping is up to 10 times faster than OS-level
swapping. A swap-aware GC algorithm helps by a factor of 3.

1 Introduction

There are problems that require extremely large numbers of objects (hundreds of giga-
bytes to terabyte(s)) and that are as such not bound by processor speed, but rather by the
amount of available memory. Examples are simulations with large numbers of ’units’,
e.g., either molecular or fluid particles [16]; combinatorial search problems, e.g., find-
ing the most frequent sub-graph in a set of other graphs, which requires to store all the
graphs already processed; model checkers, which run a program on top of a (simulated)
non-deterministic Turing machine (NDTM) and for each non-deterministic choice, the
NDTM creates a copy of the simulated machine to explore both choices to check that
no illegal program states can occur. Memory requirements for all of the above range
from multiples of hundreds of gigabytes to a terabyte and above.

Since it is too costly or impossible to plug in enough memory into a single machine,
programmers squeeze their code and rely on the operating system’s swapping. Both of
which is suboptimal. Reimplementing data structures and algorithms to reduce memory
consumption takes time that is better spent implementing functionality and ensuring
program correctness. Also, the operating system’s virtualaddress space implementation

2

not only does not know what data is truly most recently used, but also the amount of
virtual memory available (including swap space) is fixed andlimited. Extending the
amount of swap space is a tedious task for the system administrator and permanently
reduces the amount of disk space available to the user. Finally, few operating systems
compress swap space or exploit the aggregate memory and swapspace available in a
cluster.

Our LVM (Large address space Virtual Machine) swaps objectsto disk in com-
pressed format and provides a simple distributed shared address space to use all of a
cluster’s memory and disk space. While this functionality could also be implemented
by the programmer, a virtual machine solution provides a separation of concerns. The
programmer can concentrate on the correctness and efficiency of the application code
instead of optimizing the low-level address space consumption. Also, address space op-
timizations for one particular program are often useless for the next program whereas
a large address space virtual machine can be reused. As we need to modify basic VM
data structures, LVM is written from scratch.

In sections 2.1 and 2.2, we describe the virtual address space. LVM’s object man-
agement is described in Sections 2.3 and 2.5. In Section 2.4 we describe our optimized
class library. Section 3 and 4 present performance numbers and cover related work.

2 LVM Implementation

Our compiler frontend [18] generates a register-based intermediate representation which
is similar to LLVM [12]. This is fed into LVM that employs bothan interpreter and a
Just-In-Time compiler (JIT) to execute the code. The code isfirst interpreted, and if
found important enough, it is compiled to native code. To ensure portability, our JIT
is very simple: we compile a LVM-function first to C-code and from there to a shared
library that is dynamically linked while the program is running.

We chose to use our own register-based intermediate for LVM instead of standard
Java bytecodes to easily experiment with language extensions, annotations, compiler
optimizations, etc. without being encumbered by Java’s bytecode verification, conver-
sion from a stack machine to a register machine, etc.

In LVM we focus on memory-conservingcompiler optimization. For example, LVM
performs escape analysis [7, 13, 19] and allocates objects that do not escape the allocat-
ing function/thread on the stack instead of the garbage collected heap to reduce pressure
on the garbage collector.

2.1 Implementing the Address Space

The main problem with implementing a huge, distributed address space is addressing
objects flexibly and efficiently. Implementing an object reference as a direct memory
pointer is inflexible because it does not allow objects to easily move in memory and
because it provides little information for analysis. On theother hand, a reference should
be small, since there usually are many references that need to be kept in memory and are
manipulated often. For performance, they should not be larger than the operand width
of machine instructions. For these reasons, we employ 64 bitreferences to encode an

3

object’s location in memory in a cluster. Every access to an object thus first needs to
decode the object reference to retrieve a local object pointer. While this translation costs
at run time, it allows us to access an address space that spansmultiple machines. This
indirection scheme is fully Java compatible as references are transparent in Java.

Every cluster node’s local address space is divided into segments (of a megabyte).
Objects are allocated inside such segments. If an (array-) object larger than a single
segment is required, a segment is allocated that is large enough to hold it. Otherwise,
arrays are treated as ordinary objects. Note that segment size is a trade-off between false
sharing (swapping in a segment may also swap in unused data) and disk bandwidth.

Machine Segment Obj−ID Flags
16 bits 24 bits 16 bits 8 bits

Fig. 1. Reference layout.

An object reference is structured as shown in Fig. 1. The machine field encodes the
number of the cluster node on which the object is allocated, the segment field indicates
which segment on that machine it resides, and the object-id fields gives the offset (in
multiples of 32 bytes) at which the object is found in the segment.

class Data{
int value;
Data(){

value = 12345;
}
void foo() {}

public static
void main(String args[]){

Data d =new Data();
d.foo();

}
}

Data Data :
%R0 64 =call refToObjectPtr(%R264)
(’i’, (%R0 64 + 12L)) = 12345

Data main 3Ljava lang String 2:
%R2 64 = vtableData
%R0 64 =call new object(%R2 64)
%R2 64 = %R064
%R0 64 =call DataData (%R2 64)
local(’l’, 14E,-8) = %R064
%R2 64 = %R064
%R0 64 =call refToObjectPtr (%R2 64)
%R0 64 = *(’l’, (%R0 64 + 0))
%R0 64 = *(’l’, (%R0 64 + 104))
%R2 64 = local(’l’, 14E, - 8)
%R0 64 = indirect call %R0 64(%R264)

Fig. 2. Java example and resulting LVM code.

Because references are no direct memory addresses they needto be decoded. Fig. 2
shows a snippet of Java code and its corresponding LVM code where this is required.
The latter is simplified, as we have switched off escape analysis, type inference, method
inlining, and the removal of superfluous reference decoding.

4

In main(), first a newData instance is created. This results in the invocation of
new object (which returns areference). Thereference is passed to the constructor in ar-
gument register%R2 64. The constructor usesrefToObjectPtr to decode the reference
to a physical object pointer. Afterwards it performs the assignment. The invocation of
foo() in main() requires thevtable that is located in the first 8 bytes of the object. So
again, the reference is decoded to a physical pointer byrefToObjectPtr. Thevtable is
accessed, the method pointer is extracted, and foo() is invoked, passing thereference to
this in %R2 64. With compiler optimization enabled, the superfluous calls to refToOb-
jectPtr within a basic block are eliminated.

javaObject *
refToObjectPtr(objectreferencet ref) {

if (gc requested) gcbarrier enter();
if (ref == 0) thrownull pointer exception();
testdsm(ref);
Segment*s = locatesegment(ref.segnumber)
s->updatetimestamp();
javaObject *q = s->data + (32 *

ref.getsegindex());
return q;

}

Segment segarr[MAX SEGMENTSPERMACHINE];

Segment*
locatesegment(int index){

Segment *s = &segarr[index];
if (s->is swappedout()){

s->swapin();
in core segments++;
if (in core segments> THRESHOLD)

swapout oldestsegment();
}
return s;

}

Fig. 3. Decoding a reference to an object.

More interesting is how address encoding and decoding worksin the presence of
LVM’s garbage collection in a distributed cluster environment, in the presence of mul-
tiple threads, and when swapping is integrated.

Fig. 3 shows the pseudo code forrefToObjectPtr. Because of its ubiquity,refToOb-
jectPtr is also used as the GC barrier. Whenever the garbage collector needs to wait for
all threads to stop, all threads are gathered in gcbarrierenter();

If it is not a null-pointer that has to be decoded, the currentthread will either stay
at the current cluster node iftest dsm determines that the reference addresses a local
object. Otherwise, if it detects a remote access, the DSM system is called to migrate the
currently executing thread to the cluster node that holds the addressed object.

Finally, the segment in which the object resides is retrieved. If necessary, the seg-
ment is swapped in from disk and decompressed. The offset within the segment is used
to compute the object’s address.

Whenever the limit of the number of in-memory segments has been reached, the old-
est segment in memory is compressed1 and swapped out. This ensures that the operating
system’s swapping mechanism is never triggered, as LVM willnever use more memory

1 For compression we use the LZO library since it combines highcompression speed with rea-
sonable compression ratios [1].

5

than core memory. LVM speeds up swapping by delaying all swap-out operations until
the next swap-in operation. Which segment is least recentlyused is determined by a
logical clock that is set byupdate timestamp() upon each access.Update timestamp()
increments a global variable and sets the segment’s timestamp to it. This only takes
a few machine instructions. To further increase performance, LVM can be directed to
swap-out a number of its oldest segments instead of just one segment when a memory
shortage is encountered. The result is that most disk-IO canbe performed in parallel.
Note that after the operating system’s page level swapping loads a page, the OS does
not track individual page hits. In contrast, LVM knows exactly which segments have
been used last.

To ensure safe multi-threaded access to the segments, segment access needs to be
protected by a lock. However, most segments cannot be candidates for swapping be-
cause they are too new. For such segments, LVM bypasses the lock for performance
reasons and updates the timestamp with an atomic increment.

2.2 DSM support

Where most DSM systems fetch remote data whenever a non-local access occurs, LVM
relies solely on thread migration. Upon detecting a non-local data access, the thread (in
its entirety) migrates to the machine that hosts the data to be accessed.

We employ this strategy for two reasons. First, all DSM protocols that fetch data
for their operation (lazy, entry, scope consistency protocols, etc.), all require caching
of objects and/or maintenance of copies for later diffing to find local changes. Also,
they need some extra memory to store administrative data perpage/object (for example,
which machine has a copy, and in which access mode). These memory overheads impact
memory usage and are unacceptable for our target applications.

Secondly, we can assume that any non-trivial parallel application will touch large
amounts of shared data. If the size of the data is in the range of terabytes, the bandwidth
requirements for achieving good speedup will be extremely high. This again means that
traditional DSM protocols will mostly be a no-go for our target applications.

Hence, conceptually a call oftest dsm returns at a different node if migration is nec-
essary. Of course, the performance of thread migration itself is crucial in this approach.
We found that the key is a slightly verbose, machine independent stack-frame and call
stack format. First, we use a separate call stack that is independent of the C call stack.
Second, both the JIT and the interpreter maintain the same (machine independent) stack
frame formats. Whenever the intermediate code writes to a ’virtual register’, instead of
writing to a physical register, it writes to a thread-local variable. While this slows down
sequential code, it allows very fast thread migration as stack frames do not need to be
analyzed to locate live registers/variables; stack-frames can be copied between cluster
nodes verbatim. The complete call stack is kept in a migration-friendly format for ef-
ficiency (at the cost in baseline-performance). A stack frame itself consists of a return
address, a parameter block, and a local variable block. The return address is a tuple
{function *prev function, int previnsn in func, int prevframeoffset}.

Thread migration traverses the stack using the prevframeoffset links. For each ac-
tivation, a translation table entry of the form{prev function->name, offsetin stack} is
added and sent with the stack to the receiver. The receiver uses the translation table to

6

plug in new function addresses (as the receiver might have allocated functions at differ-
ent addresses). Migration therefore takes a stack traversal at both sender and receiver
with an additional hash look up per stack frame at the receiver to find function addresses
for given function names.

To support efficient stack allocation of objects (escape analysis) under thread migra-
tion, we maintain a separate per-thread stack using a mark-release algorithm. Manage-
ment of the non-escaped object stack is then as follows. At function entry, we record the
top-of-the-stack pointer. Each non-escaped object allocation bumps the top-of-the-stack
pointer to allocate memory. At function exit, the top-of-the-stack is restored, thereby
freeing all objects pushed while the function was running. Of course, the compiler only
generates code for the above if a function actually allocates an object on the stack.

We maintain a separate data structure for non-escaped objects for two reasons. First,
it is difficult to allocate objects directly on a thread’s call stack, because after a thread
has moved, the call stack will likely be at a different address and also the stack-allocated
objects. Any references to the object would need to be corrected to point to the new
address. Second, the garbage collector needs to be able to determine if a value found on
the stack is a reference or not, even if it is to a stack-allocated object. For this purpose,
each run of the GC quickly builds a per-thread bitmap. An enabled bit here says that
the address in the thread-local stack starts an object. Building the bitmap is easy as all
non-escaped objects are allocated in one single stack data structure, allocated one after
the other.

At thread migration, the stack-allocated objects are transferred along with the call
stack of the thread. However, at the remote machine, each stack-allocated object will
have an invalid method table pointer (which would be at a different address in each
LVM instance). For each stack-allocated object, the senderof the stack therefore sends
along a type descriptor of the object. The receiving machineuses the type descriptor to
patch in the new machine-local method table references.

For speeding thread migration, we maintain both a thread pool of operating system
threads and a pool of LVM-thread objects. When an LVM-threadmigrates away, the
LVM-thread object is put into an object pool and the operating system thread that exe-
cutes the thread’s instructions performs a longjmp back to its start routine where it waits
for its reactivation. When an LVM-thread migrates to a machine, we thus only need to
pick a preallocated LVM-thread object (which includes its call stack and thread-local
heap), initialize it with the migrated LVM-thread’s data, and activate a thread from the
thread pool of operating system threads. Maintaining an object pool saves us the oper-
ating system interaction to allocate enough memory.

In addition to accessing remote objects, there are two otherlanguage features that
require DSM support. First, to maintain Java’s global variables, every write to a global
variable is broadcast to all machines. A read of a global variable is therefore a purely
local operation. Second, a distributed locking scheme is needed to support Java’s ’syn-
chronized’ functionality. Each wait, lock, and unlock causes a message to be sent to
the owner of the object on which the operation was called. Thecaller then waits for an
acknowledge message. This acknowledgement is sent after the lock-owning machine
has successfully executed the lock, unlock, or wait.

7

2.3 Object Allocation Strategies

LVM implements Java’s automatic memory management. It tries to allocate objects in
the following order: (1) try first to allocate the object in anin-core memory segment.
If that fails due to lack of memory capacity, (2) try to allocate the object on a remote
node of the cluster. If the cluster’s core memories are full as well, (3) continue locally
and try to allocate by swapping out some old segment. Only if the swap space is full
as well, (4) a garbage collection is triggered to free local core memory. In short, LVM
tries the cheapest allocation method first and proceeds to the most expensive one. Note
that phases (2) and (3) can be reordered for a different allocation scenario.

If a program needs arrays larger than a single machine’s memory, our HugeArray
class should be used that internally fragments an array.

Because lack of object locality causes excessive thread migration, we allow the
programmer to suggest object co-location. We do so by extending the semantics ofnew
to express that the new object is best located near to or far away from another object.
Since in general, establishing optimal co-allocation is very hard to perform by static
compiler analysis, we chose to offer this optional annotation scheme to specify locality.

The syntax for our (optional) directive is:

• new /*$ close to(ref) $*/ Type
• new /*$ far from(ref) $*/ Type

where ’ref’ is a reference to a previously allocated object.The directive is enclosed
in Java style comments so that the code still compiles correctly when a standard Java
compiler is used. We implementclose to by first trying to allocate the object on the
same segment (potentially swapping it in). If that fails, LVM tries to at least allocate
it on the same cluster node. Withfar from, we explicitly try not to allocate the object
on the same segment. However, we make no special effort to allocate it on a different
cluster node. This allows the allocating machine to fill up first, plus it may reduce thread
migration.

Close to can also be used for maintaining load-balancing by the programmer forc-
ing object allocation close-to its thread-objects (which are allocated round-robin by
LVM).

2.4 Reducing Thread Migrations

There are a number of simple Java constructs that can potentially cause excessive thread
migrations. See, for example, the code in Fig. 4. If the arrays ’a’ and ’b’ are allocated
on two different cluster nodes, each array element comparison will cause two thread
migrations (once to the machine holding ’a’ and once for going back to access ’b’).

For this reason, we provide a small class library containingelemental operations
on arrays. To be exact, we provide methods for fast addition,subtraction, multiplica-
tion, and division of two arrays. In addition, Java’s class library already offersjava.util.
Arrays.equals() and java.lang.System.arraycopy() to compare and copy two arrays.
LVM’s optimized methods test if both arrays are local, and ifso, they do a local op-
eration. If one of the two arrays is remote and the other one islocal, the local array is
sent to the remote cluster node which then executes the operation locally. This reduces
the communication load to a total of two messages instead of 2·N messages for an N

8

boolean equalarrays(int[] a, int[] b) {
for (int i=0; i<a.length; i++)

if (a[i] != b[i]) return false;
return true;

}

Fig. 4. Comparing two arrays.

element array. To reduce the load on the heap, LVM does not allocate the remote copy
on the garbage-collected heap, but instead it is allocated on the system heap. This re-
duces the pressure on LVM’s garbage collector. Note, that because we allocate objects
on the system’s heap we bypass LVM’s swapping mechanism as well. For this reason
we reserve a bit of the system’s memory for this purpose in advance.

The same problem occurs when copying a graph of objects or when comparing two
object graphs for equality if the objects are spread across the cluster. LVM solves both
problems by means of a multi-machine object serialization.Object serialization is the
process of converting a graph of connected objects into a byte array. Deserialization is
the inverse operation. Multi-machine object serialization is specifically built to deal with
object graphs that are potentially distributed across multiple cluster nodes. It serializes
as many objects on a single machine as possible. It keeps already serialized objects in a
hash table to guard against cyclic referencing of objects. Whenever a cycle is detected, a
reference to the already serialized object is put into the byte array instead of the object’s
data. Whenever no more references to local objects can be serialized, the multi-machine
serialization process continues on the first machine that holds a remote reference. To
detect cycles that span machine boundaries, the hash table is sent along. Note that this
scheme relies on LVM’s property that references are cluster-wide valid.

Only when used for cloning of an object graph, the deserialization creates the object
graph on the LVM heap. Otherwise, when serialization is usedfor testing equality of
object graphs, the object graph is deserialized to the system heap using the system’s
malloc instead of LVM’s garbage-collected heap.

2.5 Distributed Garbage Collection

Java prescribes the use of a garbage collector to automatically remove objects that are
no longer reachable. Unfortunately, most of the (local or distributed) garbage collection
schemes proposed in the past have high memory overheads. Since LVM must conserve
memory whenever it can, the number of choices for designing LVM’s GC are limited.

We preferred a distributed mark-and-sweep collector over acopying collector (gen-
erational or otherwise) since the latter waste half of the memory which is intolera-
ble given our project’s goal of an efficient huge object space(in our benchmarks,
intra-segment free-list fragmentation is no problem). Moreover, unlike some distributed
garbage collector schemes, we do not separate into local anda global garbage collection
phases, again due to memory concerns: to support machine-local GC’s, a machine must
keep track of incoming references, which can grow to a large set. Also, the gains com-
pared to only using a global GC are low [17]. Hence, LVM startsa garbage collection

9

phase whenever a cluster node hits its local heap usage boundary. It then requests a GC
thread to be started on every cluster node.

Instead of marking the objects themselves, mark-and-sweepcollectors can also use
mark-bitmaps to store the marks. In addition, we use anallocated-bitmap to mark a
location as allocated when anew is executed. Only the bit for the start address is set.
The garbage collector can efficiently check that an object reference is valid by testing a
single bit in theallocated-bitmap. During the sweep phase, an object is quickly deter-
mined to be garbage if the corresponding bit in themark-bitmap is unset. Because we
allocate objects in 32 byte increments, we require a 4 Kbyte bit array to cover a 1MByte
segment.

Naive collectors are costly if they cross high latency network boundaries too often
(going to another cluster node, swapping a segment in/out).LVM uses a number of
optimizations to keep these costs down. First, to reduce theamount of GC-induced
swapping, as many in-core references as possible are markedbefore any objects are
marked that are known to be swapped out. For this reason, we maintain two to-do lists:
one listCore for in-core objects to be marked, and one setSwap for swapped-out objects
to be marked. Second, we sort the references in theSwap set based on the reference’s
segment before starting the mark phase for the referred-to objects. This ensures that
objects on the same segment are marked together, hence swapping is further reduced.
To reduce the cost of sorting theSwap set, we implement theSwap set as a hash table
of buckets. Only the individual buckets then need to be sorted. We will hereafter call a
GC using swap sets’lazy swap GC’ in the measurements.

Third, when a remote reference is seen, it is buffered till either the local machine
has no more local marking to do, or the buffer is full (max. 1024 references per buffer).
To ensure a level of flow-control, only one outstanding mark-buffer is allowed per target
machine.

After the mark phase has finished, every machine independently sweeps its local
memory. Segments that were left untouched during marking are freed in one go. Seg-
ments that are only partially filled have their free lists rebuilt.2

3 Performance

To demonstrate LVM’s effectiveness we first need to show thatit is competitive with
a standard JVM for small memory demands and that it outperforms the OS swapping
algorithms for larger memory footprints.

We measure on two different machines (as our cluster’s policy does not allow long
running jobs). For the micro-benchmarks, we use two 2 GHz Athlon machines equipped
with 2 gigabyte RAM each. For the application benchmarks, weuse a cluster of Intel
machines with 3 GHz Woodcrest CPUs. Each machine is equippedwith a SATA disk
with at least 80 GByte free space. All machines are equipped with both 10 GBit Infini-
band and 1 GBit Ethernet. In all cases, LVM is configured to useat most 1.7 gigabyte
RAM per machine for storing Java objects and arrays. This leaves 300 megabyte for

2 Instead of using physical pointers that become invalid whena segment is swapped in at a
different memory address, LVM implements the free list as offsets from the start of the segment
to the next free space within the segment.

10

the operating system, networking software (communicationbuffers), the LVM garbage
collector, the JIT-ed code, and the interpreter’s data.

3.1 Micro Benchmarks

To measure the performance of object allocation and object access, we allocate (see
Fig. 5) and traverse (see Fig. 6) linked lists of increasing lengths. To be exact, we start
the program, create and traverse a list in a loop (10 iterations), and exit the program.
After a list summation, each list becomes garbage. The VM is restarted for each new
list length.

We perform the same test both with SUN’s JDK 1.6 and LVM. Starting at 2 Gbyte
SUN’s VM relies on the operating system’s swapping mechanism whereas LVM already
starts to swap at 1.7 GByte. LVM outperforms SUN’s JVM in bothlist creation and list
traversal as soon as swapping is needed. We stop measuring JDK’s performance at lists
with 7.8×10

7 elements due to the excessive time needed.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0s i z e (1 u n i t = 1 0 ^ 6 l i s t e l t s)05 0 0 01 0 0 0 01 5 0 0 02 0 0 0 02 5 0 0 03 0 0 0 03 5 0 0 04 0 0 0 0
ti me(sec) J D KL V M + w i t h o u t l a z y G CL V M + O S 1 s w a pL V M + 2 m a c h i n e s

Fig. 5. LinkedList Creation.

To show that LVM-directed swapping is much more efficient than OS-level swap-
ping we disabled LVM’s swapping module (see LVM+OS-swap numbers) and instead
relied on the OS’s virtual memory implementation. Note thatin OS-LVM, the code still
contains calls torefToObjectPtr. It is interesting to see that with OS-level swapping
the system becomes very unresponsive as soon as the OS startsto compete for mem-
ory against the JVM or the LVM-OS version. This competition also impacts messaging
speed as I/O buffers compete for memory as well. When LVM’s internal swapping is

11

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0s i z e (1 u n i t = 1 0 ^ 6 l i s t e l t s)01 0 0 02 0 0 03 0 0 04 0 0 05 0 0 06 0 0 07 0 0 08 0 0 0
ti me(sec) J D KL V M + w i t h o u t l a z y G CL V M + O S 2 s w a pL V M + 2 m a c h i n e s

Fig. 6. LinkedList Traversal.

enabled, OS performance does not suffer because enough memory is always reserved
for it.

The irregularities in the results are caused by the GC. For example, if many GC
passes occur when the lists are almost completely constructed, a lot of memory must be
scanned, the reverse when lists are still small. The irregularities are thus a harmonic of
both the heuristics LVM uses to decide when to collect garbage and the list sizes.

The builtin-swap version of LVM is slightly slower in objectallocation due to the
extra code needed (2 if statements) on the fast path to test for the need to swap. It is
clear that data compression is not a bottleneck (LZO compresses at 100 MB/s and de-
compress at 310 MB/s on the 2Ghz Athlons). A 1 MByte LVM segment is, in the list
benchmark, on average compressed to a 360 KByte file on disk (approx 36%) which
reduces disk-I/O time and frees disk space. Using two machines, we first fill one ma-
chine’s core memory, then the other’s. The speedup is not caused by parallelism, as
there is still only one active thread in the cluster which migrates to the machine with
free memory. The List/Node/Data constructors as well as allget/set methods are all
inlined. Hence, method call overhead is thus not an issue in this benchmark.

LVM’s performance greatly depends on the overhead of threadmigration. Here,
our implementation is extremely fast. A one-way thread migration takes just 54.9µs
over gigabit Ethernet. With Infiniband, the latency of thread migration drops to 19.9µs.
These times include thread exit, start, message transfer, and stack patching.

12

3.2 Application Benchmarks

JCheck is a model checker for a simplified Java dialect called Tapir. The model-
checker tests all possible interleavings of thread-executions to find program bugs. Each
state consists of a simulated heap and simulated threads. A Tapir program is translated
into a simple bytecode format. At each point in the Tapir program where a context
switch may occur, the Tapir compiler inserts a context switch bytecode instruction.
Bytecode fragments delimited by context switch instructions are then emitted as sepa-
rate Java functions.

To reduce the search space, each thread maintains a hash table of the states it has
already seen. Before proceeding with a new state, a thread checks in the hash table if
that state has already been visited. JCheck gives each thread its own private hash table
to reduce synchronization costs. Once a new state is found, athread publishes the new
state by adding a reference to it to all the other thread’s hash tables. As each thread
maintains its own hash table, memory usage increases with cluster size.

For our LVM test, we wrote a simple Tapir program in which two processes al-
ternatingly send an RPC to each other (which includes message delays and object-
allocations). Note that this is almost the smallest problemto limit execution time (using
SUN JDK, JCheck requires more than a day).

Table 1. JCheck results

1 machine2 machines4 machines8 machines
Time, no-lazy-GC (seconds) 8830.2 3728.2 429.8 1553.6
Time lazy-gc (seconds) 3803.7 1077.9 412.7 1483.1
Avg. Heap (MByte total in cluster) 10196 9152 10857 24152
Avg. #thread migr. per machine (× thousand) — 69.7 111.2 212.3

The memory requirements (see Table 1) are extreme due to the number of states
that need to be explored and the corresponding hash tables for them. To reduce the
number of thread migrations, JCheck heavily uses the optimized arraycopy, treeCopy,
and treeEquals methods (see Section 2.4). Thread migrationmostly happens whenever
a thread attempts to publish a new state in hash tables belonging to other threads.

Lazy swap GC is a big gain for JCheck; GC is three times faster with it which
shows most clearly on the 1 machine measurements (where run time is only 2.3 times
faster as GC is only a portion of the run time). When using morethan one machine,
preformance is greatly influenced by the speed in which the thread’s hash tables are
kept up-to-date to allow pruning of the search space. With eight machines (threads),
this becomes hard. The increased heap usage with eight machines is caused by missing
search-space pruning opportunities (and thereby loweringspeedup). Swap compression
allows a 1 MB segment to be compressed to a 65 KB file on average.

TheGriso sub-graph locator finds occurrences of a graph P in another graph K.
Since nodes and edges may be rotated, a complicated graph isomorphism test is needed.
The algorithm first creates a set of permutations of P with theoutgoing edges of each
node permuted to create a set. This set is reduced by only allowing canonical forms of

13

the graphs into the set (while also converting K to its canonical form). The set is then
partitioned into N parts, so that each of N worker threads canlocate embeddings of a
permutation of P in K.

Table 2. Griso results

1 machine2 machines4 machines8 machines
Time (seconds) 274752 176400 29871 6962
Avg. Heap (MByte total in cluster) 15531 14838 15472 14912
Avg. #thread migrations per machine — 34644978 25242531 12315766

Memory consumption (see Table 2) is large since all canonical forms of the per-
mutations of P need to be stored (again excluding a standard JVM). Fortunately, with
increasing numbers of machines, the memory requirements per machine drop such that
with the graph sizes that we have chosen, with 8 machines the graphs almost fit in the
cluster’s memory (1864 MByte per node, with an LVM limit of 1700 MByte causes
164 MByte worth of graphs on average that need to be swapped).This results in the
superlinear speedup seen when going from 4 to 8 machines. Unfortunately, Griso can
take very little advantage of the class-libraries provided. This causes the high thread-
migrations counts.

Besides using a lot of objects, Griso also creates a lot of garbage. On 8 machines,
839 seconds is spent on garbage collection using lazy-swap-GC in 50 GC passes. Each
GC pass takes about 16 seconds. Without lazy-swap-GC, this increases to 950 seconds
total for GC, or 116 seconds longer. Each GC pass freed about agigabyte of memory in
mostly small arrays used to hold references to graph nodes (for cycle testing in graphs).

4 Related Work

LVM implements a host of techniques to increase available memory and performance.
For each of these we will give a few entry points to the relatedwork.

Operating systems. Swapping and compression of swap space is a technique usu-
ally associated with operating system implementations andout-of-core applications.
In [8] Linux was adapted to compress MMU pages before swapping them out to disk.
A small cache is used to store pages being compressed. In [5, 15] Linux is adapted to
divide memory into two parts. One holds compressed pages, the other uncompressed.
Instead of swapping out an uncompressed page, the system first attempts to compress
the page and to place it into the compressed memory area. Thatavoids many disk-IO
operations. Our system is implemented on top of an OS. Hence,LVM is not restricted
to the MMU’s 4K page sizes, it is portable, and allows for multiple techniques to reduce
memory pressure (escape analysis, lazy GC swapping, etc.).

Operating systems can also increase a process’s available memory by remote swap-
ping or remote paging. One approach is described in [10]. Here, a special I/O device
’nswap’ is registered in the kernel. Related to this is [9], where the lowest-level page-
manager in an operating system is made cluster-aware. Both approaches perform remote

14

paging to allow idle nodes to cache pages of heavily loaded nodes to decrease reliance
on slow disks for swapping. In contrast, LVM starts to remote-allocate objects once lo-
cal memory is full and performs thread migration to access them afterwards.

Distributed garbage collection. A modified Linux notifies the Jikes RVM in [11]
that a page is about to be swapped out. Whenever this happens,the GC creates a list of
outgoing references from that page. Objects on that page arethen part of the root-set
for the GC’s marking phase. All references to objects on swapped-out pages are ignored
in subsequent collections. In contrast to LVM, RVM is restricted to a single machine
and to the size of the OS level virtual address space. Closestto our distributed garbage
collector is the system of [17]. However, it targets ABCL/f instead of Java, uses a tra-
ditional data fetching DSM system (with the associated memory overheads discussed
above), and assumes that all data fits into core memory.

Locality directives. Related to our locality based directives is ccmalloc [6], anal-
ternative to malloc that allows to allocate something closeto some other ccmalloced
block of memory. However, the authors’ goal is cache optimization instead of swap op-
timization. Moreover, they target C instead of Java.

Out-of-core & DSM. There have been a number of Java-based DSM systems. An
overview of DSM systems can be found in [14]. We will, however, concentrate on out-
of-core in combination with DSM.

The interaction between, out-of-core applications, compilers, and execution on a
DSM system is investigated in [2]. The authors perform source code analysis to add
an inspector-executor style parallelization method. An inspector finds probable data us-
ages and hands these over to the executor for the execution ofthe program. We perform
no source code analysis to detect parallelism but rely on Java threads explicitly created
by the programmer. Moreover, our different DSM style that relies on thread migration
instead of data fetching is advantageous for memory-greedyapplications. The compiler
analysis for out-of-core applications in [3] inserts prefetch instructions to fetch array
data from disk. The techniques described here are orthogonal to LVM: instead of insert-
ing prefetch instructions, the LVM front-end compiler could try to call refToObjectPtr
as early as possible.

LOTS [4] is closest to LVM. It is also a DSM that can swap out objects to disk.
However, the mechanisms and techniques are quite different. LVM compresses data on
disk while LOTS does not. Furthermore, LOTS can only use a third of the available
memory/disk space for storing objects. LVM uses a virtual machine approach, while
LOTS is provided as a C++ library. LOTS is an object-based DSMthat migrates data
and that therefore pays the memory penalty for storing proxyobjects, diffs, and twins of
pages. These overheads sum up significantly so that LOTS cannot support large address
spaces, especially when large numbers of small objects are used. LVM uses thread
migration and has no per-object DSM overheads. Finally, LVMmanages standard Java
code and migrates threads through a cluster automatically.LOTS requires manually
inserted acquire and release statements to control data consistency and to use the C++
library constructs provided.

References

1. http://www.oberhumer.com/opensource/lzo/.

15

2. P. Brezany, A.N. Choudhary, and M. Dang. Parallelizationof irregular out-of-core appli-
cations for distributed-memory systems. InProc. of HPCN Europe ’97, pages 811–820,
Amsterdam., Apr. 1997.

3. A.D. Brown, T.C. Mowry, and O. Krieger. Compiler-based I/O prefetching for out-of-core
applications.ACM Trans. Comput. Syst., 19(2):111–170, 2001.

4. B.W.L. Cheun, C.L. Wang, and F.C.M. Lau. LOTS: A Software DSM Supporting Large
Object Space. InProc. Cluster 2004, pages 225–234, San Diego, CA, Sep. 2004.

5. Irina Chihaia and Thomas Gross. An analytical model for software-only main memory com-
pression. InWMPI ’04: Proc. of the 3rd workshop on Memory performance issues, pages
107–113, Munich, Germany, June 2004.

6. T.M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure layout. InProc.
of the ACM SIGPLAN 1999 Conf. on Programming Language Design and Implementation,
pages 1–12, Atlanta, GA, May 1999.

7. J.D. Choi, M. Gupta, M. Serrano, V.C. Sreedhar, and S. Midkiff. Escape Analysis For Java.
In Proc. of the 1999 ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 1–19, Denver, CO, Nov. 1999.

8. T. Cortes, Y. Becerra, and R. Cervera. Swap compression: resurrecting old ideas.Software,
Practice and Experience, 30(5):567–587, 2000.

9. M. J. Feeley, W. E. Morgan, E. P. Pighin, A. R. Karlin, H. M. Levy, and C. A. Thekkath.
Implementing global memory management in a workstation cluster. SIGOPS Oper. Syst.
Rev., 29(5):201–212, 1995.

10. S. Finney, K. Ganchev, M. Klock, T. Newhall, and M. Spiegel. The NSWAP module for
network swap.Journal of Computing Sciences in Colleges, 18(5):274–275, 2003.

11. M. Hertz, Y. Feng, and E.D. Berger. Garbage collection without paging. InProc. of the 2005
ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI ’05),
pages 143–153, Chicago, IL, 2005.

12. C. Lattner and V. Adve. LLVM: A Compilation Framework forLifelong Program Analysis
& Transformation. InProc. of the 2004 Intl. Symp. on Code Generation and Optimization
(CGO’04), pages 75–85, Palo Alto, CA, Mar. 2004.

13. Kyungwoo Lee, Xing Fang, and Samuel P. Midkiff. Practical escape analyses: how good are
they? InProc. of the 3rd Int’l Conf. on Virtual Execution Environments (VEE ’07), pages
180–190, San Diego, CA, 2007.

14. J. Protic, M. Tomasevic, and V. Milutinovic. A survey of distributed shared memory systems.
In Proc. 28th Hawaii Intl. Conf. on System Sciences (HICSS’95), pages 74 – 84, Jan. 1995.

15. Luigi Rizzo. A very fast algorithm for RAM compression.SIGOPS Oper. Syst. Rev.,
31(2):36–45, 1997.

16. R. Ryne, S. Habib, J. Qiang, K. Ko, Z. Li, B. McCandless, W.Mi, C. Ng, M. Saparov,
V. Srinivas, Y. Sun, X. Zhan, V. Decyk, , and G. Golub. The US DOE Grand Challenge
in computational accelerator physics. InProc. Linear Accelerator Conference (LINAC98),
pages 603–+, Chicago, Aug. 1998.

17. K. Taura and A. Yonezawa. An Effective Garbage Collection Strategy for Parallel Program-
ming Languages on Large Scale Distributed-Memory Machines. In 6th Symp. on Principles
and Practice of Parallel Programming (PPoPP), pages 18–21, Las Vegas, NV, June 1997.

18. R. Veldema, R.F.H. Hofman, R.A.F. Bhoedjang, C.J.H. Jacobs, and H.E. Bal. Source-level
global optimizations for fine-grain distributed shared memory systems. In8th Symp. on
Principles and Practices of Parallel Programming (PPoPP), pages 83–92, Snowbird, Utah,
June 2001.

19. J. Whaley and M. Rinard. Compositional Pointer And Escape Analysis For Java Programs.
In Proc. of the 1999 ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 187–206, Denver, CO, Nov. 1999.

