
Automatically Extracting Personal Name Aliases
from the Web

Danushka Bollegala�, Taiki Honma, Yutaka Matsuo, and Mitsuru Ishizuka

The University of Tokyo, Hongo 7-3-1, Tokyo, 113-8656, Japan
{danushka,honma}@mi.ci.i.u-tokyo.ac.jp,

matsuo@biz-model.t.u-tokyo.ac.jp,
ishizuka@i.u-tokyo.ac.jp

Abstract. Extracting aliases of an entity is important for various tasks
such as identification of relations among entities, web search and entity
disambiguation. To extract relations among entities properly, one must
first identify those entities. We propose a novel approach to find aliases of
a given name using automatically extracted lexical patterns. We exploit a
set of known names and their aliases as training data and extract lexical
patterns that convey information related to aliases of names from text
snippets returned by a web search engine. The patterns are then used
to find candidate aliases of a given name. We use anchor texts to design
a word co-occurrence model and use it to define various ranking scores
to measure the association between a name and a candidate alias. The
ranking scores are integrated with page-count-based association mea-
sures using support vector machines to leverage a robust alias detection
method. The proposed method outperforms numerous baselines and pre-
vious work on alias extraction on a dataset of personal names, achieving
a statistically significant mean reciprocal rank of 0.6718. Experiments
carried out using a dataset of location names and Japanese personal
names suggest the possibility of extending the proposed method to ex-
tract aliases for different types of named entities and for other languages.
Moreover, the aliases extracted using the proposed method improve re-
call by 20% in a relation-detection task.

1 Introduction

Precisely identifying entities in web documents is necessary for various tasks
such as relation extraction [16], search and integration of data [9] and entity
disambiguation [14]. Nevertheless, identification of entities on the web is difficult
for two fundamental reasons: first, different entities can share the same name
(lexical ambiguity); secondly, a single entity can be designated by multiple names
(referential ambiguity). As an example of lexical ambiguity the name Jim Clark
is illustrative. Aside from the two most popular namesakes, the formula-one
racing champion and the founder of Netscape, at least 10 different people are
listed among the top 100 results returned by Google for the name. On the other
� Research Fellow of the Japan Society for the Promotion of Science (JSPS).

A. Ranta, B. Nordström (Eds.): GoTAL 2008, LNAI 5221, pp. 77–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 D. Bollegala et al.

hand, referential ambiguity occurs because people use different names to refer to
the same entity on the web. For example, the American movie star Will Smith
is often called the the Fresh Prince in web contents. Although lexical ambiguity,
particularly ambiguity related to personal names, has been explored extensively
in the previous studies of name disambiguation [14,4], the problem of referential
ambiguity of entities on the web has received much less attention. In this paper,
we specifically examine on the problem of automatically extracting the various
references on the web to a particular entity.

For an entity e, we define the set A of its aliases to be the set of all words
or multi-word expressions that are used to refer to e on the web. For example,
Godzilla is a one-word alias for Hideki Matsui, whereas the alias the Fresh Prince
contains three words and refers to Will Smith. Various types of terms are used as
aliases on the web. For instance, in the case of an actor, the name of a role or the
title of a drama (or a movie) can later become an alias for the person (e.g., Fresh
Prince, Knight Rider). Titles or professions such as president, doctor, professor,
etc. are also frequently used as aliases. Variants or abbreviations of names such
as Bill for William and acronyms such as J.F.K. for John Fitzgerald Kennedy
are also types of name aliases that are observed frequently on the web.

Identifying aliases of a name is important for extracting relations among
entities. For example, Matsuo et al. [16] propose a social network extraction
algorithm, in which they compute the strength of the relation between two in-
dividuals A and B by the web hits for the conjunctive query, “A” AND “B”.
However, both persons A and B might also appear in their alias names in web
contents. Consequently, by expanding the conjunctive query using aliases for
the names, a social network extraction algorithm can accurately compute the
strength of a relationship between two persons.

Searching for information about people on the web is an extremely common
activity of Internet users. Around 30% of search engine queries include personal
names [1]. However, retrieving information about a person merely using his or
her real names is insufficient when that person has nicknames. Particularly with
keyword-based search engines, we will only retrieve pages which use the real name
to refer to the person about whom we are interested in finding information. In
such cases, automatically extracted aliases of the name are useful to expand a
query in a web search, thereby improving recall.

Our contributions in this paper are two fold:

– We propose a lexical pattern-based approach to extract aliases of a given
name using snippets returned by a web search engine. We propose an al-
gorithm to automatically generate lexical patterns using a set of real-world
name-alias data.

– To select the best aliases among the extracted candidates, we propose numer-
ous ranking scores based upon two approaches: a word co-occurrence model
using anchor texts, and page-counts returned by a search engine. Moreover,
using real world name alias data, we train a ranking support vector machine
to learn the optimal combination of individual ranking scores to leverage a
robust alias extraction method.

Automatically Extracting Personal Name Aliases from the Web 79

2 Related Work

The problem of extracting aliases of a given name can be considered as a special
case of the more general problem of extracting the words Y that have a given
relation R with a word X . For example, extracting hyponyms [10], synonyms [13],
meronyms [5] are specific instances of this general problem of relation extraction.
Manually created or automatically extracted lexico-syntactic patterns have been
successfully used to identify various relations between words [17,18]. For example,
patterns such as X is a Y and X such as Y are typically used to introduce
hypernyms, whereas, X of a Y and X’s Y are frequently used with meronyms.
However, alias extraction poses several unique challenges that separates it from
the more general relation extraction problem. Firstly, personal names and their
aliases are not typically listed in manually created dictionaries. Therefore, an
alias extraction algorithm must first extract a possible set of candidate aliases
for a given name and then verify each extracted candidate. Secondly, names and
aliases can be multi-word expressions. For example, in the case of Will Smith,
who has a two-word alias fresh prince, it is inaccurate to extract fresh as an alias.
Thirdly, unlike hypernyms or meronyms, it is not obvious as to which lexical
patterns convey useful clues related to aliases of a given name. This makes it
difficult to manually create a sufficiently large list of lexical patterns to cover
various types of name aliases. In addition to above mentioned challenges, the
lack of evaluation benchmark dataset for aliases makes it difficult to compare
and evaluate different approaches. Although it is relatively easy to manually
verify whether an extracted candidate is a correct alias of a given name, it is
not always possible to obtain a list of all the aliases of a name, which makes it
difficult to compute the recall or coverage of an alias extraction algorithm.

Alias identification is closely related to the problem of cross-document coref-
erence resolution, in which the objective is to determine whether two mentions
of a name in different documents refer to the same entity. Bagga and Baldwin [3]
proposed a cross-document coreference resolution algorithm by first performing
within-document coreference resolution for each individual document to extract
coreference chains, and then clustering the coreference chains under a vector
space model to identify all mentions of a name in the document set. However,
the vastly numerous documents on the web render it impractical to perform
within-document coreference resolution to each document separately and then
cluster the documents to find aliases.

In personal name disambiguation the goal is to disambiguate various people
that share the same name (namesakes) [14,4]. Given an ambiguous name, most
name disambiguation algorithms have modeled the problem as one of document
clustering, in which all documents that discuss a particular individual of the
given ambiguous name are grouped into a single cluster. However, the name dis-
ambiguation problem differs fundamentally from that of alias extraction because,
in name disambiguation the objective is to identify the different entities that are
referred by the same ambiguous name; in alias extraction, we are interested in
extracting all references to a single entity from the web.

80 D. Bollegala et al.

Training Data

(NAME, ALIAS)

..........

web search engine

Pattern

extraction

algorithm

Alias extraction

& ranking algorithm

Lexical patterns

NAME

ALIASES

snippets
seed queries:

“NAME ALIAS” “NAME PATTERN ” *
 *

Fig. 1. Outline of the proposed method

Approximate string matching algorithms have been used for extracting variants
or abbreviations of personal names (e.g. matching Will Smith with the first name
initialized variant W. Smith) [8]. Rules in the form of regular expressions and edit-
distance-based methods have been used to compare names. However, an inherent
limitation of such string matching approaches is that they cannot identify aliases
which sharenowords or letterswith the realname.For example, approximate string
matching methods would not identify Fresh Prince as an alias for Will Smith.

Hokama and Kitagawa [11] propose an alias extraction method that is specific
to the Japanese language. For a given name p, they search for the query “* koto
p” and extract the context that matches the asterisk. The Japanese word koto,
roughly corresponds to also known as in English. However, koto is a highly am-
biguous word in Japanese that can also mean incident, thing, matter, experience
and task. As reported in their paper, many noisy and incorrect aliases are ex-
tracted using this pattern, which requires various post-processing heuristics that
are specific to Japanese language to filter-out the incorrect aliases. Moreover,
manually crafted patterns do not cover various ways that convey information
about name aliases. In contrast, we propose a method to leverage such lexical
patterns automatically using a training dataset of names and aliases.

3 Method

The proposed method is outlined in Fig.1 and comprises two main components:
pattern extraction, and alias extraction and ranking. Using a seed list of name-
alias pairs, we first extract lexical patterns that are frequently used to convey
information related to aliases on the web. The extracted patterns are then used to
find candidate aliases for a given name. We define various ranking scores using
the hyperlink structure on the web and page counts retrieved from a search
engine to identify the correct aliases among the extracted candidates.

3.1 Extracting Lexical Patterns from Snippets

Many modern search engines provide a brief text snippet for each search result
by selecting the text that appears in the web page in the proximity of the query.

Automatically Extracting Personal Name Aliases from the Web 81

Such snippets provide valuable information related to the local context of the
query. For names and aliases, snippets convey useful semantic clues that can be
used to extract lexical patterns that are frequently used to express aliases of
a name. For example, consider the snippet returned by Google1 for the query
“Will Smith * The Fresh Prince”.

...Rock the House, the duo's debut album of 1987,

demonstrated that Will Smith, aka the Fresh Prince,

 was an entertaining and amusing storyteller...

Fig. 2. A snippet returned for the query “Will Smith * The Fresh Prince” by Google

Here, we use the wildcard operator * to perform a NEAR query and it matches
with one or more words in a snippet. In Fig.2 the snippet contains aka (i.e. also
known as), which indicates the fact that fresh prince is an alias for Will Smith.
In addition to a.k.a., numerous clues exist such as nicknamed, alias, real name
is, nee, which are used on the web to represent aliases of a name. Consequently,
we propose the shallow pattern extraction method illustrated in Fig.3 to capture
the various ways in which information about aliases of names is expressed on the
web. Lexico-syntactic patterns have been used in numerous related tasks such
as extracting hypernyms [10] and meronyms.

Given a set S of (NAME, ALIAS) pairs, the function ExtractPatterns re-
turns a list of lexical patterns that frequently connect names and their aliases
in web-snippets. For each (NAME, ALIAS) pair in S, the GetSnippets function
downloads snippets from a web search engine for the query “NAME * ALIAS”.
Then, from each snippet, the CreatePattern function extracts the sequence of
words that appear between the name and the alias. Results of our preliminary
experiments demonstrated that consideration of words that fall outside the name
and the alias in snippets did not improve performance. Finally, the real name
and the alias in the snippet are respectively replaced by two variables [NAME]
and [ALIAS] to create patterns. For example, from the snippet shown in Fig.2,
we extract the pattern [NAME] aka [ALIAS]. We repeat the process described
above for the reversed query, “ALIAS * NAME” to extract patterns in which
the alias precedes the name.

Once a set of lexical patterns is extracted, we use the patterns to extract
candidate aliases for a given name as portrayed in Fig.4. Given a name, NAME
and a set, P of lexical patterns, the function ExtractCandidates returns a list of
candidate aliases for the name. We associate the given name with each pattern,
p in the set of patterns, P and produce queries of the form: “NAME p *”. Then
the GetSnippets function downloads a set of snippets for the query. Finally, the
GetNgrams function extracts continuous sequences of words (n-grams) from the
beginning of the part that matches the wildcard operator *. Experimentally, we
selected up to 5-grams as candidate aliases. Moreover, we removed candidates
1 www.google.com

82 D. Bollegala et al.

�

�

�

�

Algorithm 1: ExtractPatterns(S)

comment: S is a set of (NAME, ALIAS) pairs

P ← null
for each (NAME, ALIAS) ∈ S

do

⎧
⎨

⎩

D ← GetSnippets(“NAME ∗ ALIAS”)
for each snippet d ∈ D
do P ← P + CreatePattern(d)

return (P)

Fig. 3. Given a set of (NAME, ALIAS) instances, extract lexical patterns

�

�

�

�

Algorithm 2: ExtractCandidates(NAME, P)

comment: P is the set of patterns

C ← null
for each pattern p ∈ P

do

⎧
⎨

⎩

D ← GetSnippets(“NAME p ∗ ”)
for each snippet d ∈ D
do C ← C + GetNgrams(d, NAME, p)

return (C)

Fig. 4. Given a name and a set of lexical patterns, extract candidate aliases

that contain only stop words such as a, an, and the. For example, assuming that
we retrieved the snippet in Fig.3 for the query “Will Smith aka *”, the procedure
described above extracts the fresh and the fresh prince as candidate aliases.

3.2 Ranking of Candidates

Considering the noise in web-snippets, candidates extracted by the shallow lexi-
cal patterns might include some invalid aliases. From among these candidates, we
must identify those which are most likely to be correct aliases of a given name.
We model this problem of alias recognition as one of ranking candidates with re-
spect to a given name such that the candidates which are most likely to be correct
aliases are assigned a higher rank. First, we define various ranking scores to mea-
sure the association between a name and a candidate alias using two approaches:
co-occurrences in inbound anchor texts of a url and page-counts retrieved from
a search engine. Next, we integrate those ranking scores using ranking support
vector machines (SVMs) [12] to leverage a robust ranking function.

3.3 Co-occurrences in Anchor Texts

Anchor texts have been studied extensively in information retrieval and have
been used in various tasks such as synonym extraction, query translation in

Automatically Extracting Personal Name Aliases from the Web 83

cross-language information retrieval, and ranking and classification of web
pages [7], However, anchor texts have not been exploited fully in Semantic Web
applications. We revisit anchor texts to measure the association between a name
and its aliases on the web. Anchor texts pointing to a url provide useful semantic
clues related to the resource represented by the url. For example, if the major-
ity of inbound anchor texts of a url contain a personal name, it is likely that
the remainder of the inbound anchor texts contain information about aliases of
the name.

We define a name p and a candidate alias x as co-occurring, if p and x appear in
two different inbound anchor texts of a url u. Moreover, we define co-occurrence
frequency (CF) as the number of different urls in which they co-occur. We can use
this definition to create a contingency table like that shown in Table 1. Therein,
C is the set of candidates extracted by the algorithm described in Fig.4, V is the
set of all words that appear in anchor texts, C − {x} and V − {p} respectively
denote all candidates except x and all words except the given name p, k is the co-
occurrence frequency between x and p. Moreover, K is the sum of co-occurrence
frequencies between x and all words in V , whereas n is the same between p and all
candidates in C. N is the total co-occurrences between all word pairs taken from
C and V . To measure the strength of association between a name and a candidate
alias, using Table 1 we define nine popular co-occurrence statistics: chi-squared
measure (CS), Log-likelihood ratio (LLR), hyper-geometric distributions (HG)
and the six measures shown in Table 2. Because of the limited availability of
space, we omit the definitions of these measures (see Manning and Schutze [15]
for a detailed discussion).

Table 1. Contingency table for a candi-
date alias x

x C − {x} C

p k n − k n

V − {p} K − k N − n − K + k N − n

V K N − K N

Table 2. Anchor text-based co-occurrence
measures

Measure Definition Measure Definition
CF k tfidf k log N

K+1
PMI log2

kN
Kn

cosine k√
n+

√
K

Dice 2k
n+K

Overlap k
min(n,K)

A frequently observed phenomenon related to the web is that many pages
with diverse topics link to so-called hubs such as Google, Yahoo, or MSN. Two
anchor texts might link to a hub for entirely different reasons. Therefore, co-
occurrences coming from hubs are prone to noise. To overcome the adverse effects
of a hub h when computing co-occurrence measures, we multiply the number of
co-occurrences of words linked to h by a factor α(h, p), where

α(h, p) =
t

d
. (1)

Here, t is the number of inbound anchor texts of h that contain the real name
p, and d is the total number of inbound anchor texts of h. If many anchor texts

84 D. Bollegala et al.

that link to h contain p (i.e. larger t value), then the reliability of h as a source of
information about p increases. On the other hand, if h has many inbound links
(i.e. larger d value), then it is likely to be a noisy hub and gets discounted when
multiplied by α(<< 1). Intuitively, Eq.1 boosts hubs that are likely to contain
information related to p, while penalizing those that contain various other topics.

3.4 Page-Count-Based Association Measures

In previous section we defined various ranking scores using anchor texts. How-
ever, not all names and aliases are equally well represented in anchor texts.
Consequently, in this section, we define word association measures that consider
co-occurrences not only in anchor texts but in the web overall. Page counts re-
trieved from a web search engine for the conjunctive query, p∩x, for a name p and
a candidate alias x can be regarded as an approximation of their co-occurrences
in the web. We define the four measures shown in Table 3 using page-counts
retrieved from a search engine. Therein, the function H(q) denotes the page-
counts for a query q. WebDice and WebPMI [6] respectively are based on the
Dice coefficient and pointwise mutual information. In WebPMI, L is the number
of pages indexed by the web search engine, which we approximated as L = 1010

according to the number of pages indexed by Google. Prob(x|p) and Prob(p|x)
respectively denote the conditional probabilities of a candidate (x) given a name
(p) and a name given a candidate.

Table 3. Page-count-based association measures

Measure Definition Measure Definition
WebPMI log2

L×H(p∩x)
H(p)×H(x) Prob(p|x) H(p∩x)

H(x)

WebDice 2×H(p∩x)
H(p)+H(x) Prob(x|p) H(p∩x)

H(p)

3.5 Training

Using a dataset of name-alias pairs, we train a ranking support vector machine
[12] to rank candidate aliases according to their strength of association with a
name. For a name-alias pair we define three feature types: anchor text-based
co-occurrence measures, web page-count-based association measures, and fre-
quencies of observed lexical patterns. The nine co-occurrence measures: CF,
tfidf, CS, LLR, PMI, HG, cosine, overlap, Dice (Table 2) are computed
with and without weighting for hubs to produce 18(2×9) features. Moreover, the
four page-count-based association measures defined in Table 3 and the frequency
of lexical patterns extracted by algorithm 1 are used as features in training the
ranking SVM. If numerous patterns connects a name and a candidate alias in
snippets, then the confidence of the candidate alias as a correct alias of the name
increases. During training, ranking SVMs attempt to minimize the number of
discordant pairs in the training data, thereby improving the average precision.
The trained SVM model is used to rank the set of candidates that were ex-
tracted for a name. Finally, the highest-ranking candidate is selected as the alias
of the name.

Automatically Extracting Personal Name Aliases from the Web 85

Table 4. Lexical patterns with the high-
est F -scores

patterns for personal names F -score
* aka [NAME] 0.335
[NAME] aka * 0.322

[NAME] better known as * 0.310
[NAME] alias * 0.286

[NAME] also known as * 0.281
* nee [NAME] 0.225

patterns for location names F -score
[NAME] nickname the * 0.739

[NAME] is nicknamed the * 0.723
[NAME] employment nickname * 0.627

[NAME] state flag or * 0.589
[NAME] nicknamed the * 0.5567
[NAME] is called the * 0.3199

Table 5. Comparison with baselines and
previous work

Method MRR Method MRR
SVM (Linear) 0.6718 Prob(p|x) 0.1414
SVM (Quad) 0.6495 CS(h) 0.1186
SVM (RBF) 0.6089 CF 0.0839
Hokama & Kitagawa 0.6314 cosine 0.0761
tfidf(h) 0.3957 tfidf 0.0757
WebDice 0.3896 Dice 0.0751
LLR(h) 0.3879 overlap(h) 0.0750
cosine(h) 0.3701 PMI(h) 0.0624
CF(h) 0.3677 LLR 0.0604
HG(h) 0.3297 HG 0.0399
Dice(h) 0.2905 CS 0.0079
Prob(x|p) 0.2142 PMI 0.0072
WebPMI 0.1416 overlap 0.0056

4 Experiments

To train and evaluate the proposed method, we create three name-alias datasets2:
the English personal names dataset (50 names), the English place names dataset
(50 names), and the Japanese personal names (100 names) dataset. Both our
English and Japanese personal name datasets include people from various fields
of cinema, sports, politics, science, and mass media. The place name dataset
contains aliases for the 50 U.S. states. Aliases were manually collected after
referring various information sources such as Wikipedia and official home pages.
The anchor texts collection we used to compute the measures in Table 2 contains
24, 456, 871 anchor texts pointing to 8, 023, 364 unique urls.

Algorithm 1 extracts over 8000 patterns for the 50 English personal names in
our dataset. We rank the patterns according to their F scores to identify the pat-
terns that accurately convey information about aliases. F score of a pattern s is
computed as the harmonic mean between the precision and recall of the pattern:

Precision(s) =
No. of correct aliases retrieved by s

No. of total aliases retrieved by s
,

Recall(s) =
No. of correct aliases retrieved by s

No. of total aliases in the dataset
.

Table 4 shows the patterns with the highest F scores extracted using English per-
sonal names. As shown in the table, unambiguous and highly descriptive patterns
are extracted by the proposed method. Experimentally, we selected the top ranked
200 patterns as features for training. Interestingly, among the extracted pattens
we found patterns written in languages other than English, such as de son vrai
nom (French for his real name) and vero nome (Italian for real name).

2 www.miv.t.u-tokyo.ac.jp/danushka/aliasdata.zip

86 D. Bollegala et al.

In Table 5, we compare the proposed SVM-based method against various indi-
vidual ranking scores (baselines) and previous studies of alias extraction Hokama
and Kitagawa [11]) on Japanese personal names dataset. We used linear, poly-
nomial (quadratic), and radial basis functions (RBF) kernels for ranking SVM.
Mean reciprocal rank (MRR) [2] is used to evaluate the various approaches. If a
method ranks the correct aliases of a name on top, then it receives a higher MRR
value. As shown in Table 5, the best results are obtained by the proposed method
with linear kernels (SVM(Linear)). Both ANOVA and Tukey HSD tests confirm
that the improvement of SVM(Linear) is statistically significant (p<0.05). A
drop of MRR occurs with more complex kernels, which is attributable to over-
fitting. Hokama and Kitagawa’s method which uses manually created patterns,
can only extract Japanese name aliases. Their method reports an MRR value of
0.6314 on our Japanese personal names dataset. In Table 5 we denote the hub-
weighted versions of anchor text-based co-occurrence measures by (h). Among
the numerous individual ranking scores, the best results are reported by the hub-
weighted tfidf score (tfidf(h)). It is noteworthy that, for anchor text-based rank-
ing scores, the hub-weighted version always outperforms the non-hub-weighted
counterpart, which justifies the proposed hub-weighting method. Among the
four page-count-based ranking scores, WebDice reports the highest MRR. It is
comparable to the best anchor text-based ranking score, tfidf(h). The fact that
Prob(x|p) gives slightly better performance over Prob(p|x) implies that we have
a better chance in identifying an entity given its real name than an alias.

Table 6. Overall performance

Dataset MRR AP
English Personal Names 0.6150 0.6865
English Place Names 0.8159 0.7819
Japanese Personal Names 0.6718 0.6646

Table 7. Aliases extracted by the proposed
method

Real Name Extracted Aliases
David Hasselhoff hoff, michael knight, michael
Courteney Cox dirt lucy, lucy, monica
Al Pacino michael corleone
Teri Hatcher susan mayer, susan, mayer
Texas lone star state, lone star, lone
Vermont green mountain state, green,
Wyoming equality state, cowboy state
Hideki Matsui Godzilla, nishikori, matsui

In Table 6 we evaluate the overall performance of the proposed method on each
datasetusingMRRandaverageprecision (AP) [2].Different fromthemean recipro-
cal rank, which focuses only on rank, average precision incorporates consideration
of both precision at each rank and the total number of correct aliases in the dataset.
Both MRR and average precision have been used in rank evaluation tasks such as
evaluating the results returned by a search engine. With eachdatasetweperformed
a 5-fold cross validation. As shown in Table 6, the proposed method reports high
scores for both MRR and average precision on all three datasets. Best results are
achieved for the place name alias extraction task. Table 7 presents the aliases ex-
tracted for some entities included in our datasets. Overall, the proposed method
extracts most aliases in the manually created gold standard (shown in bold).

Automatically Extracting Personal Name Aliases from the Web 87

Table 8. Effect of aliases on relation detection

Real name only Real name and top alias
Precision Recall F Precision Recall F

.4812 .7185 .4792 .4833 .9083 .5918

We evaluate the effect of the extracted aliases on a real-world relation detec-
tion task. First, we manually classify 50 people in the English personal names
dataset, depending on their field of expertise, into four categories: music, poli-
tics, movies, and sports. Then, we measure the association between two people
using the pointwise mutual information (WebPMI) as defined in Table 3. We
then use group average agglomerative clustering (GAAC) to group the people
into four clusters. Initially, each person is assigned to a separate cluster. In sub-
sequent iterations, GAAC merges the two clusters with the highest correlation.
We terminate the GAAC process when exactly four clusters are formed. Ideally,
people who work in the same field should be clustered into the same group. We
use the B-CUBED method [3] and compute the precision, recall and F -score for
each name in the dataset and average the results over the number of people in
the dataset. Table 8 shows performance of clustering when only the real name is
used and the real name disjunctively coupled with the top alias extracted by the
proposed method for the name. The use of aliases significantly improves recall
(ca. 20%) and consequently the F score. This significant improvement in recall
can be attributed to the discovery of relations between entities that use not only
their real names but also numerous aliases. In such cases, using only the real
name would extract only a fraction of the relations between the entities under
consideration. By considering not only real names but also aliases, it is possible
to discover relations that are unidentifiable solely using real names.

5 Conclusion

We proposed a lexical-pattern-based approach to extract aliases of a given name.
The extracted candidates were ranked using various ranking scores computed
using the hyperlink structure on the web and page-counts retrieved from a
search engine. The proposed method reported high MRR scores on three dif-
ferent datasets and outperformed numerous baselines and a previously proposed
method. Moreover, the extracted aliases significantly improved recall in a rela-
tion detection task.

References

1. Artiles, J., Gonzalo, J., Verdejo, F.: A testbed for people searching strategies in
the www. In: Proc. of SIGIR 2005, pp. 569–570 (2005)

2. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press,
New York (1999)

88 D. Bollegala et al.

3. Bagga, A., Baldwin, B.: Entity-based cross-document coreferencing using the vec-
tor space model. In: Proc. of COLING 1998, pp. 79–85 (1998)

4. Bekkerman, R., McCallum, A.: Disambiguating web appearances of people in a
social network. In: Proc. of WWW 2005, pp. 463–470 (2005)

5. Berland, M., Charniak, E.: Finding parts in very large corpora. In: Proc. of ACL
1999, pp. 57–64 (1999)

6. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between
words using web search engines. In: Proc. of WWW 2007, pp. 757–766 (2007)

7. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data.
Morgan Kaufmann, San Francisco (2003)

8. Galvez, C., Moya-Anegon, F.: Approximate personal name-matching through
finite-state graphs. Journal of the American Society for Information Science and
Technology 58, 1–17 (2007)

9. Guha, R.V., McCool, R., Miller, E.: Semantic search. In: Proc. of WWW 2003, pp.
700–709 (2003)

10. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In:
Proc. of COLING 1992, pp. 539–545 (1992)

11. Hokama, T., Kitagawa, H.: Extracting mnemonic names of people from the web.
In: Sugimoto, S., Hunter, J., Rauber, A., Morishima, A. (eds.) ICADL 2006. LNCS,
vol. 4312, pp. 121–130. Springer, Heidelberg (2006)

12. Joachims, T.: Optimizing search engines using clickthrough data. In: Proc. of KDD
2002 (2002)

13. Lin, D.: Automatic retrieval and clustering of similar words. In: Proc. of COLING
1998, pp. 768–774. Association for Computational Linguistics, Morristown (1998)

14. Mann, G.S., Yarowsky, D.: Unsupervised personal name disambiguation. In: Proc.
of CoNLL 2003, pp. 33–40 (2003)

15. Manning, C., Schutze, H.: Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge (1999)

16. Matsuo, Y., Mori, J., Hamasaki, M., Ishida, K., Nishimura, T., Takeda, H., Hasida,
K., Ishizuka, M.: Polyphonet: An advanced social network extraction system. In:
Proc. of WWW 2006 (2006)

17. Ravichandran, D., Hovy, E.: Learning surface text patterns for a question answering
system. In: Proc. of ACL 2002, pp. 41–47 (2001)

18. Snow, R., Jurafsky, D., Ng, Y.: Learning syntactic patterns for automatic hypernym
discovery. In: Proc. of NIPS 2005 (2005)

	Automatically Extracting Personal Name Aliases from the Web
	Introduction
	Related Work
	Method
	Extracting Lexical Patterns from Snippets
	Ranking of Candidates
	Co-occurrences in Anchor Texts
	Page-Count-Based Association Measures
	Training

	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

