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Abstraction for Stochastic Systems
by Erlang’s Method of Stages⋆

Joost-Pieter Katoen1, Daniel Klink1, Martin Leucker2, and Verena Wolf3

1RWTH Aachen University,2TU Munich, 3EPF Lausanne

Abstract. This paper proposes a novel abstraction technique based on Erlang’s method of
stages for continuous-time Markov chains (CTMCs). As abstract modelsErlang-k interval
processesare proposed where state residence times are governed by Poisson processes and
transition probabilities are specified by intervals. We provide a three-valued semantics of
CSL (Continuous Stochastic Logic) for Erlang-k interval processes, and show that both
affirmative and negative verification results are preservedby our abstraction. The feasi-
bility of our technique is demonstrated by a quantitative analysis of an enzyme-catalyzed
substrate conversion, a well-known case study from biochemistry.

1 Introduction

This paper is concerned with a novel abstraction technique for timed probabilistic sys-
tems, in particular continuous-time Markov chains, CTMCs for short. These models are
omnipresent in performance and dependability analysis, aswell as in areas such as sys-
tems biology. In recent years, they have been the subject of study in concurrency theory
and model checking. CTMCs are a prominent operational modelfor stochastic process
algebras [13] and have a rich theory of behavioral (both linear-time and branching-time)
equivalences, see, e.g., [4, 26]. Efficient numerical, as well as simulative verification al-
gorithms have been developed [1, 3, 27] and have become an integral part of dedicated
probabilistic model checkers such as PRISM and act as backend to widely accepted
performance analysis tools like GreatSPN and the PEPA Workbench.

Put in a nutshell, CTMCs are transition systems whose transitions are equipped
with discrete probabilities and state residence times are determined by negative expo-
nential distributions. Like transition systems, they suffer from the state-space explosion
problem. To overcome this problem, several abstraction-based approaches have recently
been proposed. Symmetry reduction [20], bisimulation minimization [16], and advances
in quotienting algorithms for simulation pre-orders [28] show encouraging experimental
results. Tailored abstraction techniques for regular infinite-state CTMCs have been re-
ported [22], as well as bounding techniques that approximate CTMCs by ones having a
special structure allowing closed-form solutions [21]. Predicate abstraction techniques
have been extended to (among others) CTMCs [14]. There is a wide range of related
work on abstraction of discrete-time probabilistic modelssuch as MDPs, see e.g., [9,
8, 19]. Due to the special treatment of state residence times, these techniques are not
readily applicable to the continuous-time setting.

This paper generalizes and improves upon our three-valued abstraction technique
for CTMCs [17]. We adopt a three-valued semantics, i.e., an interpretation in which a
logical formula evaluates to either true, false, or indefinite. In this setting, abstraction
preserves a simulation relation on CTMCs and is conservative for both positive and

⋆ The research has been partially funded by the DFG Research Training Group 1298 (AlgoSyn), the Swiss
National Science Foundation under grant 205321-111840 andthe EU FP7 project Quasimodo.



negative verification results. If the verification of the abstract model yields an indefinite
answer, the validity in the concrete model is unknown. In order to avoid the grouping
of states with distinct residence time distributions, the CTMC is uniformizedprior to
abstraction. This yields a weak bisimilar CTMC [4] in which all states have identical
residence time distributions. Transition probabilities of single transitions are abstracted
by intervals, yielding continuous-time variants of interval DTMCs [10, 24].

This, however, may yield rather coarse abstractions (see below). This paper sug-
gests to overcome this inaccuracy. The crux of our approach is to collapsetransition
sequencesof a given fixed lengthk, say. Our technique in [17] is obtained ifk=1. This
paper presents the theory of this abstraction technique, shows its correctness, and shows
its application by a quantitative analysis of an enzyme-catalyzed substrate conversion, a
well-known case study from biochemistry [5].
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Let us illustrate the main idea of the abstraction by means of
an example. Consider the CTMC shown on the right (top). Intu-
itively, a CTMC can be considered as a transition system whose
transitions are labeled withtransition probabilities. Moreover, a
CTMC comes with anexit rate identifying the residence times
of the states (one, say), which is exponentially distributed. The
essence of CTMC model checking is to compute the probability
to reach a certain set of goal states within a given deadline [3].

A rather common approach to abstraction is to partition the state space into classes,
e.g., let us group statess0, s1, ands2 into the abstract stateAs, andu into Au. The
probability to move fromAs to Au by a single transition is either0, 1

2 , or 1, as the
respective (time-abstract) probability to move tou in one transitionis 0, 1, and 1

2 . The
approach in [17] yields the interval[0, 1] for the transition fromAs to Au. This is not
very specific. A more narrow interval is obtained when considering two consecutive
transitions. Then, the probability fromAs to Au is 1 or 3

4 . Using intervals, this yields
the two-state abstract structure depicted above (bottom).

Put in a nutshell, the abstraction technique proposed in this paper is to generalize this
approach towards considering transition sequences of a given lengthk > 0, say. State
residence times are, however, then no longer exponentiallydistributed, but Erlang-k
distributed. Moreover, taking each timek steps at once complicates the exact calculation
of time-bounded reachability probabilities: Let us consider first the case thatn is the
number of transitions taken in the concrete system to reach acertain goal state. Letℓ
andj be such thatn = ℓ·k+j andj ∈ {0, . . . , k−1}. Clearly, the number of transitions
in the abstract system corresponds exactly to a multiple of the number of transitions in
the concrete system, only if the remainderj equals0. As this is generally not the case,
we restrict to computing lower and upper bounds for the probability of reaching a set
of goal states. Let us be more precise: Consider the tree of state sequences as shown
in Fig. 2(a). Let the black nodes denote the set of goal states. Taking the right branch,
5 transitions are needed to reach a goal state. Fork = 3, this implies that 2 abstract
transitions lead to a goal state. However, as2 · 3 = 6, computing with 2 transitions and
Erlang-3 distributed residence times will not give the exact probability for reaching a
goal state, but, as we show, alower bound. Intuitively, the probability for reaching a goal
state in Fig. 2(b) is computed. For an upper bound, one might first consider all states
from the fourth state on in the right branch as goal states. This would give a rather coarse
upper bound. We follow instead the idea depicted in Fig. 2(c): We consider 2 transitions
for reaching the goal state, however, use the Erlang-3 distribution for assessing the first
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Fig. 2.Reaching goals in stages of lengthk

transition, but use the Erlang-1 distribution for assessing the last transition of a sequence
of transitions. That is, we compute the reachability probability for the goal states as
depicted in Fig. 2(c). Technically, it is beneficial to understand the situation as depicted
in Fig. 2(d), i.e., to first consider one transition with Erlang-1 distribution and then to
consider a sequence of transitions which are Erlang-k distributed.
Outline of the paper. Section 2 gives some necessary background. We introduce Erlang-
k interval processes in Section 3 which serve as abstract model for CTMCs in Section 4.
In Section 5, we focus on reachability analysis of Erlang-k interval processes and utilize
it for model checking in Section 6. The feasibility of our approach is demonstrated in
Section 7 by a case study from biology and Section 8 concludesthe paper. A full version
with detailed proofs can be found in [18].

2 Preliminaries

Let X be a finite set. ForY, Y ′ ⊆ X and functionf : X × X → R let f(Y, Y ′) :=
∑

y∈Y,y′∈Y ′ f(y, y′) (for singleton sets, brackets may be omitted). The functionf(x, ·)
is given byx′ 7→ f(x, x′) for all x ∈ X. Functionf is adistribution onX iff f : X →
[0, 1] andf(X) :=

∑

x∈X f(x) = 1. The set of all distributions onX is denoted by
distr(X). Let AP be a fixed, finite set of atomic propositions andB2 := {⊥,⊤} the
two-valued truth domain.
Continuous-time Markov chains. A (uniform) CTMCC is a tuple(S,P, λ, L, s0) with
a finite non-empty set of statesS, a transition probability functionP : S × S → [0, 1]
such thatP(s, S) = 1 for all s ∈ S, an exit rateλ ∈ R>0, a labeling functionL :
S ×AP→ B2, and an initial states0 ∈ S. This definition deviates from the literature as
i) we assume a uniform exit rate and ii) we separate the discrete-time behavior specified
by P and the residence times determined byλ. Restriction i) is harmless, as every (non-
uniform) CTMC can be transformed into a weak bisimilar, uniform CTMC by adding
self-loops [25]. For ii), note thatP(s, s′)(1−eλt) equals the probability to reachs′ from
s in one step and within time interval[0, t). Thus, the above formulation is equivalent
to the standard one. The expected state residence time is1/λ. Let Pk(s, s′) denote the
time-abstract probability to enter states′ after k steps while starting froms, which is
obtained by taking thekth-power ofP (understood as a transition probability matrix).

We recall some standard definitions for Markov chains [11, 23]. An infinite pathσ
is a sequences0 t0 s1 t1 . . . with si ∈ S, P(si, si+1) > 0 andti ∈ R>0 for i ∈ N. The
time stampsti denote the residence time in statesi. Letσ@t denote the state of a pathσ
occupied at timet, i.e.σ@t = si with i the smallest index such thatt <

∑i
j=0 tj. The

set of all (infinite) paths inC is denoted byPathC . Let Pr be the probability measure on
sets of paths that results from the standard cylinder set construction.
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JtrueK(s) = ⊤ JaK(s) = L(s, a)

Jϕ1 ∧ ϕ2K(s) = Jϕ1K(s) ⊓ Jϕ2K(s) J¬ϕK(s) = (JϕK(s))c

JP ⊲⊳ p(ϕ1U
Iϕ2)K(s) = ⊤, iff Pr({σ ∈ PathMs | Jϕ1U

Iϕ2K(σ) = ⊤}) ⊲⊳ p

Jϕ1U
Iϕ2K(σ) = ⊤, iff ∃ t ∈ I : (Jϕ2K(σ@t) = ⊤ ∧ ∀ t′ ∈ [0, t) : Jϕ1K(σ@t′) = ⊤)

Table 1.Semantics of CSL

Poisson processes. Let (Nt)t≥0 be a counting process and let the corresponding inter-
arrival times be independent and identically exponentially distributed with parameter
λ > 0. Then(Nt)t≥0 is aPoisson processand the numberk of arrivals in time interval
[0, t) is Poisson distributed, i.e.,P (Nt = k) = e−λt(λt)k/k!. The time untilk arrivals

have occurred is Erlang-k distributed, i.e.,Fλ,k(t) := P (Tk ≤ t) = 1−
∑k−1

i=0 e
−λt (λt)i

i!
whereTk is the time instant of thek-th arrival in(Nt)t≥0. Consequently, the probability
that(Nt)t≥0 is in the range{k, k + 1, . . . , k + ℓ− 1}, ℓ ≥ 1 is given by

ψλ,t(k, ℓ) := P (Tk ≤ t < Tk+ℓ) =
∑k+ℓ−1

i=k e−λt (λt)i

i!
.

A CTMC C = (S,P, λ, L, s0) can be represented as a discrete-time Markov chain with
transition probabilitiesP where the times are implicitly driven by a Poisson process
with parameterλ, i.e., the probability to reach states′ from s within [0, t) is:

∑∞
i=0 Pi(s, s′) · e−λt (λt)i

i! .

This relationship can be used for an efficient transient analysis of CTMCs and is known
asuniformization. A truncation point of the infinite sum can be calculated suchthat the
approximation error is less than an a priori defined error bound [25].
Continuous Stochastic Logic. CSL [1, 3] extends PCTL [12] by equipping the until-
operator with a time bound. Its syntax is given by:

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | P ⊲⊳ p(ϕ UIϕ)

whereI ∈ {[0, t), [0, t], [0,∞) | t ∈ R>0}, ⊲⊳ ∈ {<,≤,≥, >}, p ∈ [0, 1] anda ∈ AP .
The formal semantics of CSL is given in Table 1. CSL model checking [3] is performed
inductively on the structure ofϕ like for CTL model checking. Checking time-bounded
until-formulas boils down to computing time-bounded reachability probabilities. These
probabilities can be obtained by a reduction to transient analysis yielding a time com-
plexity inO(|S|2λt) wheret is the time bound.
Three-valued domain. Let B3 := {⊥, ? ,⊤} be the complete lattice with ordering
⊥ < ? < ⊤, meet (⊓) and join (⊔) as expected, and complementation·c such that⊤
and⊥ are complementary to each other and? c = ? . When a formula evaluates to⊥ or
⊤, the result isdefinitelytrue or false respectively, otherwise it isindefinite.

3 Erlang-k Interval Processes

Erlang-k interval processesare determined by two ingredients: a discrete probabilistic
process with intervals of transition probabilities (like in [10, 24]) and a Poisson process.
The former process determines the probabilistic branchingwhereas residence times are
governed by the latter. More precisely, the state residencetime is the time untilj further
arrivals occur according to the Poisson process wherej ∈ {1, . . . , k} is nondeterminis-
tically chosen. Thus, the residence times are Erlang-j distributed.
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Definition 1 (Erlang-k interval process).An Erlang-k interval processis a tupleE =
(S,Pl,Pu, λ, k, L, s0), with S and s0 ∈ S as before, andPl,Pu : S × S → [0, 1],
transition probability bounds such that for alls ∈ S: Pl(s, S) ≤ 1 ≤ Pu(s, S), λ ∈
R>0, a parameter of the associated Poisson process,k ∈ N

+, andL : S × AP→ B3.

An Erlang-1 interval process is anabstract continuous-time Markov chain(ACTMC)
[17]. If additionally all intervals are singletons, the process is equivalent to a CTMC
with Pl = Pu = P. The set of transition probability functions forE is:

TE := {P : S × S → [0, 1] | ∀s ∈ S : P(s, S) = 1,

∀s, s′ ∈ S : Pl(s, s
′) ≤ P(s, s′) ≤ Pu(s, s′)}

Let TE(s) := {P(s, ·) | P ∈ TE} be the set of distributions ins.
Paths in Erlang-k interval processes. A pathσ in E is an infinite sequences0t0s1t1 . . .
with si ∈ S, ti ∈ R>0 for which there existsP0,P1, . . . ∈ TE such thatPi(si, si+1) >
0 for all i ∈ N. A path fragmentξ is a prefix of a path that ends in a state denoted
ξ↓. The set of all path fragmentsξ (untimed path fragments) inE is denoted byPathfE
(uPathfE , respectively) whereas the set of paths is denoted byPathE .

We depict Erlang-k interval processes by drawing the state-transition graph of the
discrete part, i.e., the associated interval DTMC with transitions labeled by[Pl(s, s

′),
Pu(s, s′)] (see, e.g., Fig. 3). The Poisson process that determines theresidence times,
as well as the marking of the initial state are omitted.
Normalization. Erlang-k interval processE is calleddelimited, if every possible selec-
tion of a transition probability in a state can be extended toa distribution [17], i.e., if for
anys, s′ ∈ S andp ∈ [Pl(s, s

′),Pu(s, s′)], we haveµ(s′) = p for someµ ∈ TE(s). An
Erlang-k interval processE can be normalized into a delimited onenorm(E) such that
Tnorm(E) = TE . Formally,norm(E) = (S, P̃l, P̃u, λ, k, L, s0) with for all s, s′ ∈ S:

P̃l(s, s
′) = max{Pl(s, s

′), 1 − Pu(s, S \ {s′})} and
P̃u(s, s′) = min{Pu(s, s′), 1 − Pl(s, S \ {s′})}.

Example 1.The Erlang-k interval process in Fig. 3, left, is delimited. Selecting1
4 for

the transition froms to u2 yields a non-delimited process (Fig. 3, middle). Applying
normalization results in the Erlang-k interval process shown in Fig. 3, right.
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Fig. 3.Normalization

An Erlang-k interval process
contains two sources of nondeter-
minism: in each state, (i) a dis-
tribution according to the transi-
tion probability intervals, and (ii)
the numberj ∈ {1, . . . , k} of ar-
rivals in the Poisson process may
be chosen. As usual, nondetermin-
ism is resolved by a scheduler:

Definition 2 (Scheduler).Let E be an Erlang-k interval process. Ahistory-dependent
deterministic scheduleris a functionD : uPathfE → distr(S) × {1, . . . , k} such that
D(ξ) ∈ TE(ξ ↓) × {1, . . . , k} for all ξ ∈ uPathfE . The set of all history-dependent
deterministic schedulers ofE is denoted asHDE .
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Note that a richer class of schedulers is obtained if the scheduler’s choice may also
depend on the residence times of the states visited so far. Weshow below that the class
of history-dependent deterministic schedulers suffices when Erlang-k interval processes
are used for abstracting CTMCs.
Probability measure. For Erlang-k interval processE , let Ω = PathE be the sample
space andB the Borel field generated by the basic cylinder setsC(s0 I0 . . . In−1 sn)
wheresi ∈ S, 0 ≤ i ≤ n andIℓ = [0, xℓ) ⊆ R≥0 is a non-empty interval for0 ≤ ℓ < n.
The setC(s0 I0 . . . In−1 sn) contains all paths ofE with prefix ŝ0 t0 . . . tn−1 ŝn such
thatsi = ŝi andtℓ ∈ Iℓ. A schedulerD ∈ HDE induces a probability space(Ω,B,PrD)
wherePrD is uniquely given byPrD(C(s0)) := 1 and forn ≥ 0

PrD(C(s0 I0 . . . In sn+1)) := PrD(C(s0 I0 . . . In−1 sn)) · Fλ,jn
(sup In) · µn(sn+1)

=
∏n

i=0 (Fλ,ji
(sup Ii) · µi(si+1))

where(µi, ji) =: D(s0 s1 . . . si). Additionally, we define the time-abstract probability
measure induced byD asPrDta(C(s0)) := 1 and

PrDta(C(s0 I0 . . . In sn+1)) :=
∏n

i=0 µi(si+1).

We are interested in the supremum/infimum (ranging over all schedulers) of the prob-
ability of measurable sets of paths. Clearly, the choice ofji, the number of steps in
the associated Poisson process in statesi, may influence such quantities. For instance,
on increasingji, time-bounded reachability probabilities will decrease as the expected
state residence time (insi) becomes longer. We discuss the nondeterministic choice in
the Poisson process in subsequent sections, and now focus onthe choice of distribution
µi according to the probability intervals.

Definition 3 (Extreme distributions). Let E be an Erlang-k interval process,s ∈ S
andS′ ⊆ S. We define extr(Pl,Pu, S

′, s) ⊆ TE(s) such thatµ ∈ extr(Pl,Pu, S
′, s)

iff eitherS′ = ∅ andµ = Pl(s, ·) = Pu(s, ·) or one of the following conditions holds1:

– ∃s′ ∈ S′ : µ(s′) = Pl(s, s
′) andµ ∈ extr(Pl,Pu[(s, s′) 7→ µ(s′)], S′ \ {s′}, s)

– ∃s′ ∈ S′ : µ(s′) = Pu(s, s′) andµ ∈ extr(Pl[(s, s
′) 7→ µ(s′)],Pu, S

′ \ {s′}, s)

We callµ ∈ TE(s) an extreme distributionif µ ∈ extr(Pl,Pu, S, s).

A schedulerD ∈ HDE is calledextremeif all choicesD(ξ) are extreme distributions.
For a subsetD ⊆ HDE letDextr ⊆ D denote the subset of all extreme schedulers inD.

Theorem 1 (Extrema). Let E be an Erlang-k interval process andD ⊆ HDE . For
every measurable setQ ∈ B of the induced probability space:

infD∈Dextr PrD(Q) = infD∈D PrD(Q), supD∈Dextr
PrD(Q) = supD∈D PrD(Q)

4 Abstraction

This section makes the abstraction by stages as motivated inthe introduction precise.
We define an abstraction operator based on the idea of partitioning the concrete states to
form abstract states. This yields an Erlang-k interval process. Moreover, we introduce a
simulation relation relating one transition in the abstract system to a sequence ofk tran-
sitions in the concrete system. We show that the abstractionoperator yields an Erlang-k
interval process simulating the original CTMC.

1 f [y 7→ x] denotes the function that agrees everywhere withf except aty where it equalsx.
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Definition 4 (Abstraction). Let abstr(C,A, k) := (A,Pl,Pu, λ, k, L
′, A0) be theab-

stractionof CTMCC = (S,P, λ, L, s0) induced by partitioningA = {A0, . . . , An} of
S andk ∈ N

+ such that for all1 ≤ i, j ≤ n:

– Pl(Ai, Aj) = mins∈Ai
Pk(s,Aj), and Pu(Ai, Aj) = maxs∈Ai

Pk(s,Aj)

– L′(A, a) =











⊤ if for all s ∈ A : L(s, a) = ⊤

⊥ if for all s ∈ A : L(s, a) = ⊥

? otherwise
– A0 ∈ A with s0 ∈ A0
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Fig. 4. Concrete vs. abstract behav-
ior over time

Lemma 1. For any CTMCC, any partitioningA of S
andk ∈ N

+, abstr(C,A, k) is an Erlang-k interval pro-
cess.

Example 2.Reconsider the CTMCC from Section 1
(Fig. 1), top, with exit rateλ = 1 and partition-
ing {As, Au} with As = {s0, s1, s2}, Au = {u}.
As remarked above, in the Erlang-1 interval process
abstr(C, {As, Au}, 1) (not shown) the probability inter-
val for a transition fromAs to Au is [0, 1]. However, choosingk = 2 yields smaller
intervals. The resulting Erlang-2 interval process is depicted in Fig. 1, bottom. The plot
in Fig. 4 shows the probability to reachAu = {u} within t time units if the Erlang-2
interval process starts at time0 in As and the CTMC ins0, s1 or s2, respectively. For the
Erlang-2 interval process, the infimum over all schedulers is taken and it is obviously
smaller than all the concrete probabilities in the CTMC (thesupremum coincides with
the probabilities fors1). A detailed discussion on whichschedulersyield the infimum
or supremum is given in the next section.

Definition 5 (k-step forward simulation). LetC = (SC ,P, λ, LC , sC) be a CTMC and
E = (SE ,Pl,Pu, λ, k, LE , sE) an Erlang-k interval process. RelationRk ⊆ SC × SE
is ak-step forward simulationonC andE iff for all s ∈ SC , s′ ∈ SE , sRks

′ implies:

1. Letµ := Pk(s, ·). Then there existsµ′ ∈ TE(s
′) and∆ : SC × SE → [0, 1] s.t.

(a)∆(u, v) > 0 ⇒ uRkv, (b)∆(u, SE ) = µ(u), (c)∆(SC , v) = µ′(v).

2. For all a ∈ AP,LE(s′, a) 6= ? implies thatLE(s′, a) = LC(s, a).

We write s �k s′ if sRks
′ for somek-step forward simulationRk, andC �k E if

sCRksE . In the sequel, we often omit subscriptk. The main difference with existing
simulation relations is thatk steps inC are matched with a single step inE . For k=1,
our definition coincides with the standard notion of forwardsimulation on CTMCs [4].

Theorem 2 (Abstraction). Let C be a CTMC and letA be a partitioning on the state
spaceS. Then for allk ∈ N

+ we haveC � abstr(C,A, k).

It is important to understand that thek-step forward simulation relates the transition
probabilities of one transition in the abstract system tok-transitions in the concrete sys-
tem. However, it does not say anything about the numberj ∈ {1, . . . , k} of arrivals in
the Poisson process, which has to be chosen appropriately toguarantee that the proba-
bility for reaching certain states within a given time boundis related in the concrete and
the abstract system. This issue will be approached in the next section.
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5 Reachability

We now show that the abstraction method proposed above can beused to efficiently de-
rive bounds for the probability to reach a setB ⊆ SC in a CTMCC = (SC ,P, λ, LC , sC).
For that we consider an Erlang-k interval processE with state spaceSE andC � E . For
B′ ⊆ SE , t ≥ 0 let Reach≤t(B

′) := {σ ∈ PathE | ∃t′ ∈ [0, t] : σ@t′ ∈ B′}.

Since a CTMC is also an Erlang-k interval process,Reach≤t(B) ⊆ PathC is defined
in the same way. We assume thatP(s, s) = 1 for all s ∈ B as the behavior ofC after
visiting B can be ignored. We say thatB andB′ arecompatibleiff s � s′ implies that
s ∈ B iff s′ ∈ B′, for all s ∈ SC , s′ ∈ SE . For example, in Fig. 4,B = {u} and
B′ = {Au}, as well as,B = {s0, s1, s2} andB′ = {As} are compatible.

The k-step forward simulation (cf. Def. 5) is useful for relatingtransition proba-
bilities in the concrete and the abstract system. However, to relatetimed reachability
probabilities of concrete and abstract systems, we have to assess the time abstract tran-
sitions with theright numberj of new arrivals in the Poisson process associated with
E . In other words, we have to check for which choice of the number of arrivals, we
obtain lower and upper bounds of the timed reachability probabilities. As motivated in
the introduction (Fig. 2) and stated in Theorem 3 (see below), a tight bound for

– the minimum probability is obtained when the scheduler chooses for numberj al-
waysk, and a tight bound for

– the maximum probability is obtained when the scheduler chooses oncej = 1 and
for the remaining transitionsj = k.

Consequently, we restrict our attention to the following scheduler classes:

HDE
l := {D ∈ HDE | ∀ξ∃µξ : D(ξ) = (µξ, k)}

HDE
u := {D ∈ HDE | ∀ξ∃µξ : D(ξ) = (µξ, 1) if ξ = sE ,D(ξ) = (µξ, k) otherwise}

wheresE is the initial state of the Erlang-k interval processE .

Theorem 3. Let C be a CTMC andE an Erlang-k interval process withC � E . For
t ∈ R≥0, compatible setsB andB′, there exist schedulersD ∈ HDE

l ,D′ ∈ HDE
u with

PrD(Reach≤t(B
′)) ≤ PrC(Reach≤t(B)) ≤ PrD

′

(Reach≤t(B
′))

Let

PrEl (Reach≤t(B
′)) := infD∈HDE

l
PrD(Reach≤t(B

′))

PrEu(Reach≤t(B
′)) := supD∈HDE

u
PrD(Reach≤t(B

′)).

The following corollary is a direct result of the theorem above. It states that when com-
paring reachability probabilities of a CTMC with those of a simulating Erlang-k interval
processE , in theworst (best) caseE will have a smaller (larger) time-bounded reacha-
bility probability, when restricting to the scheduler classHDE

l (HDE
u).

Corollary 1. Let C be a CTMC andE an Erlang-k interval process withC � E . Let
t ∈ R≥0 andB be compatible withB′. Then:

PrEl (Reach≤t(B
′)) ≤ PrC(Reach≤t(B)) ≤ PrEu(Reach≤t(B

′))

10



Similar to the uniformization method for CTMCs (see Section2), we can efficiently
calculate time-bounded reachability probabilities inE , using time-abstract reachability
probabilities and the probability for the number of Poissonarrivals in a certain range.
More specifically, afteri transitions inE , the number of arrivals in the associated Poisson
process is amongi · k, i · k+1, . . . , i · k+(k−1), if D ∈ HDE

l , and(i−1) · k+1, (i−1) ·
k+2, . . . , i·k, if D ∈ HDE

u. ForB ⊆ SE , i ∈ N let Reach=i(B) := {σ ∈ PathE | σ[i] ∈
B}. Usingψλ,t for the respective Poisson probabilities, we thus obtain:

Lemma 2. LetE be an Erlang-k interval process,t ∈ R≥0 andB ⊆ SE . Then

PrD(Reach≤t(B)) =
∑∞

i=0

(

PrDta(Reach=i(B)) · ψλ,t(
∑i−1

h=0 jh, ji)
)

whereji = k for all i ∈ N if D ∈ HDE
l andj0 = 1, ji = k for i ∈ N

+ if D ∈ HDE
u.

Similar as in [2], we can approximate the supremum/infimum w.r.t. the scheduler classes
HDE

l andHDE
u by applying a greedy strategy for the optimal choices of distributions

P ∈ TE . A truncated, step-dependent scheduler is sufficient to achieve an accuracy of
1 − ǫ where the error boundǫ > 0 is specified a priori. The decisions of this scheduler
only depend on the number of transitions performed so far andits firstN := N(ǫ) de-
cisions can be represented by a sequenceP1, . . . ,PN ∈ TE . As discussed in Section 3,
it suffices if the matrices are such that only extreme distributions are involved. As the
principle for the greedy algorithm is similar for suprema and infima, we focus on the
former. LetiB be the vector of size|SE | with iB(s) = 1 iff s ∈ B. Furthermore,P0 := I

andvi :=
∏i

m=0 Pm · iB. We choose matricesPi, i ≥ 1 such that

|PrEu(Reach≤t(B)) −
∑N

i=0 vi(sE) · ψλ,t(
∑i−1

h=0 jh, ji)| < ǫ.

The algorithm is illustrated in Fig. 5 and has polynomial time complexity. Starting in
a backward manner, i.e., withPN , vectorqu

i is maximized by successively assigning
as much proportion as possible to the transition leading to the successors′ for which
qu
i+1(s

′) is maximal. For every choice of a valuePi(s, s
′) the transition probability

intervals for the remaining choices are normalized (compare Example 1). Note that the
algorithm computes bounds which may be with an error boundǫ belowthe actual value.
Thus, the computed lower bound may be lower than the actual lower bound. To assure
that the upper bound exceeds the actual upper bound, we addǫ to qu

0 .
The following lemma is an adaptation of [2, Th. 5] and states that the results are

indeedǫ-approximations of the supremum/infimum of the reachability probabilities.

Lemma 3. For an Erlang-k interval processE , B ⊆ SE , t ≥ 0, error marginǫ > 0:

PrEl (Reach≤t(B)) ≥ ql
0(sE) ≥ PrEl (Reach≤t(B)) − ǫ

PrEu(Reach≤t(B)) ≤ qu
0 (sE) ≤ PrEu(Reach≤t(B)) + ǫ

Input: Erlang-k interval processE ,
time boundt, set of statesB

Output:ǫ-approx.ql
0 of PrEl (Reach≤t(B))

Input: Erlang-k interval processE ,
time boundt, set of statesB

Output:ǫ-approx.qu
0 of PrEu(Reach≤t(B))

Minimizeql
0 where for1 ≤ i ≤ N Maximizequ

0 where for1 ≤ i ≤ N

ql
0 = ψλ,t(0, k) iB + ql

1

ql
i = ψλ,t(ik, k)PiiB + Pi q

l
i+1

ql
N+1 = 0

qu
0 = ψλ,t(0, 1) iB + qu

1 + ǫ

qu
i = ψλ,t(1 + (i−1)k, k)Pi iB + Pi q

u
i+1

qu
N+1 = 0

Fig. 5. Greedy algorithm for infimum (left) and supremum (right) of time-bounded reachability probabili-
ties
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JtrueK(s) = ⊤ JaK(s) = L(s, a)
Jϕ1 ∧ ϕ2K(s) = Jϕ1K(s) ⊓ Jϕ2K(s) J¬ϕK(s) = (JϕK(s))c

Jϕ1U
Iϕ2K(σ) =

8

<

:

⊤ if ∃ t ∈ I : (Jϕ2K(σ@t) = ⊤∧ ∀ t′ ∈ [0, t) : Jϕ1K(σ@t′) = ⊤)
⊥ if ∀ t ∈ I : (Jϕ2K(σ@t) = ⊥∨ ∃ t′ ∈ [0, t) : Jϕ1K(σ@t′) = ⊥)
? otherwise

JPDp(ϕ1 UIϕ2)K(s) =

8

<

:

⊤ if Prl(s, ϕ1 UIϕ2) D p

⊥ if Pru(s, ϕ1 U
Iϕ2) ⊳ p

? otherwise
D ∈ {>,≥},⊳ =



< if D = ≤
≤ if D =<

JPEp(ϕ1 UIϕ2)K(s) =

8

<

:

⊤ if Pru(s, ϕ1 U
Iϕ2) E p

⊥ if Prl(s, ϕ1 UIϕ2) ⊲ p

? otherwise
E ∈ {<,≤},⊲ =



> if E = ≥
≥ if E =>

Table 2.Three-valued semantics of CSL

We conclude this section with a result that allows us to use the algorithm presented
above to check if a reachability probability is at least (at most)p in the abstract model
and, in case the result is positive, to deduce that the same holds in the concrete model.

Theorem 4. For a CTMCC, an Erlang-k interval processE with C � E , compatible
setsB ⊆ SC ,B′ ⊆ SE , t ≥ 0, ǫ > 0, the algorithm in Fig. 5 computesql

0 andqu
0 with:

PrC(Reach≤t(B)) ≥ PrEl (Reach≤t(B
′)) ≥ ql

0(sE) ≥ PrEl (Reach≤t(B
′)) − ǫ

PrC(Reach≤t(B)) ≤ PrEu(Reach≤t(B
′)) ≤ qu

0 (sE ) ≤ PrEu(Reach≤t(B
′)) + ǫ

6 Model Checking

The characterizations in Section 5 in terms of minimal and maximal time-bounded
reachability probabilities are now employed for model checking CSL on Erlang-k inter-
val processes. Therefore, we define a three-valued CSL semantics and show that verifi-
cation results on Erlang-k interval processes carry over to their underlying CTMCs.
Three-valued semantics. For Erlang-k interval processE = (S,Pl,Pu, λ, k, L, s0),
we define the satisfaction functionJ · K : CSL → (S ∪ PathE → B3) as in Table 2,
wheres ∈ S, Es is defined asE but with initial states and

Prl(s, ϕ1 U
Iϕ2) = PrEs

l ({σ ∈ PathEs | Jϕ1 U
Iϕ2K(σ) = ⊤}) (1)

Pru(s, ϕ1 U
Iϕ2) = PrEs

u ({σ ∈ PathEs | Jϕ1 U
Iϕ2K(σ) 6= ⊥}) (2)

For the propositional fragment the semantics is clear. A path σ satisfies until formula
ϕ1 U [0,t]ϕ2 if ϕ1 definitely holds untilϕ2 definitely holds at the latest at timet. The
until-formula is violated, if either beforeϕ2 holds,ϕ1 is violated, or ifϕ2 is definitely
violated up to timet. Otherwise, the result is indefinite. To determine the semantics
of P≤p(ϕ1 U [0,t]ϕ2), we consider the probability of the paths for whichϕ1 U [0,t]ϕ2 is
definitely satisfied or perhaps satisfied, i.e., indefinite. If this probability is at mostp then
P≤p(ϕ1U

[0,t]ϕ2) is definitely satisfied. Similarly,P≤p(ϕ1U
[0,t]ϕ2) is definitely violated

if this probability exceedsp for those paths on whichϕ1 U [0,t]ϕ2 evaluates to⊤. The
semantics ofPEp(ϕ1 U

[0,t]ϕ2) for E ∈ {<,>,≥} follows by a similar argumentation.

Theorem 5 (Preservation).For a CTMCC and an Erlang-k interval processE with
initial statessC andsE , if sC � sE then for all CSL formulasϕ:

JϕK(sE) 6= ? impliesJϕK(sE) = JϕK(sC)

12



Model checking three-valued CSL is, as usual, done bottom-up the parse tree of
the formula. The main task is checking until-subformulasP≤p(a U

[0,t]b), which can be
handled as follows: As in [7], the underlying transition system is transformed such that
there is one sink for all states satisfyingb and another one for all states neither satisfying
a nor b. Thus, all paths reaching states satisfyingb are along paths satisfyinga, which
allows to compute the measure for reachingb states. However, before doing so, we
have to account for indefinite states (? ): When computing lower bounds we consider
all states labeled by? as ones labeled⊥, while we consider them as labeled⊤ when
computing upper bounds, following equations (1) and (2).

Example 3.Consider Ex. 2 where stateu (and thusAu) are labeledgoal, and CSL
formulaϕ = P≤0.9(trueU≤1.2goal). ThenJϕK(As) = ⊤ = JϕK(s0) (compare Fig. 4). If
s1 was labeledgoal as well thenL(As,goal) = ? . Checkingϕ for satisfaction requires
an optimistic relabeling, i.e. we setL(As,goal) = ⊤. Obviously, thenϕ is not satisfied
for sure. Analyzing the pessimistic instance withL(As,goal) = ⊥ however yields that
ϕ is neither violated for sure (cf. Fig. 4). ThereforeJϕK(As) = ? implying that either
the partitioning or the choice ofk has to be revised in order to get conclusive results.

Theorem 6 (Complexity). Given an Erlang-k interval processE , a CSL formulaϕ,
and an error marginǫ, we can approximateJϕK in time polynomial in the size ofE
and linear in the size ofϕ, the exit rateλ and the highest time boundt occurring inϕ
(dependency onǫ is omitted asǫ is linear inλt). In case the approximation yields⊤ or
⊥, the result is correct.

7 Case Study: Enzymatic Reaction

Markovian models are well established for the analysis of biochemical reaction net-
works [5, 15]. Typically, such networks are described by a set of reaction types and the
involved molecular species, e.g., the different types of molecules. The occurrence of a
reaction changes the species’ populations as molecules areproduced and/or consumed.
Enzyme-catalyzed substrate conversion. We focus on an enzymatic reaction network
with four molecular species: enzyme (E), substrate (S), complex (C) and product (P )
molecules. The three reaction typesR1, R2, R3 are given by the following rules:

R1 : E + S
c1−→ C, R2 : C

c2−→ E + S, R3 : C
c3−→ E + P

The species on the left hand of the arrow (also calledreactants) describe how many
molecules of a certain type are consumed by the reaction and those on the right hand
describe how many are produced. For instance, one molecule of typeE andS is con-
sumed by reactionR1 and oneC molecule is produced. The constantsc1, c2, c3 ∈ R>0

determine the probability of the reactions as explained below.
Concrete model. The temporal evolution of the system is represented by a CTMCas
follows (cf. [6]): A state corresponds to a population vector x = (xE , xS , xC , xP ) ∈ N

4

and transitions are triggered by chemical reactions. The change of the current population
vectorx caused by a reaction of typeRm, m ∈ {1, 2, 3} is expressed as a vectorvm

wherev1 := (−1,−1, 1, 0), v2 := (1, 1,−1, 0) and v3 := (1, 0,−1, 1). Obviously,
reactionRm is only possible if vectorx + vm contains no negative entries. Given an
initial states := (sE, sS , 0, 0), it is easy to verify that the set of reachable states equals
S := {(xE , xS , xC , xP ) | xE + xC = sE, xS + xC + xP = sS}.
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The probability that a reaction of typeRm occurs within a certain time interval is
determined by the functionαm : S → R≥0. The valueαm(x) is proportional to the
number of distinct combinations ofRm’s reactants:α1(x) := c1xExS , α2(x) := c2xC

andα3(x) := c3xC . We define the transition matrixP of the CTMC byP(x, x +
vm) := αm(x)/λ with exit rateλ ≥ maxx∈S(α1(x) + α2(x) + α3(x)). Thus, statex

has outgoing transitionsx
αm(x)/λ
−−−−−→ x+ vm for all m with x+ vm ≥ 0 and the self-loop

probability inx is P(x, x) := 1 −
(

α1(x) + α2(x) + α3(x)
)

/λ.
We are interested in the probability that within timet the number of typeP molecules

reaches thresholdn := sS, the maximum number ofP molecules. We apply labels
AP := {0, 1, . . . , n} and for0 ≤ a ≤ n let L(x, a) := ⊤ if x = (xE , xS , xC , xP ) with
xP = a andL(x, a) := ⊥ otherwise. For the initial populations, we fixsE = 20 and
vary sS between50 and2000.
Stiffness. In many biological systems, components act on time scales that differ by
several orders of magnitude which leads tostiff models. Traditional numerical analysis
methods perform poorly in the presence of stiffness becausea large number of very
small time steps has to be considered. For the enzymatic reaction, stiffness arises ifc2 ≫
c3 and results in a high self-loop probability in most states becauseλ is large compared
to α1(x) + α2(x) + α3(x). Thus, even in case of a small number|S| of reachable
states, model checking properties likeP≤0.9(trueU [0,t]n) is extremely time consuming.
We show how our abstraction method can be used to efficiently verify properties of
interest even for stiff parameter sets. We choose a realistic parameter set ofc1 = c2 = 1
andc3 = 0.001. Note that the order of magnitude of the expected time until threshold
n = sS = 300 is reached is104 for these parameters.
Abstract model. For the CTMCC := (S,P, λ, L, s) described above, we choose par-
titioning A := {A0, . . . , An} with Aa :=

{

x ∈ S | L(x, a) = ⊤
}

, that is, we group
all states in which the number of molecules of typeP is the same. Some important
remarks are necessary at this point. Abstraction techniques rely on the construction of
small abstract models by disregarding details of the concrete model as the latter is too
large to be solved efficiently. In this example, we have the additional problem of stiff-
ness and the abstraction method proposed here can tackle this by choosing high values
for k. Then one step in the Erlang-k interval process happens after a large number of
arrivals in the underlying Poisson process and the self-loop probability in the abstract
model is much smaller than in the concrete one. We chosek ∈ {210, 211, 212} for the
construction of the Erlang-k interval processabstr(C,A, k) and calculate the transition
probability intervals by taking thek-th matrix power ofP. The choice fork is reason-
able, since for a given error boundǫ = 10−10, sS = 300 andt = 10000, a transient
analysis of the concrete model via uniformization would require around6 · 107 steps.
By contrast, our method considersk steps in the concrete model and around(6 · 107)/k
steps in the smaller abstract model. Thus, although the construction of the Erlang-k
interval process is expensive, the total time savings are enormous. We used the MAT-
LAB software for our prototypical implementation and the calculation ofPk could be
performed efficiently becauseP2j

can be computed usingj matrix multiplications. As
for non-stiff models a smaller value is chosen fork, it is obvious that upper and lower
bounds for thek-step transition probabilities can be obtained in a local fashion, i.e. by
computing thek-th matrix power of submatrices ofP. Therefore, we expect our method
to perform well even if|S| is large. However, for stiffand large concrete models more
sophisticated techniques for the construction of the abstract model must be applied that
exploit the fact that only upper and lower bounds are needed.
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Fig. 7. Time-bounded reachability

|A| |S| time
50 861 0m 5s
300 6111 37m 36s
500 10311 70m 39s
1000 20811 144m 49s
1500 31311 214m 2s
2000 41811 322m 50s

Fig. 6. Computation times

Experimental results. For sS = 200 we compared the
results of our abstraction method for the probability to
reachAn within time boundt with results for the con-
crete model that were obtained using PRISM. While it
took more than one day to generate the plot for the con-
crete model in Fig. 7, right, our MATLAB implemen-
tation took less than one hour for all three pairs of up-
per and lower probability bounds and different values
of t.2 Our method is accurate as the obtained intervals
are small, e.g., forsS = 200, k = 212, t = 14000 the relative interval width is10.7%.
Fig. 7, left, shows the lower and upper probability bounds using k = 212, t = 20000
and varyingsS . For high values ofsS , e.g.,sS = 500 the construction of the Erlang-k
interval process took more than 99% of the total computationtime as the size of the
transition matrixP is 104 × 104 and sparsity is lost during matrix multiplication. We
conclude this section with the additional experimental details on computation times3,
given in Fig. 6, usingk = 212, t = 50000 (andsS = 200).

Note that for this case study exact abstraction techniques such as lumping do not
yield any state-space reduction.

8 Conclusion

We have presented an abstraction technique for model checking of CTMCs, presented
its theoretical underpinnings, as well as an the application of the abstraction technique
to a well-known case study from biochemistry. The main novelaspect of our approach is
that besides the abstraction of transition probabilities by intervals [10, 17], sequences of
transitions may be collapsed yielding an approximation of the timing behavior. Abstract
Erlang k-interval processes are shown to provide under- and overapproximations of
time-bounded reachability probabilities. Our case study confirms that these bounds may
be rather accurate. Future work will focus on automaticallyfinding suitable state-space
partitionings, and on guidelines for selectingk appropriately. As shown by our case
study, for stiff CTMCs, a high value ofk is appropriate. This is, however, not the case in
general. We anticipate that graph analysis could be helpfulto select a “good” value for
k. Moreover, we plan to investigate memory-efficient techniques for computingk-step
transition probabilities and counterexample-guided abstraction refinement.

2 Both jobs were run on the same desktop computer (Athlon 64 X2 3800+, 2GB RAM).
3 Run on a workstation (Xeon 5140 – 2.33 GHz, 32GB RAM)
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9 Appendix

Proof of Theorem 3

Before we state the proof of Theorem 3, we recall the definition of probability spaces
and present the detailed construction steps for a probability measure on a givenErlang-k
interval processE = (SE ,Pl,Pu, λ, LE , sE).

A non-empty setΩ of possible outcomes of an experiment of chance is called a
sample space. A setB ⊆ Ω is called Borel field (orσ-algebra) overΩ, if it containsΩ,
Ω \ E for eachE ∈ B and the union of any countable sequence of sets fromB. The
subsets ofΩ that are elements ofB are calledmeasurablewith respect toB.

A probability spaceis a triple(Ω,B,Pr), whereΩ is a sample space,B is a Borel
field overΣ, andPr is a mappingB → [0, 1] such thatPr(Ω) = 1 andPr(

⋃∞
i=1Ei) =

∑∞
i=1Ei for any sequenceE1, E2, . . . of pairwise disjoint sets ofB. We callPr aprob-

ability measure.
A schedulerD ∈ HDE

l induces a probability space(Ω,B,PrDE ) whereΩ = PathE
andB is the Borel field generated by the cylinder setsC(s0 I0 . . . In−1 sn) that are
defined as in Section 3. Probability measurePrDE is then uniquely defined by

PrDE (C(s0)) = 1

and forn ≥ 0

PrDE (C(s0 I0 . . . In sn+1))

= PrDE (C(s0 I0 . . . In−1 sn)) · Fλ,k(sup In) · µn(sn+1)

=
∏n

i=0 (Fλ,k(sup Ii) · µi(si+1))

whereµi is the chosen distribution ofD w.r.t. untimed path fragmentξi = s0 s1 . . . si.
Note that the choicej of the number of arrivals is alwaysj = k asD ∈ HDE

l (compare
Section 5). Opposed to that, a schedulerD′ ∈ HDE

u choosesj = 1 in the first step
andj = k otherwise.D′ induces a probability space(Ω,B,PrD

′

E ) where probability
measurePrD

′

E is uniquely defined by

PrD
′

E (C(s0)) = 1

PrD
′

E (C(s0 I0 s1)) = Fλ,1(sup I0) · µ0(s1)

and forn ≥ 1

PrD
′

E (C(s0 I0 . . . In sn+1))

= PrD
′

E (C(s0 I0 . . . In−1 sn)) · Fλ,k(sup In) · µn(sn+1)

= Fλ,1(sup I0) · µ0(s1) ·
∏n

i=1 (Fλ,k(sup Ii) · µi(si+1))

whereµi is the choice of schedulerD′ w.r.t. untimed path fragmentξi = s0 s1 . . . si.

LetD ∈ HDE
u ∪HDE

l . In the sequel, we writePrDs for the probability measurePr
D[s7→1]

Es

whereEs is a copy ofE but starts initially in states ∈ SE and schedulerD[s 7→1] ∈ HDEs

is a copy ofD but chooses(µ, 1) for arguments if D(s) = (µ, j).
Let us now recall some notations that are used throughout theproof. In a Poisson

process with rateλ the probabilities forh to h + ℓ − 1 arrivals to occur withint time
units are given by:

ψλ,t(h, ℓ) = P (Th ≤ t < Th+ℓ) =
∑h+ℓ−1

i=h e−λt (λt)i

i! .
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We fix λ and k for the remainder of this section and defineψt(h) := ψt(h, 1) and
ψt(h, j) := ψλ,t(h, j) and for a set of statesB ⊆ SE let

Reach≤t(B) := {σ ∈ PathE | ∃t′ ∈ [0, t] : σ@t′ ∈ B}

Reach=i(B) := {σ ∈ PathE | σ[i] ∈ B}

Reach≤i(B) := {σ ∈ PathE | ∃j ≤ i : σ[j] ∈ B}

Reach≤i
≤t(B) := Reach≤i(B) ∩ Reach≤t(B)

Note that all these definitions also hold for a CTMCC = (SC ,P, λ, LC , sC) as every
CTMC can be represented as an Erlang-1 interval process whose probability intervals
are singletons. For instance, ifB ⊆ SC we haveReach=i(B) = {σ ∈ PathC | σ[i] ∈
B}. Moreover, fors ∈ SE , B′ ⊆ SE we might abbreviatePrDs (Reach=i(B′)) by
PrD(s, i, B′) and fors ∈ SC ,B ⊆ SC we writePr(s, i, B) instead ofPrs(Reach=i(B)).
For schedulersD ∈ HDE

l andD′ ∈ HDE
u with D(ξ) = (µξ, jξ) andD′(ξ) = (µ′ξ, j

′
ξ)

for ξ ∈ uPathfE we omit the choicesjξ, j′ξ and writeD(ξ) = µξ andD′(ξ) = µ′ξ
becausejξ andj′ξ are fixed. More precisely,jξ = k andj′ξ = 1 if ξ = sE andj′ξ = k
otherwise.

The following lemma is a basic step of the proof of Theorem 3.

Lemma 4. LetC � E and letB ⊆ SC,B′ ⊆ SE be compatible sets. Then there exists a
schedulerD ∈ HDE such that for alli ∈ N:

PrDE (Reach≤⌊ i
k
⌋(B′)) ≤ PrC(Reach≤i(B)) ≤ PrDE (Reach≤⌈ i

k
⌉(B′))

The basic idea of the proof of the lemma is to construct a schedulerD for E that mimics
the discrete steps inC. Before we state the proof, let us consider an example of a CTMC
C and an Erlang-3 interval processE with C � E (cf. Fig. 8, top and middle). Assume
thatC either starts in states0 or s1 and the initial state ofE is s′. In Fig. 8, bottom, the
Poisson arrivals ofE (andC) are illustrated as a chain of states in the leftmost column.
The evolution of the discrete steps ofC are given by the trees with roots0 and s1,
respectively (where transition probability1 is omitted). Similarly, the tree with roots′

represents the transitions inE . The black nodes belong to setB andB′, respectively. It
is easy to see that a3-step forward simulationR on C andE can be defined such that
all the black nodes simulate each other. Furthermore,s′ simulatess0, s1 ands2 as well
asu′ simulatesu0, u1, u2 andu3. The unnamed states are not reachable from either
s0 or s1 in an exact multiple of3 steps and therefore we do not need simulating states
in the Erlang-3 interval process. Note that the transition probability intervals inE are
singletons here. For anyD ∈ HDE we calculate inC andE :

Pr(s0, 3, B) = 1
2 Pr(s1, 3, B) = 1

2 PrD(s′, 1, B′) = 1
2

Pr(s0, 4, B) = 3
4 Pr(s1, 4, B) = 1

2

Pr(s0, 5, B) = 7
8 Pr(s1, 5, B) = 1

2

Pr(s0, 6, B) = 15
16 Pr(s1, 6, B) = 15

16 PrD(s′, 2, B′) = 15
16

Obviously, for3 ≤ i ≤ 6, k = 3, s ∈ {s0, s1}:

PrDs′ (Reach≤⌊ i
k
⌋(B′)) ≤ Prs(Reach≤i(B)) ≤ PrDs′ (Reach≤⌈ i

k
⌉(B′))

Proof (of Lemma 4).Let R be ak-step forward simulation onC andE . We prove by
induction oni that for all s ∈ SC, s′ ∈ SE with (s, s′) ∈ R there exists a scheduler
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Fig. 8. CTMC, abstraction and the unwinded representation

Ds,s′ ∈ HDE with

Pr
Ds,s′

s′ (Reach=⌊ i
k
⌋(B′)) ≤ Prs(Reach=i(B)) ≤ Pr

Ds,s′

s′ (Reach=⌈ i
k
⌉(B′)). (3)

As the sets of goal statesB,B′ cannot be left, the lemma follows directly from Equation
(3) and the fact that for alli, h ≥ 0,D ∈ HDE

Prs(Reach=i(B)) = Prs(Reach≤i(B))

PrDs′ (Reach=h(B′)) = PrDs′ (Reach≤h(B′)).

We prove Equation (3) by first assuming that0 ≤ i < k. We define the initial decision
of Ds,s′ ∈ HDE as follows: Let∆ : SC × SE → [0, 1] be as in Definition 5 for the pair
(s, s′) ∈ R. We setDs,s′(s

′) := µ where

µ(v′) :=
∑

v∈SC :vRv′ ∆(v, v′) for all v′ ∈ SE .

Since0 ≤ i < k we have⌊ i
k ⌋ = 0 and⌈ i

k ⌉ ∈ {0, 1}. If s′ ∈ B′ then(s, s′) ∈ R and
the compatibility ofB,B′ imply thats ∈ B and thus

PrDs,s′ (s′, 0, B′) = PrDs,s′ (s′, 1, B′) = 1 = Pr(s, i, B).

Otherwise, that is, ifs′ 6∈ B′ then(s, s′) ∈ R and the compatibility ofB,B′ imply that
s 6∈ B. Let us distinguish the cases⌈ i

k ⌉ = 0 and⌈ i
k ⌉ = 1. In the former case, we have

i = 0 and therefore

PrDs,s′ (s′, 0, B′) = 0 = Pr(s, i, B).

In the latter case,0 < i < k and, as⌊ i
k ⌋ = 0, this yields for the lower bound

PrDs,s′ (s′, ⌊ i
k ⌋, B

′) = 0 ≤ Pr(s, i, B).
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For the upper bound we get for⌈ i
k ⌉

Pr(s, i, B) =
∑

v∈B Pi(s, v)

≤
∑

v∈B Pk(s, v) (∗)

=
∑

v∈B

∑

v′∈SE
∆(v, v′) ((s, s′) ∈ R)

=
∑

v∈SC

∑

v′∈B′ ∆(v, v′) (∗∗)

=
∑

v′∈B′ µ(v′) ((s, s′) ∈ R)

= PrDs,s′ (s′, 1, B′)

= PrDs,s′ (s′, ⌈ i
k ⌉, B

′)

whereµ = D(s′). Here,(∗) holds because allB-states have self-loops with probability
one and(∗∗) is true since

∆(v, v′) > 0 ⇒ (v, v′) ∈ R ⇒ v ∈ B iff v′ ∈ B′

⇒ ∆(B,SE \B′) = 0 = ∆(SC \B,B
′).

Let us now proceed with the induction step, that is, we assumethat Equation (3) holds
and prove that it is true fori → i + k. Note that by induction hypothesis, for each pair
(v, v′) ∈ R there exists a schedulerDv,v′ ∈ HDE such that

PrDv,v′ (v′, ⌊ i
k ⌋, B

′) ≤ Pr(v, i, B) ≤ PrDv,v′ (v′, ⌈ i
k ⌉, B

′) .

Let ξ ∈ uPathfE and letv′ be the first element ofξ. We defineDs,s′(s
′ξ) as a linear

combination of the distributionsDv,v′(ξ). More precisely,

Ds,s′(s
′ξ) :=

∑

v∈SC

(

∆(v,v′)
∆(SC ,v′) ·Dv,v′(ξ)

)

.

This implies that fors′ 6∈ B′, h > 0

PrDs,s′ (s′, h,B′) =
∑

v′∈SE

(

µ(v′) ·
∑

v∈SC

(

∆(v,v′)
∆(SC ,v′) · PrDv,v′ (v′, h− 1, B′)

)

)

. (4)

We calculate

Pr(s, i+ k,B)

=
∑

v∈SC
Pk(s, v) · Pr(v, i, B)

=
∑

v∈SC

∑

v′∈SE
∆(v, v′) · Pr(v, i, B) ((s, s′) ∈ R)

=
∑

v′∈SE

(

∆(SC , v
′) ·
∑

v∈SC

(

∆(v,v′)
∆(SC ,v′) · Pr(v, i, B)

))

≥
∑

v′∈SE

(

∆(SC , v
′) ·
∑

v∈SC

(

∆(v,v′)
∆(SC ,v′) · PrDv,v′ (v′, ⌊ i

k ⌋, B
′)
))

(Ind. hyp.)

=
∑

v′∈SE

(

µ(v′) ·
∑

v∈SC

(

∆(v,v′)
∆(SC ,v′) · PrDv,v′ (v′, ⌊ i

k ⌋, B
′)
))

((s, s′) ∈ R)

= PrDs,s′ (s′, ⌊ i+k
k ⌋, B′) (Eq. (4))

= PrDs,s′ (s′, ⌊ i
k ⌋ + 1, B′)

for the lower bound. For the upper bound, we use similar arguments and get:
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Pr(s, i+ k,B)

=
∑

v∈SC
Pk(s, v) · Pr(v, i, B)

=
∑

v∈SC

∑

v′∈SE
∆(v, v′) · Pr(v, i, B) ((s, s′) ∈ R)

=
∑

v′∈SE

(

∆(SC , v
′) ·
∑

v∈SC

(

∆(v,v′)
∆(SC ,v′) · Pr(v, i, B)

))

≤
∑

v′∈SE

(

∆(SC , v
′) ·
∑

v∈SC

(

∆(v,v′)
∆(SC ,v′) · PrDv,v′ (v′, ⌈ i

k ⌉, B
′)
))

(Ind. hyp.)

=
∑

v′∈SE

(

µ(v′) ·
∑

v∈SC

(

∆(v,v′)
∆(SC ,v′) · PrDv,v′ (v′, ⌈ i

k ⌉, B
′)
))

((s, s′) ∈ R)

= PrDs,s′ (s′, ⌈ i+k
k ⌉, B′) (Eq. (4))

= PrDs,s′ (s′, ⌈ i
k ⌉ + 1, B′)

Thus,

PrDs,s′ (s′, ⌊ i
k ⌋ + 1, B′) ≤ Pr(s, i+ k,B) ≤ PrDs,s′ (s′, ⌈ i

k ⌉ + 1, B′) ,

and we conclude that for alli ∈ N there exists a schedulerD ∈ HDE such that

PrDE (Reach=⌊ i
k
⌋(B′)) ≤ PrC(Reach=i(B)) ≤ PrDE (Reach=⌈ i

k
⌉(B′))

which completes the proof. ⊓⊔

The lemma above reasons only about time-abstract probabilities, though, for the
behavior of the Erlang-k interval process the number of arrivals chosen by the scheduler
plays an important role. The intuition of why for lower bounds we consider schedulers
that always choosek and for upper bounds ones that choose1 for histories of length0
andk otherwise has been given in the introduction. To the point, in the worst case (lower
bound) the goal states are reached exactly afteri = h ·k steps, i.e., in the abstract model
h steps have been taken. In the best case (upper bound) the goalstates are reached at
i = ℓ ·k+1 steps in the concrete model, i.e., in the abstract modelℓ+1 steps have been
taken. Since in the abstract model one step corresponds tok arrivals in Poisson process,
the actual number of arrivals is(ℓ+1)·k. Thus, for the best case analysis (upper bounds)
the related concrete paths are longer than those consideredfor the worst case.

We illustrate this in Fig. 8. The rightmost column shows the choice of the scheduler
classesHDE

l (lower) andHDE
u (upper) for the numberj of arrivals. Intuitively, in the

above lemma the case⌊ i
k ⌋ corresponds to schedulers inHDE

l and the case⌈ i
k ⌉ to those

in HDE
u.

Theorem 3. Let C be a CTMC andE an Erlang-k interval process withC � E . For
t ≥ 0, compatible setsB andB′, there exist schedulersD ∈ HDE

l ,D′ ∈ HDE
u with

PrDE (Reach≤t(B
′)) ≤ PrC(Reach≤t(B)) ≤ PrD

′

E (Reach≤t(B
′)).

Proof. LetR be ak-step forward simulation onC andE and assume thats ands′ are
the initial states ofC andE . From Lemma 4 we know that for pair(s, s′) ∈ R there is a
schedulerD̂ ∈ HDE such that for alli ∈ N:

PrD̂s′ (Reach≤⌊ i
k
⌋(B′)) ≤ Prs(Reach≤i(B)) ≤ PrD̂s′ (Reach≤⌈ i

k
⌉(B′)) .

We lift this statement to the continuous-time setting by proving that there exist schedulers
D ∈ HDE

l ,D′ ∈ HDE
u such that for alli ∈ N:

PrDs′ (Reach
≤⌊ i

k
⌋

≤t (B′)) ≤ Prs(Reach≤i
≤t(B)) ≤ PrD

′

s′ (Reach
≤⌈ i

k
⌉

≤t (B′)). (5)
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From this the theorem follows directly as for anyD:

Prs(Reach≤t(B)) = limi→∞ Prs(Reach≤i
≤t(B)), and

PrDs′ (Reach≤t(B
′)) = limh→∞ PrDs′ (Reach≤h

≤t (B))

The idea is to define two copiesD andD′ of D̂ that choose the same distributionsµ
asD̂ but arrivals j such thatD ∈ HDE

l andD′ ∈ HDE
u. More precisely, ifD̂(ξ) = µ

(recall that we omit the choice of the number of arrivals forD̂ as it plays no role for
Lemma 4) we defineD(ξ) := (µ, k) for all ξ ∈ uPathfE andD′(ξ) := (µ, 1) if ξ = s′

andD′(ξ) := (µ, k) otherwise. This yields:

Prs(Reach≤i
≤t(B))

=
∑i

h=0

(

ψt(h) · Prs(Reach=h(B))
)

=
∑i

h=0

(

ψt(h) · Prs(Reach≤h(B))
)

(∗)

≥
∑i

h=0

(

ψt(h) · PrDs′ (Reach≤⌊h
k
⌋(B′))

)

(Lemma 4)

≥
∑⌊ i

k
⌋·k

h=0

(

ψt(h) · PrDs′ (Reach≤⌊h
k
⌋(B′))

)

(sum truncated)

=
∑⌊ i

k
⌋

ℓ=0

((

∑ℓk+k−1
h=ℓk ψt(h)

)

· PrDs′ (Reach≤ℓ(B′))
)

=
∑⌊ i

k
⌋

h=0

(

ψλ,t(hk, k) · PrDs′ (Reach≤h(B′))
)

=
∑⌊ i

k
⌋

h=0

(

ψλ,t(hk, k) · PrDs′ (Reach=h(B′))
)

(∗)

= PrDs′ (Reach
≤⌊ i

k
⌋

≤t (B′)) (∗∗)

Note that(∗) is true becauseB andB′ cannot be left and for(∗∗) we exploit thatD
chooses alwaysj = k. For the upper bounds we get:

Prs(Reach≤i
≤t(B))

=
∑i

h=0 ψt(h) Prs(Reach≤h(B))

≤
∑i

h=0 ψt(h) PrD
′

s′ (Reach≤⌈h
k
⌉(B′)) (Lemma 4)

≤ ψt(0) PrD
′

s′ (Reach≤0(B′))

+
∑⌈ i

k
⌉·k

h=1 ψt(h) PrD
′

s′ (Reach≤⌈h
k
⌉(B′)) (sum extended)

= ψt(0) PrD
′

s′ (Reach≤0(B′))

+
∑⌈ i

k
⌉

ℓ=1

(

∑ℓk
h=(ℓ−1)k+1 ψt(h)

)

PrD
′

s′ (Reach≤ℓ(B′))

= ψt(0) PrD
′

s′ (Reach≤0(B′))

+
∑⌈ i

k
⌉

ℓ=1 ψλ,t((ℓ− 1)k + 1, k) PrD
′

s′ (Reach≤ℓ(B′))

= PrD
′

s′ (Reach
≤⌈ i

k
⌉

≤t (B′))

Here, for the last step we use the fact thatD′ choosesj = 1 for the first step andj = k
for the remaining steps.
As the above inequations hold for alli ∈ N, we have shown that Equation (5) is true
which completes the proof of the theorem.

⊓⊔
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