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Abstraction for Stochastic Systems
by Erlang’s Method of Stages

Joost-Pieter KatoénDaniel Klink!, Martin Leucke?, and Verena Woff

'RWTH Aachen University’ TU Munich, 3EPF Lausanne

Abstract. This paper proposes a novel abstraction technique basedamgE method of
stages for continuous-time Markov chains (CTMCs). As aastmodel<€Erlang-k interval
processesire proposed where state residence times are governedssoR@rocesses and
transition probabilities are specified by intervals. Weviile a three-valued semantics of
CSL (Continuous Stochastic Logic) for Erlakginterval processes, and show that both
affirmative and negative verification results are presetwedur abstraction. The feasi-
bility of our technique is demonstrated by a quantitativalgsis of an enzyme-catalyzed
substrate conversion, a well-known case study from biocsteyn

1 Introduction

This paper is concerned with a novel abstraction techniquérhed probabilistic sys-
tems, in particular continuous-time Markov chains, CTMQrsshort. These models are
omnipresent in performance and dependability analysigiefisas in areas such as sys-
tems biology. In recent years, they have been the subjettidy $n concurrency theory
and model checking. CTMCs are a prominent operational mfodatochastic process
algebras [13] and have a rich theory of behavioral (botralifiane and branching-time)
equivalences, see, e.g., [4, 26]. Efficient numerical, dsagesimulative verification al-
gorithms have been developed [1, 3,27] and have becomeegrahpart of dedicated
probabilistic model checkers such as PRISM and act as bddkewidely accepted
performance analysis tools like GreatSPN and the PEPA Veénidi

Put in a nutshell, CTMCs are transition systems whose tiansi are equipped
with discrete probabilities and state residence times aterochined by negative expo-
nential distributions. Like transition systems, they suffom the state-space explosion
problem. To overcome this problem, several abstracti@ethapproaches have recently
been proposed. Symmetry reduction [20], bisimulation mination [16], and advances
in quotienting algorithms for simulation pre-orders [2Bb® encouraging experimental
results. Tailored abstraction techniques for regular itgfistate CTMCs have been re-
ported [22], as well as bounding techniques that approxdr@atMCs by ones having a
special structure allowing closed-form solutions [21]edcate abstraction techniques
have been extended to (among others) CTMCs [14]. There isla winge of related
work on abstraction of discrete-time probabilistic modaleh as MDPs, see e.g., [9,
8, 19]. Due to the special treatment of state residence fithese techniques are not
readily applicable to the continuous-time setting.

This paper generalizes and improves upon our three-valbsdlagtion technique
for CTMCs [17]. We adopt a three-valued semantics, i.e. négrpretation in which a
logical formula evaluates to either true, false, or indé&inin this setting, abstraction
preserves a simulation relation on CTMCs and is conservdtiv both positive and

* The research has been partially funded by the DFG Reseaaatirig Group 1298 (AlgoSyn), the Swiss
National Science Foundation under grant 205321-11184QhenBU FP7 project Quasimodo.



negative verification results. If the verification of the st model yields an indefinite
answer, the validity in the concrete model is unknown. Ineorttd avoid the grouping
of states with distinct residence time distributions, thHEMEC is uniformizedprior to
abstraction. This yields a weak bisimilar CTMC [4] in which states have identical
residence time distributions. Transition probabilitiésiogle transitions are abstracted
by intervals, yielding continuous-time variants of in@rdTMCs [10, 24].

This, however, may yield rather coarse abstractions (sksvheThis paper sug-
gests to overcome this inaccuracy. The crux of our approgach ¢ollapseransition
sequencesf a given fixed lengttk, say. Our technique in [17] is obtainedki&=1. This
paper presents the theory of this abstraction techniqueysits correctness, and shows
its application by a quantitative analysis of an enzymedgaed substrate conversion, a
well-known case study from biochemistry [5].

Let us illustrate the main idea of the abstraction by means,
an example. Consider the CTMC shown on the right (top). Int
itively, a CTMC can be considered as a transition system &hos
transitions are labeled witttansition probabilities Moreover, a +_ *
CTMC comes with arexit rate identifying theresidence times -
of the states (one, say), which is exponentially distriduféhe [ %Jl
essence of CTMC model checking is to compute the probability  Fig. 1.
to reach a certain set of goal states within a given deadBhe [

A rather common approach to abstraction is to partition tatespace into classes,
e.g., let us group states, s;, andss into the abstract statd,, andwu into A,. The
probability to move fromA, to A, by a single transition is eithes, % or 1, as the
respective (time-abstract) probability to moveutn one transitionis 0, 1, and%. The
approach in [17] yields the interv@), 1] for the transition fromA, to A,. This is not
very specific. A more narrow interval is obtained when coesiy two consecutive
transitions. Then, the probability from; to A, is 1 or %. Using intervals, this yields
the two-state abstract structure depicted above (bottom).

Put in a nutshell, the abstraction technique proposedsmpigper is to generalize this
approach towards considering transition sequences ofea ¢géngthk > 0, say. State
residence times are, however, then no longer exponenti@lyibuted, but Erlang-
distributed. Moreover, taking each tirkesteps at once complicates the exact calculation
of time-bounded reachability probabilities: Let us comsifirst the case that is the
number of transitions taken in the concrete system to reamdrtain goal state. Let
andj be such that = ¢-k+j andj € {0,...,k—1}. Clearly, the number of transitions
in the abstract system corresponds exactly to a multiplaehtumber of transitions in
the concrete system, only if the remaingezquals0. As this is generally not the case,
we restrict to computing lower and upper bounds for the puditya of reaching a set
of goal states. Let us be more precise: Consider the treeatsf sequences as shown
in Fig. 2(a). Let the black nodes denote the set of goal st@gdsng the right branch,
5 transitions are needed to reach a goal state kFer 3, this implies that 2 abstract
transitions lead to a goal state. However2as$ = 6, computing with 2 transitions and
Erlang-3 distributed residence times will not give the éx@obability for reaching a
goal state, but, as we showlgaver bound Intuitively, the probability for reaching a goal
state in Fig. 2(b) is computed. For an upper bound, one miggitdonsider all states
from the fourth state on in the right branch as goal stateis. Wbuld give a rather coarse
upper bound. We follow instead the idea depicted in Fig.: 24 consider 2 transitions
for reaching the goal state, however, use the Erlang-3lalisiton for assessing the first
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@) (b)
Fig. 2. Reaching goals in stages of lendth

(d)

transition, but use the Erlang-1 distribution for asseptire last transition of a sequence
of transitions. That is, we compute the reachability prdigfor the goal states as
depicted in Fig. 2(c). Technically, it is beneficial to unstand the situation as depicted
in Fig. 2(d), i.e., to first consider one transition with Exgal distribution and then to
consider a sequence of transitions which are Erlagstributed.

Outlineof thepaper. Section 2 gives some necessary background. We introduaed=rl
k interval processes in Section 3 which serve as abstractIfwdeTMCs in Section 4.
In Section 5, we focus on reachability analysis of Erldngterval processes and utilize
it for model checking in Section 6. The feasibility of our apach is demonstrated in
Section 7 by a case study from biology and Section 8 conclildegaper. A full version
with detailed proofs can be found in [18].

2 Preliminaries

Let X be a finite set. FoF, Y’ C X and functionf : X x X — Rlet f(Y,Y’) :=
Zyexy,ey, f(y,y") (for singleton sets, brackets may be omitted). The funcfion -)
is given byz’ — f(z,2’) for all x € X. Functionf is adistribution onX iff f: X —
[0,1] and f(X) := > cx f(z) = 1. The set of all distributions oX is denoted by
distr(X). Let AP be a fixed, finite set of atomic propositions afig := {1, T} the
two-valued truth domain.
Continuous-time Markov chains. A (uniform) CTMCC is atuple(S, P, A, L, sq) with
a finite non-empty set of stateés a transition probability functio® : S x .S — [0, 1]
such thatP(s,S) = 1 for all s € S, an exit rateA € R, a labeling functionL :
S x AP — B, and an initial state, € S. This definition deviates from the literature as
i) we assume a uniform exit rate and ii) we separate the distirae behavior specified
by P and the residence times determined\byrRestriction i) is harmless, as every (non-
uniform) CTMC can be transformed into a weak bisimilar, anii CTMC by adding
self-loops [25]. For ii), note thad® (s, s')(1—e*) equals the probability to reachfrom
s in one step and within time intervé0, t). Thus, the above formulation is equivalent
to the standard one. The expected state residence tilje.id et P*(s, s') denote the
time-abstract probability to enter stateafter k steps while starting froms, which is
obtained by taking thé&th-power ofP (understood as a transition probability matrix).
We recall some standard definitions for Markov chains [11, 28 infinite path o
is a sequencey ty sy ty ... with s; € S, P(s;,si+1) > 0 andt; € Ry fori € N. The
time stampg; denote the residence time in stajeLet 0@t denote the state of a path
occupied at time, i.e.cQt = s; with 7 the smallest index such that Z;ZO tj. The
set of all (infinite) paths i is denoted byPath-. Let Pr be the probability measure on
sets of paths that results from the standard cylinder sedteariion.
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[true](s) =T [a](s) = L(s,a)

[o1 A p2](s) = [eal(s) M [e2](s) [=¢](s) = ([l (s))°

[Posp(o1td! 02)](s) = T, iff Pr({o € Path" | [pitd” 2] (0) = T} pap

[ertt p2] (o) = T,iff It € I : ([p2](c@t) =T A Vit €[0,t) : [er](c@t') = T)
Table 1. Semantics of CSL

Poisson processes. Let (NV¢):>o be a counting process and let the corresponding inter-
arrival times be independent and identically exponentidistributed with parameter
A > 0. Then(Ny):>o is aPoisson procesand the numbek of arrivals in time interval
[0, ) is Poisson distributed, i.eB(N; = k) = e~ (\t)*/k!. The time untilk arrivals
have occurred is Erlang-distributed, i.e. F (t) := P(T}, < t) = 1—22“:‘01 e‘”%
whereT}, is the time instant of thé-th arrival in (/V;),>o. Consequently, the probability
that (N;):>o isinthe rangelk, k +1,...,k+ ¢ — 1}, £ > 1is given by

Pne(k,0) = P(Th, <t < Thoyg) = S0 e_M(AZ-—tz)i :
ACTMCC = (S,P, \, L, so) can be represented as a discrete-time Markov chain with
transition probabilitiesd® where the times are implicitly driven by a Poisson process
with parameten, i.e., the probability to reach statefrom s within [0, ¢) is:

2 Pifs, ) e ML

This relationship can be used for an efficient transientysmabf CTMCs and is known
asuniformization A truncation point of the infinite sum can be calculated stneth the
approximation error is less than an a priori defined erromdd@5].
Continuous Stochastic Logic. CSL [1, 3] extends PCTL [12] by equipping the until-
operator with a time bound. Its syntax is given by:

pu=true|laloAp| @] ng(‘PuI@

wherel € {[0,1),[0,%],[0,00) |t € Ryo}, > € {<,<,>,>},p € [0,1] anda € AP.
The formal semantics of CSL is given in Table 1. CSL model khmeg[3] is performed
inductively on the structure a@f like for CTL model checking. Checking time-bounded
until-formulas boils down to computing time-bounded reatlity probabilities. These
probabilities can be obtained by a reduction to transieatyais yielding a time com-
plexity in O(|S|?\t) wheret is the time bound.

Three-valued domain. Let Bs := {L, 7, T} be the complete lattice with ordering
1 < 7 < T, meet (1) and join () as expected, and complementatiérsuch thatT
and_L are complementary to each other ahti="7. When a formula evaluates to or

T, the result iglefinitelytrue or false respectively, otherwise itifglefinite

3 Erlang-k Interval Processes

Erlang-k interval processeare determined by two ingredients: a discrete probaluilisti
process with intervals of transition probabilities (like[1L0, 24]) and a Poisson process.
The former process determines the probabilistic branchingreas residence times are
governed by the latter. More precisely, the state residémeis the time untilj further
arrivals occur according to the Poisson process wherd1,. .., k} is nondeterminis-
tically chosen. Thus, the residence times are Erladgstributed.
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Definition 1 (Erlang-k interval process).An Erlang+ interval processs a tuple€ =
(S, P, Py, \ k,L,sp), with S and sy € S as before, and®;, P, : S x S — [0,1],
transition probability bounds such that for all€ S: Py(s,S) < 1 < P,(s,5), A €
R-q, a parameter of the associated Poisson procéss,N*, andL : S x AP — Bs.

An Erlang-1 interval process is abstract continuous-time Markov chajACTMC)
[17]. If additionally all intervals are singletons, the pess is equivalent to a CTMC
with P; = P, = P. The set of transition probability functions féris:

Te:={P:5x85—[0,1]|VseS: P(s,5) =1,
Vs,s' € S: Pi(s,s') <P(s,s) <Pyu(s,s)}

Let Te(s) := {P(s,-) | P € T¢} be the set of distributions in

Pathsin Erlang-k interval processes. A patho in £ is an infinite sequenc&tgsit; . ..
with s; € S, t; € R+ for which there exist®g, Py, ... € T¢ such thalP;(s;, s;11) >

0 for all i € N. A path fragment is a prefix of a path that ends in a state denoted
¢|. The set of all path fragmengs(untimed path fragments) ifi is denoted byPathf:
(uPathf, respectively) whereas the set of paths is denotellably .

We depict Erlang: interval processes by drawing the state-transition grdpgheo
discrete part, i.e., the associated interval DTMC with siions labeled byP; (s, s’),
P.(s,s")] (see, e.g., Fig. 3). The Poisson process that determinegdtuence times,
as well as the marking of the initial state are omitted.

Normalization. Erlang+ interval procesg is calleddelimited if every possible selec-
tion of a transition probability in a state can be extended digstribution [17], i.e., if for
anys, s’ € Sandp € [P(s,s),Pu(s,s")], we haveu(s’) = p for someu € T¢(s). An
Erlang+ interval process can be normalized into a delimited onerm(€) such that
Thorme) = Te. Formally,norm(€) = (S, P, Py, A, k, L, so) with for all s, s' € S:

P;(s,s') =max{P;(s,s'),1 —P,(s,5\ {s'})} and

P,(s,8) = min{P,(s,s"),1 — Pi(s,S\ {s'})}.

Example 1.The Erlangk interval process in Fig. 3, left, is delimited. Selectiﬁmgor
the transition froms to u, yields a non-delimited process (Fig. 3, middle). Applying
normalization results in the Erlaniginterval process shown in Fig. 3, right.

An Erlang# interval process
contains two sources of nondeter-
minism: in each state, (i) a dis-
tribution according to the transi-
tion probability intervals, and (ii)
the number; € {1,...,k} of ar-
rivals in the Poisson process may
be chosen. As usual, nondetermin-
ism is resolved by a scheduler:

Fig. 3. Normalization

Definition 2 (Scheduler).Let & be an Erlangk interval process. Aistory-dependent
deterministic schedulds a functionD : uPathf — distr(S) x {1,...,k} such that
D(§) € Teg(€]) x {1,...,k} for all ¢ € uPathf.. The set of all history-dependent
deterministic schedulers éfis denoted ag{D°.



Note that a richer class of schedulers is obtained if thedidees choice may also
depend on the residence times of the states visited so fash@ye below that the class
of history-dependent deterministic schedulers sufficesnrlangk interval processes
are used for abstracting CTMCs.

Probability measure. For Erlangk interval process, let {2 = Pathe be the sample
space and3 the Borel field generated by the basic cylinder s&ts Iy ... I,—1 sp)
wheres; € 5,0 <i <nandl, = [0,z,) C R>¢ isanon-empty interval fdd < ¢ < n.
The setC(sg Iy ... In—1 s,) contains all paths of with prefix 5ot ... t,—1 §, such
thats; = §; andt, € I,. A scheduletD € HD? induces a probability spa¢e?, B, PrP)
wherePr? is uniquely given byPr” (C(so)) := 1 and forn > 0

PrP(C(solo. .. Insn+1)) :=PrP(C(so Lo .. In-154)) - Fxj, (sup L) - pin(Snt1)
= [lico (P, (sup 1) - pi(si1))

where(u;, 7;) =: D(sos1 - .. s;). Additionally, we define the time-abstract probability
measure induced b asPr2(C(sg)) := 1 and

Prg(c(so Iy ... I 3n+1)) = H:—L:O ,Ufi(sz'—i-l)-

We are interested in the supremum/infimum (ranging overchikgulers) of the prob-
ability of measurable sets of paths. Clearly, the choicg; pthe number of steps in
the associated Poisson process in stgtenay influence such quantities. For instance,
on increasingj;, time-bounded reachability probabilities will decreasedlee expected
state residence time (isy) becomes longer. We discuss the nondeterministic choice in
the Poisson process in subsequent sections, and now fo¢he ohoice of distribution

1; according to the probability intervals.

Definition 3 (Extreme distributions). Let £ be an Erlangk interval processs € S
and S’ C S. We define extP;,P,, S, s) C T¢(s) such thaty € extr(P;,P,, S5, s)
iff either S’ = () and . = Py(s,-) = P,(s,-) or one of the following conditions holts
—3s' e 8 u(s') =Py(s,s") andpu € extr(P;, P, [(s,s") — u(s)], 5"\ {s'}, s)
— 3’ € 8" u(s') =Py(s,s") andp € extr(Py[(s, s") — u(s")], Py, 5"\ {s'},s)

We callp € Tg(s) anextreme distributionf 1 € extr(P;, Py, S, s).

A schedulerD € HD¢ is calledextremef all choicesD(¢) are extreme distributions.
For a subseD C HD? let Deyy C D denote the subset of all extreme scheduler®.in

Theorem 1 (Extrema). Let £ be an Erlangk interval process and® C HD¢. For
every measurable sél € B of the induced probability space:

inf pepey Pr2(Q) = infpep Pr(Q),  suppep,, Pr?(Q) = suppep PrP(Q)

4 Abstraction

This section makes the abstraction by stages as motivattxd imtroduction precise.
We define an abstraction operator based on the idea of paititj the concrete states to
form abstract states. This yields an Erlangiterval process. Moreover, we introduce a
simulation relation relating one transition in the abdtsystem to a sequence fotran-
sitions in the concrete system. We show that the abstraoperator yields an Erlang-
interval process simulating the original CTMC.

! fly — =] denotes the function that agrees everywhere Wiéixcept aty where it equals:.
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Definition 4 (Abstraction). Let abst(C, A, k) := (A, P, Py, \, k, L', Ap) be theab-
stractionof CTMCC = (S, P, \, L, sg) induced by partitioningd = { Ay, ..., A,} of
S andk € NT such that for alll < i,j < n:

— Pi(4;, Aj) = mingeq, P¥(s,4;), and P, (4;, 4;) = max,ea, P*(s, 4;)
T ifforall se A: L(s,a) =T
— L'(Aja) =< L ifforalls€ A: L(s,a) = L

? otherwise
— Ay e Awithsg € Ag ! —

0.8

Lemma 1. For any CTMCC, any partitioning.4 of S
andk € N*, abst(C, A, k) is an Erlang# interval pro-
cess.

Probability
o
o

N
IS

- — —As
sO

Example 2.Reconsider the CTM@ from Section 1 |/

(Fig. 1), top, with exit rateA = 1 and partition- )/ / >
ing {4s, A,} with Ay, = {sg,s1,82}, 4y = {u}. % 1 R

As remarked above, in the Erlariginterval process Fig. 4. Concrete vs. abstract behav-
abstr(C, {A,, A,},1) (not shown) the probability inter-ior over time

val for a transition from4; to A4, is [0, 1]. However, choosing = 2 yields smaller
intervals. The resulting Erlanginterval process is depicted in Fig. 1, bottom. The plot
in Fig. 4 shows the probability to reach, = {u} within ¢ time units if the Erlang
interval process starts at tifién A; and the CTMC irsg, s1 Of so, respectively. For the
Erlang?2 interval process, the infimum over all schedulers is takehigis obviously
smaller than all the concrete probabilities in the CTMC @heremum coincides with
the probabilities fors1). A detailed discussion on whictchedulersyield the infimum

or supremum is given in the next section.

Definition 5 (k-step forward simulation). LetC = (S¢, P, A\, L¢, s¢) be a CTMC and
E = (S, P, Py, \ k, Lg, sg) an Erlang% interval process. RelatioR; C S¢ x Sg
is a k-step forward simulatioonC and€ iff for all s € S¢, s’ € Sg, sRys’ implies:

1. Lety := P*(s,-). Then there exists’ € T¢(s') and A : S¢ x Sg — [0, 1] s.t.
@) A(u,v) > 0= uRyv,  (b) Au, S¢) = p(u), () A(Sc,v) = p'(v).

2. Foralla € AP, Lg(s',a) #7 implies thatLg(s',a) = Le(s, a).

We write s <, s if sRys’ for somek-step forward simulatiorR,, andC =<; & if
scRise. In the sequel, we often omit subscript The main difference with existing
simulation relations is that steps inC are matched with a single step é For k=1,
our definition coincides with the standard notion of forwanthulation on CTMCs [4].

Theorem 2 (Abstraction). LetC be a CTMC and letd be a partitioning on the state
spaceS. Then for allk € N* we haveC < abstr(C, A, k).

It is important to understand that thestep forward simulation relates the transition
probabilities of one transition in the abstract systerh-toansitions in the concrete sys-
tem. However, it does not say anything about the nunjber{1,..., &k} of arrivals in
the Poisson process, which has to be chosen appropriatglyatantee that the proba-
bility for reaching certain states within a given time bousidelated in the concrete and
the abstract system. This issue will be approached in theseexion.
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5 Reachability

We now show that the abstraction method proposed above aaseleo efficiently de-
rive bounds for the probability to reach a g&tC Scina CTMCC = (S¢, P, A, L¢, s¢).
For that we consider an Erlariginterval procesg with state spacé&s andC < &£. For
B’ C Sg,t > 0letReach(B’) := {0 € Pathe | 3t' € [0,¢] : cQt’ € B'}.

Since a CTMC is also an Erlanginterval processReach(B) C Patly is defined
in the same way. We assume til¢s, s) = 1 for all s € B as the behavior of after
visiting B can be ignored. We say th&and B’ arecompatibleiff s < s’ implies that
s € Biff & € B,forall s € S¢, s € Sg. For example, in Fig. 4B = {u} and
B’ ={A,}, aswellasB = {sq, s1,s2} andB’ = { A, } are compatible.

The k-step forward simulation (cf. Def. 5) is useful for relatitgnsition proba-
bilities in the concrete and the abstract system. Howewerelatetimed reachability
probabilities of concrete and abstract systems, we havestsa the time abstract tran-
sitions with theright number; of new arrivals in the Poisson process associated with
£. In other words, we have to check for which choice of the nundearrivals, we
obtain lower and upper bounds of the timed reachability abdliies. As motivated in
the introduction (Fig. 2) and stated in Theorem 3 (see belawiyjht bound for

— the minimum probability is obtained when the scheduler sesdor numbey al-
waysk, and a tight bound for

— the maximum probability is obtained when the scheduler sksmncg = 1 and
for the remaining transitiong = k.

Consequently, we restrict our attention to the followingestuler classes:

HD; :={D € HD® | V&3ue : D(&) = (e, k)}
HDE := {D € HD? | V&g : D(€) = (g, 1) if &€ = sg, D(€) = (e, k) otherwise

wheresg is the initial state of the Erlang-interval process.

Theorem 3. LetC be a CTMC ancf an Erlang+ interval process witl < £. For
t € R>o, compatible set® and B’, there exist schedule® ¢ HDE, D' € HDi with

PrP(Reach(B’)) < Pré(Reach;(B)) < Pr” (Reach(B’))
Let

Prf (Reachy(B')) := inf ey pe PrP” (Reachy (B'))
Prf (Reach(B')) := supcype Pr’ (Reach,(B')).

The following corollary is a direct result of the theorem aboalt states that when com-
paring reachability probabilities of a CTMC with those ofimslating Erlangk interval
processt, in theworst (best) cas€ will have a smaller (larger) time-bounded reacha-
bility probability, when restricting to the scheduler (ﬂ&ﬂ)f (HDY).

Corollary 1. LetC be a CTMC ancf an Erlang+ interval process witlC < £. Let
t € R>o and B be compatible wittB’. Then:

Prf (Reach(B’)) < Pr¢(Reach;(B)) < Pr{(Reach(B’))

10



Similar to the uniformization method for CTMCs (see Secpnwe can efficiently
calculate time-bounded reachability probabilities€irusing time-abstract reachability
probabilities and the probability for the number of Poissorivals in a certain range.
More specifically, aftef transitions inf, the number of arrivals in the associated Poisson
process is among ki - k+1,...,i-k+(k—1),if D € HD{, and(i—1) - k+1, (i—1) -
k+2,...,i-k,if D € HD%.ForB C Sg,i € NletReac(B) := {o € Pathg | ofi] €
B}. Usingy ¢ for the respective Poisson probabilities, we thus obtain:

Lemma 2. Let€& be an Erlangk interval processt € R>g and B C Sg. Then
PrP(Reach(B)) = Y12, (Pr(React™(B)) - v e(Si— jn. ) )

wherej; = kforall i € Nif D € HD{ andjo = 1, j; = k fori € Nt if D € HDE.

Similar as in [2], we can approximate the supremum/infimuntumhe scheduler classes
HDf and H’Di by applying a greedy strategy for the optimal choices ofritlistions

P € T¢. A truncated, step-dependent scheduler is sufficient teeeetan accuracy of

1 — e where the error bound > 0 is specified a priori. The decisions of this scheduler
only depend on the number of transitions performed so farntarfadst NV := N(¢) de-
cisions can be represented by a sequdnce.., Py € Tg. As discussed in Section 3,
it suffices if the matrices are such that only extreme digtidims are involved. As the
principle for the greedy algorithm is similar for supremalanfima, we focus on the
former. Letip be the vector of siz&5¢| with ip(s) = 1iff s € B. FurthermorePy := I
andv; := []° _, P, - iz. We choose matriceB;, i > 1 such that

m=0

|Pré (Reachy(B)) — 1Yo Vilse) - ne(Chly dnsJi)| < e.

The algorithm is illustrated in Fig. 5 and has polynomial dicomplexity. Starting in
a backward manner, i.e., wifR y;, vectorg} is maximized by successively assigning
as much proportion as possible to the transition leadindpeéosticcessos’ for which
qi'.1(s") is maximal. For every choice of a valug;(s, s’) the transition probability
intervals for the remaining choices are normalized (comfatample 1). Note that the
algorithm computes bounds which may be with an error baurglowthe actual value.
Thus, the computed lower bound may be lower than the actuedrloound. To assure
that the upper bound exceeds the actual upper bound, wetadg.

The following lemma is an adaptation of [2, Th. 5] and states the results are
indeede-approximations of the supremum/infimum of the reachahbjiiobabilities.

Lemma 3. For an Erlang+ interval proces<, B C Sg, t > 0, error margine > 0:

Pré (Reach(B)) > g} (sg) > Pri (Reach(B)) — e
Pré(Reach;(B)) < q¥(se) < Pri(Reach,(B)) + e

Input:  Erlangk interval procesg, Input:  Erlangk interval procesg,
time boundt, set of state3 time boundt, set of state3
Output: e-approx.gh of Pré (Reach<:(B)) | Output:e-approx.qy of Pré(Reach<:(B))
Minimizeg} where forl < i < N Maximizeqy where forl <i < N
% = Ua:(0,k)iz+aqi a6 = ¥Yxe(0,1)iB + 4t +e
¢ = Pae(ik, k) Piig + P gl @ = Ua(1+ (i—1)k k) Piip + P gy
Q§V+1 =0 qny1 = 0

Fig. 5. Greedy algorithm for infimum (left) and supremum (right) imfi¢-bounded reachability probabili-
ties
11



[a](s) = L(s,a)

[true](s) T
lal(s) M w2l (s) [0l (s) = ([l (s))°

lp1 A 2] (s)

Tif3tel: ([p2)(c@t) =T AV €[0,t): [p1](c@t') =T)
[erttlp2] (o) =< L ifVtel: ([p2(c@t)= LV 3t €[0,t): [e1](c@t') = L)
? otherwise
T if Prl(S,QD1uIQ02)Ep <|f[>:<
[Pep(or Ul 2)](s) =4 L if Pru(s, o1l 2) ap  Be{>2},a= {< if > = <
? otherwise -
T if Pl’u(s,tp1ultp2)§]p Sif<a=>
[Pap(or Ul p2)[(s) = § L if Pri(s, o1 U p2) > p 2e{<she= {> if <=>
? otherwise - =

Table 2. Three-valued semantics of CSL

We conclude this section with a result that allows us to useatorithm presented
above to check if a reachability probability is at least (aisthp in the abstract model
and, in case the result is positive, to deduce that the satde imothe concrete model.

Theorem 4. For a CTMCC, an Erlang# interval process with C < &, compatible
setsB C Sc, B' C Sg, t >0, € > 0, the algorithm in Fig. 5 computeg, and ¢} with:

Pr(Reach,(B)) > Prf (Reachy(B'))

gh(se) > Pré(Reachy(B')) — ¢
Pr¢(Reach,(B)) < Pré(Reach,(B’)) < ¢¥

>
< qi(se) < Pré(Reach(B')) + ¢

6 Model Checking

The characterizations in Section 5 in terms of minimal anckimal time-bounded
reachability probabilities are now employed for model ¢eg CSL on Erlangs inter-
val processes. Therefore, we define a three-valued CSL siemand show that verifi-
cation results on Erlang-interval processes carry over to their underlying CTMCs.
Three-valued semantics. For Erlangk interval proces€ = (S,P;, Py, Ak, L, so),
we define the satisfaction functidn- | : CSL — (S U Pathe — B3) as in Table 2,
wheres € S, &; is defined ag but with initial states and

Pri(s, o1 U p2) = Prés({o € Pathe, | [p1 Ul o] (o) = T}) 1)
Pru(s, 1 U"ps) = Pris ({o € Pathe, | [o1 U 2] (0) # L}) )

For the propositional fragment the semantics is clear. A pasatisfies until formula
o1 Uy if o definitely holds untilp, definitely holds at the latest at timte The
until-formula is violated, if either before, holds,y; is violated, or ifys is definitely
violated up to timet. Otherwise, the result is indefinite. To determine the sditsn
of P<,(p1 U py), we consider the probability of the paths for whigh /%%, is
definitely satisfied or perhaps satisfied, i.e., indefinftiis probability is at mosp then
P<p(p1U o) is definitely satisfied. SimilarlyP, (o1 p,) is definitely violated
if this probability exceeds for those paths on whichk, Uy, evaluates tor. The
semantics 0P, (o1 UL py) for < € {<, >, >} follows by a similar argumentation.

Theorem 5 (Preservation).For a CTMCC and an Erlangk interval processE with
initial statess¢ andsg, if s¢ < sg¢ then for all CSL formulasp:

[l (se) #7 implies[p](se) = [#](sc)
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Model checking three-valued CSL is, as usual, done bottprtha parse tree of
the formula. The main task is checking until-subformufas, (a ¢[°1b), which can be
handled as follows: As in [7], the underlying transitiontgys is transformed such that
there is one sink for all states satisfyingnd another one for all states neither satisfying
a nor b. Thus, all paths reaching states satisfytnare along paths satisfying which
allows to compute the measure for reachingtates. However, before doing so, we
have to account for indefinite state$)( When computing lower bounds we consider
all states labeled by as ones labeled , while we consider them as labelédwhen
computing upper bounds, following equations (1) and (2).

Example 3.Consider Ex. 2 where state (and thusA,) are labeledgoal, and CSL
formulay = P<go(trueld=!-2goal). Then[¢](As) = T = [¢](s0) (compare Fig. 4). If
s1 was labeledyoal as well thenL (A, goal) = 7. Checkingy for satisfaction requires
an optimistic relabeling, i.e. we sé{ A, goal) = T. Obviously, theny is not satisfied
for sure. Analyzing the pessimistic instance withA,, goal) = L however yields that
¢ is neither violated for sure (cf. Fig. 4). Therefdre] (As) =7 implying that either
the partitioning or the choice df has to be revised in order to get conclusive results.

Theorem 6 (Complexity). Given an Erlangk interval processt, a CSL formulap,
and an error margine, we can approximatéey] in time polynomial in the size &
and linear in the size ap, the exit rateA and the highest time boundoccurring ing
(dependency oais omitted as is linear in At). In case the approximation yields or
L, the result is correct.

7 Case Study: Enzymatic Reaction

Markovian models are well established for the analysis otémical reaction net-
works [5, 15]. Typically, such networks are described bytso$eeaction types and the
involved molecular species, e.g., the different types oferudes. The occurrence of a
reaction changes the species’ populations as moleculgs@taced and/or consumed.
Enzyme-catalyzed substrate conversion. We focus on an enzymatic reaction network
with four molecular species: enzymeg’), substrate §), complex () and product P)
molecules. The three reaction typRs, Ro, R3 are given by the following rules:

R :E4+S5C, Ry:C2E+S, R3:C35E+P

The species on the left hand of the arrow (also catksttanty describe how many
molecules of a certain type are consumed by the reactionterse ton the right hand
describe how many are produced. For instance, one molettype £ and S is con-
sumed by reactioiiz; and oneC' molecule is produced. The constantScs, cs € Ry
determine the probability of the reactions as explainedveel

Concrete moddl. The temporal evolution of the system is represented by a CESIC
follows (cf. [6]): A state corresponds to a population veate= (2, rs, v, zp) € N4
and transitions are triggered by chemical reactions. Thagh of the current population
vectorz caused by a reaction of type,,,, m € {1,2,3} is expressed as a vectoy,
wherev; := (-1,—-1,1,0), vy := (1,1,—1,0) andwvs := (1,0,—1,1). Obviously,
reactionR,,, is only possible if vector: 4+ v, contains no negative entries. Given an
initial states := (sg, sgs,0,0), it is easy to verify that the set of reachable states equals
S:={(zg,zs,xc,xp) | xp +xc = Sg, s + xc + xTp = S5 }.
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The probability that a reaction of typ®,,, occurs within a certain time interval is
determined by the function,,, : S — R>(. The valuea,,(x) is proportional to the
number of distinct combinations @t,,’s reactantsw (z) := cizpzg, as(x) = coxc
and as(z) := cszc. We define the transition matri® of the CTMC byP(z,z +
Um) = () /A with exit rate\ > max,eg(a1(z) + az(z) + as(x)). Thus, stater

. " m (@) /A .
has outgoing transitions an@)/2, x + vy, for all m with = +v,,, > 0 and the self-loop

probability inz isP(z,z) := 1 — (a1 (z) + az(z) + as(z)) /A

We are interested in the probability that within titlie number of typé® molecules
reaches threshold := sg, the maximum number o molecules. We apply labels
AP:={0,1,...,n}andfor0 < a < nletL(z,a) :=Tif x = (xp, x5, xc,zp) With
xp = aandL(z,a) := L otherwise. For the initial populations, we fix, = 20 and
vary sg betweerb0 and2000.
Stiffness.  In many biological systems, components act on time scakgsdiffer by
several orders of magnitude which leadsstiff models. Traditional numerical analysis
methods perform poorly in the presence of stiffness becausege number of very
small time steps has to be considered. For the enzymatitorastifiness arises ify >
c3 and results in a high self-loop probability in most statesaose is large compared
to ay(z) + az(z) + as(z). Thus, even in case of a small numhéi of reachable
states, model checking properties Iﬂ%go_g(trueu[ovﬂn) is extremely time consuming.
We show how our abstraction method can be used to efficiemtlifyvproperties of
interest even for stiff parameter sets. We choose a regtiatameter set ofy = ¢, = 1
andcs = 0.001. Note that the order of magnitude of the expected time umtéghold
n = sg = 300 is reached i40* for these parameters.
Abstract model. For the CTMCC := (S, P, A, L, s) described above, we choose par-
titioning A := {Ao, ..., A} with 4, := {z € S | L(z,a) = T}, that is, we group
all states in which the number of molecules of types the same. Some important
remarks are necessary at this point. Abstraction techsigelg on the construction of
small abstract models by disregarding details of the céacredel as the latter is too
large to be solved efficiently. In this example, we have thditamhal problem of stiff-
ness and the abstraction method proposed here can tacklgytbhoosing high values
for k. Then one step in the Erlariginterval process happens after a large number of
arrivals in the underlying Poisson process and the sefi-lmmbability in the abstract
model is much smaller than in the concrete one. We clhose{2'?,2!1, 212} for the
construction of the Erlang-interval processbstr(C, A, k) and calculate the transition
probability intervals by taking th&-th matrix power ofP. The choice foik is reason-
able, since for a given error bourd= 10~'°, s = 300 and¢ = 10000, a transient
analysis of the concrete model via uniformization woulduieg around6 - 107 steps.
By contrast, our method considétsteps in the concrete model and arog6d107)/k
steps in the smaller abstract model. Thus, although thetrcmtion of the Erlangs
interval process is expensive, the total time savings aoeneous. We used the MAT-
LAB software for our prototypical implementation and thécciation of P* could be
performed efficiently becaude? can be computed usingmatrix multiplications. As
for non-stiff models a smaller value is chosen foiit is obvious that upper and lower
bounds for the:-step transition probabilities can be obtained in a locshifan, i.e. by
computing thek-th matrix power of submatrices . Therefore, we expect our method
to perform well even ifS| is large. However, for stifind large concrete models more
sophisticated techniques for the construction of the absinodel must be applied that
exploit the fact that only upper and lower bounds are needed.

14



o
©
-
=3
@

k=1024, min

Y k=1024, max
v/ k=1024, diff
7/ — k=2048, min
— k=2048, max
k=2048, diff
k=4096, min
k=4096, max
k=4096, diff

— * —concrete model

o
>
T

2

IS
o
rS

Probability bounds
. S o 9o <
@
Probability (bounds)

c o
w
-

o
N
=3
N

0.1

0 = — L L L L J
150 200 250 300 350 400 450 500 10.000 12.000 14.000 16.000 18.000 20.000
substrates time bound

Fig. 7. Time-bounded reachability

Experimental results. Forsg = 200 we compared the |A] S] time
results of our abstraction method for the probability to 50 61 Om_5s
reachA,, within time boundt with results for the con- 300 | 6111 37m 36
crete model that were obtained using PRISM. While it500 10311 | 70m 39s
took more than one day to generate the plot for the cq M000 | 20811 | 144m, 49s
crete model in Fig. 7, right, our MATLAB implemen- 1500 | 31311 | 214m 2
tation took less than one hour for all three pairs of UPy000 | 41811 | 322m 50s
per and lower probability bounds and different values
of t.> Our method is accurate as the obtained intervals
are small, e.g., fosg = 200, k = 2'2, t = 14000 the relative interval width ig0.7%.
Fig. 7, left, shows the lower and upper probability boundsgig = 2'2, t = 20000
and varyingsg. For high values ofg, e.9.,s5 = 500 the construction of the Erlang-
interval process took more than 99% of the total computatiime as the size of the
transition matrixP is 10* x 10* and sparsity is lost during matrix multiplication. We
conclude this section with the additional experimentahiieton computation timés
given in Fig. 6, using: = 2'2, t = 50000 (andsg = 200).

Note that for this case study exact abstraction techniquels as lumping do not
yield any state-space reduction.

Fig. 6. Computation times

8 Conclusion

We have presented an abstraction technique for model aigeckiCTMCs, presented
its theoretical underpinnings, as well as an the applinabiothe abstraction technique
to a well-known case study from biochemistry. The main nagplect of our approach is
that besides the abstraction of transition probabilitiestervals [10, 17], sequences of
transitions may be collapsed yielding an approximatiorhefttming behavior. Abstract
Erlang k-interval processes are shown to provide under- and ovesgippations of
time-bounded reachability probabilities. Our case stuahfiems that these bounds may
be rather accurate. Future work will focus on automatictfiging suitable state-space
partitionings, and on guidelines for selectikgappropriately. As shown by our case
study, for stiff CTMCs, a high value df is appropriate. This is, however, not the case in
general. We anticipate that graph analysis could be helpfslect a “good” value for
k. Moreover, we plan to investigate memory-efficient techei for computing:-step
transition probabilities and counterexample-guidedraloibn refinement.

2 Both jobs were run on the same desktop computer (Athlon 648038, 2GB RAM).
% Run on a workstation (Xeon 5140 — 2.33 GHz, 32GB RAM)
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9 Appendix
Proof of Theorem 3

Before we state the proof of Theorem 3, we recall the defmitbprobability spaces
and present the detailed construction steps for a probabittasure on a givearlang-
interval process = (Sg¢, P, Py, A\, Lg, s¢).

A non-empty set? of possible outcomes of an experiment of chance is called a
sample spaceA set5 C (2 is called Borel field (ow-algebra) over?, if it contains(?,
2\ E for eachE € B and the union of any countable sequence of sets #orfihe
subsets of? that are elements @ are calledneasurablevith respect td3.

A probability spaces a triple ({2, B, Pr), where(? is a sample spacd is a Borel
field overX, andPr is a mapping3 — [0, 1] such thaPr(2) = 1 andPr(|J;2, E;) =
Y2, E; for any sequencé&, Es, . .. of pairwise disjoint sets o. We callPr aprob-
ability measure

A schedulerD € HDf induces a probability spade?, 3, Pr?) where(? = Pathe
and B is the Borel field generated by the cylinder sétésg I ... I,,—1 s,,) that are
defined as in Section 3. Probability measBrg is then uniquely defined by

Prg(C(so)) =1
and forn > 0

Pr?(C(SQ IO - In Sn—l—l))

= Pr?(C’(so Io ... In—15y)) - Fr(sup 1) - pin(Sn+1)

= [[ieo (Fak(sup L) - pri(sis+1))
wherep; is the chosen distribution dp w.r.t. untimed path fragmergt = sg s1 ... s;.
Note that the choicg of the number of arrivals is alwayjs= k asD € HDlg (compare
Section 5). Opposed to that, a schedul¥r ¢ HDi choosesj = 1 in the first step
andj = k otherwise.D’ induces a probability spadg?, 5, Pr?') where probability
measurePr?” is uniquely defined by

Prg/(C(so)) =1
Prl(C(soIo s1)) = Fx1(sup Io) - po(s1)

and forn > 1

PI’?/(C(SO I(] A In Sn+1))
= Pr?/(C(so Io ... In—18p)) - Fxp(sup L) - pin(Sn+t1)
= Fxi(sup lo) - po(s1) - TTiqy (Fak(sup L) - pi(si1))

wherey; is the choice of scheduldd’ w.r.t. untimed path fragmerft = sgs1 ... s;.
Let D € HD5 UHDE . Inthe sequel, we writer? for the probability measuﬂér?s[“”
wheref; is a copy of€ but starts initially in state € Sg and scheduleD,,_.,; € HDEs
is a copy ofD but choosesy, 1) for arguments if D(s) = (u, j).

Let us now recall some notations that are used throughoypriiaf. In a Poisson
process with raté\ the probabilities forh to h + ¢ — 1 arrivals to occur withirt time
units are given by:

rp(h ) = P(Th, < t < Thyg) = S0t e ML

1=
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We fix A and k for the remainder of this section and defiigh) := v(h,1) and
YPi(h, ) :==xe(h, ) and for a set of stateB C S¢ let

Reach(B) :={o € Pathe | 3t' € [0,1] : 0@’ € B}
Reaclt’(B) := {0 € Path | o]i] € B}
Reacl(B) := {0 € Pathe | 3j < i : 0[j] € B}

Reacl¥;(B) := Reacl¥'(B) N Reachy(B)

Note that all these definitions also hold for a CTMC= (S¢, P, \, L¢, s¢c) as every
CTMC can be represented as an Erldnigierval process whose probability intervals
are singletons. For instance,lif C S¢ we haveReactt’(B) = {0 € Path | o[i] €
B}. Moreover, fors € Sg, B’ C Sg we might abbreviatePr? (Reactv’(B’)) by
PrP(s,i, B") and fors € Sc, B C S¢ we writePr(s, 4, B) instead ofPr,(Reaclt’(B)).
For schedulerd € HD} andD’ € HD; with D(£) = (ue, je) andD'(£) = (ug, je)
for § € uPathf: we omit the choiceg, j; and write D(§) = pe and D'(§) = w;
becausgjc andj; are fixed. More preciselyie = k andji = 1if £ = s¢ andjg = k
otherwise.

The following lemma is a basic step of the proof of Theorem 3.

Lemma 4. LetC < £ and letB C S¢, B’ C Se be compatible sets. Then there exists a
schedulerD € HD? such that for alli € N:

Pr? (ReactFL+/(B')) < Pre(Reacl¥(B)) < Pr2(Reack i1 (B'))

The basic idea of the proof of the lemma is to construct a adbed for £ that mimics

the discrete steps . Before we state the proof, let us consider an example of aCTM
C and an Erlangs interval procesg with C < £ (cf. Fig. 8, top and middle). Assume
thatC either starts in state, or s; and the initial state of is s’. In Fig. 8, bottom, the
Poisson arrivals of (andC) are illustrated as a chain of states in the leftmost column.
The evolution of the discrete steps ©fare given by the trees with rogt and sy,
respectively (where transition probabilityis omitted). Similarly, the tree with roaf
represents the transitions éh The black nodes belong to sBtand B’, respectively. It

is easy to see that&step forward simulatiorR on C and€ can be defined such that
all the black nodes simulate each other. Furthermdrsimulatessg, s; ands, as well
asw’' simulatesug, v, us andus. The unnamed states are not reachable from either
sp Or s1 in an exact multiple o8 steps and therefore we do not need simulating states
in the Erlang3 interval process. Note that the transition probabilityeimals in€ are
singletons here. For any € HD® we calculate irC and&:

Pr(so,3,B) = 3 Pr(s1,3,B) = 3 PrP(s',1,B') =
Pr(so,4,B) =3 Pr(s1,4,B) = 3

Pr(so,5,B) = % Pr(s1,5,B) = 3

Pr(so,6 B) =12 Pr(31,6 B) =12 Pro(s',2,B") =1

Obviously, for3 <i <6,k =3, s € {so,s1}:
PrD (ReactFl+/(B')) < Pr,(React¥(B)) < Pr2(Reactt/#1(B))

Proof (of Lemma 4)Let R be ak-step forward simulation off and&. We prove by
induction on: that for alls € S, s’ € Sg with (s,s’) € R there exists a scheduler
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Fig. 8. CTMC, abstraction and the unwinded representation
Dy ¢ € HD® with

Prl" (ReacitLi! (B)) < Pr,(ReaciT(B)) < Pr.,>" (Reactri1(B')).  (3)
As the sets of goal statds, B’ cannot be left, the lemma follows directly from Equation
(3) and the fact that for all h > 0, D € HD?
Prs(Reacft’(B)) = Pr,(React¥'(B))
PrD(Reacit”(B')) = Prl(Reac"(B")).

We prove Equation (3) by first assuming tila ¢ < k. We define the initial decision
of Dy ¢ € HD? as follows: LetA : S x Se — [0, 1] be as in Definition 5 for the pair
(s,5") € R. We setD; «(s’) := pu where

1) =37 csewre Av,0") forallv’ € Se.

Since0 < i < kwe have| ;| = 0and[] € {0,1}. If &' € B’ then(s,s’) € R and
the compatibility of B, B’ imply thats € B and thus

PI’DSvS'(S/7 0, B/) = PrDS’S/ (8/7 1, B/) =1= Pr(57 i, B)

Otherwise, that is, i#’ ¢ B’ then(s, s’) € R and the compatibility o3, B imply that
s ¢ B. Let us distinguish the cas¢$] = 0 and[£] = 1. In the former case, we have
i = 0 and therefore

PrP.(s',0,B') = 0 = Pr(s, i, B).
In the latter case) < i < k and, as % | = 0, this yields for the lower bound

Pross' (s, [£],B') = 0 < Pr(s,i, B).
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For the upper bound we get fo¢ |

Pr(s,i,B) =) ,cn Pi(s,v)

<Y enPF(s,0) (*)

= veB wes: A, V') ((s,8') € R)
=2 vese 2owen A, V') (x)

=2 wep M) ((s,8') € R)

— PrPa (5,1, B)
— PrPa (s, [£], B))

whereu = D(s'). Here,(x) holds because alB-states have self-loops with probability
one andxx) is true since

Aw,v') >0 = (v,v') € R = ve Biff v e B
= A(B,S¢\ B')=0=A(S¢\ B,B).

Let us now proceed with the induction step, that is, we asghateEquation (3) holds
and prove that it is true far — ¢ + k. Note that by induction hypothesis, for each pair
(v,v') € R there exists a schedulé, ,, € HD® such that

PrDu,v (’U/, L%J’B/) < Pr(v,i,B) < PrLu,v (v/’ (%’LB/) .

Let ¢ € uPathf and letv’ be the first element of. We defineD; ./ (s'¢) as a linear
combination of the distribution®,, ., (£). More precisely,

Ds,s’(s/f) = ZUGSC (% : Dv,v’ (§)> .

This implies that fors’ ¢ B, h > 0

PI’DSaSI(S,, h,B,) — E <Iu(v/) . Z (AA(‘(;;)Q) . PrDu,u’ (’U’, h — 1,B,)>> . (4)
&

v’ ES, vESe
We calculate
Pr(s,i+k, B)
= EUESC Pk(s> U) : Pr(vv i, B)
= EUESC EU/ES,S A(”? U/) ’ PI’(U, i, B) ((S, 8,) S R)

=S yese (AlSe,v) - Loes, (58255 - Pr(v,i, B) ) )

> ZU’GSg (A(SC7U/) : ZUESC (% : PrDU’U, (U/7 I_%LB/)>) (Ind hyp)

Svese (M) Toes, (A8 PP (0,11, 8)))  ((s,5) €R)
=Proa (s, |52, B)) (Eq. (4))
=Pr S’S/(slv L%J + 17 B/)

for the lower bound. For the upper bound, we use similar asgusand get:
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Pr(s, i+ k, B)

= Zvesc P*(s,v) - Pr(v,i, B)

= EUESC EU/ES,S A(”? U/) ’ PI’(U, i, B) ((S, 3,) S R)
A(v,v’ .

= EU’ES,S (A(SC7U/) ' ZUESC (m . PF(U,Z, B)))

S ZU’GSg (A(SC7U/) : ZUESC (% : PrDU’U/ (U/7 (%LB/)>) (Ind hyp)
Svese (B0) - Toese (H55 PP (0L [11,B)))  ((s,8) €R)
=PrP.s (s, [HE], BY) (Eq. (4))
=Pr S’S/(Slv [%1 + 17 B/)
Thus,

Prss (s, | 1] +1,B') < Pr(s,i+k,B) < PrPs+(s',[1] +1,B),
and we conclude that for alle N there exists a schedul& € HD¢ such that
Pr? (Reacttl+/(B')) < Pre(Reaclt(B)) < Pr2(Reach+1(B'))
which completes the proof. a

The lemma above reasons only about time-abstract protedilthough, for the
behavior of the Erlang-interval process the number of arrivals chosen by the s¢@iedu
plays an important role. The intuition of why for lower bosnde consider schedulers
that always choosg and for upper bounds ones that choader histories of length)
andk otherwise has been given in the introduction. To the pairthé worst case (lower
bound) the goal states are reached exactly attel - k steps, i.e., in the abstract model
h steps have been taken. In the best case (upper bound) thetgtes are reached at
1 = £-k+ 1 steps in the concrete model, i.e., in the abstract modedl steps have been
taken. Since in the abstract model one step corresporidarnivals in Poisson process,
the actual number of arrivals {6+ 1) - k. Thus, for the best case analysis (upper bounds)
the related concrete paths are longer than those consifterée worst case.

We illustrate this in Fig. 8. The rightmost column shows theice of the scheduler
cIasseS]—(D;g (lower) andH’Di (upper) for the numbey of arrivals. Intuitively, in the
aboveglemma the cagé | corresponds to schedulersD{ and the casé: | to those
in HDy,.

Theorem 3.LetC be a CTMC and® an Erlang+ interval process witl < £. For

¢t > 0, compatible set® and B’, there exist schedule® € HD{, D’ € HDE with
PrP(Reach,(B’)) < Prc(Reach;(B)) < Pr2 (Reach(B")).

Proof. LetR be ak-step forward simulation of and £ and assume that and s’ are
the initial states o€ and&. From Lemma 4 we know that for pais, s') € R there is a
schedulerD € HD? such that for alli € N:

PrD (ReactFl+/(B')) < Pr,(ReactF(B)) < Prl(Reack/#1(B)) .

We lift this statement to the continuous-time setting byipgpthat there exist schedulers
D € HDf, D' € HDZ such that for alli € N:

Prg(Reac@%J(B’)) < Pry(Reaclt}(B)) < Pr?'(Reac@ﬁ(B’)). (5)
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From this the theorem follows directly as for any
Pr,(Reach(B)) = lim; ., Pry(Reacty(B)), and
Prl(Reach(B')) = lim,_.o, Prl(Reactt}(B))
The idea is to define two copids and D’ of D that choose the same distributiops
as D but arrivals j such thatD € HDj and D' € HD;,. More precisely, ifD(¢) =
(recall that we omit the choice of the number of arrivals foras it plays no role for

Lemma 4) we defin®(¢) := (u, k) for all ¢ € uPathf and D’(€) := (u,1) if € = &
andD'(§) := (u, k) otherwise. This yields:

Pr,(Reacts;(B))

= ¥y (t1(h) - Pry(Reactt (B)))

=300 (¥e(h) - Pry(Reacti"(B))) (+)

> ZZ 0 (¢t(h) . PrD(Reacl¥ ) (B’))) (Lemma 4)

> Eh (1/) . PrD(Reacfs i (B’))) (sum truncated)
= 3k (SR ) - Pr (Reack(5') )

= Zh:o (i(hk, k) - Prg(Reacrih(Bf)))

= L (g0, K - Pr2(React™ (B))) (+)

= Pr(React [ (1)) ()

Note that(x) is true becauseé3 and B’ cannot be left and fofxx) we exploit thatD
chooses alwaysg = k. For the upper bounds we get:

Pr,(React;(B))

= Y h—o ¥1(h) Pry(Reack"(B))

< 35— ¥(h) PrE (Reack 1 1(B')) (Lemma 4)
< ¥,(0) Prl’ (Reac’(B"))

+ ZE Ui =Dk + 1,k
= Prsff'(Reac@ﬂ(B’))

Here, for the last step we use the fact thidtchoosesg = 1 for the first step ang = &
for the remaining steps.
As the above inequations hold for alle N, we have shown that Equation (5) is true
which completes the proof of the theorem.

O
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