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Abstract. We consider asynchronous networks of finite-state systems commu-
nicating via a combination of reliable and lossy fifo channels. Dependirteon
topology, the reachability problem for such networks may be decidatdeprd/

vide a complete classification of network topologies according to whethgr the
lead to a decidable reachability problem. Furthermore, this classificatioheca
decided in polynomial-time.

1 Introduction

Fifo channels. Channel systems, aka “communicating finite-state machirsee a
classical model for protocols where components commumigsynchronously via fifo
channels [BZ83]. When the fifo channels are unbounded, theehiwduring-powerful
since channels can easily be used to simulate the tape ofragTaachine.

It came as quite a surprise when Abdulla and Jonsson [AJ¥JA4], and indepen-
dently Finkelet al. [Fin94], showed thalossychannel systems (LCS’s), i.e., channel
systems where one assumes that the channels are unrebathlat snessages can be
lost nondeterministically, are amenable to algorithmidgfigtion (see also [Pac87]).
The model has since been extended in several directionsagesosses obeying prob-
ability laws [Sch04,ABPJ05,ABRS05,BBS07], channels wither kinds of unreliabil-
ity [CFP96,BMO"08], etc.

How this unreliability leads to decidability is paradoXicand hard to explain in
high-level, non-technical terms. It certainly does not m#ke model trivial: we re-
cently proved that LCS verification is exactly at leygl in the Extended Grzegorczyk
Hierarchy, hence it is not primitive-recursive, or even fiply-recursive [CS08b].

An ubiquitous model.In recent years, lossy channels have shown up in unexpected
places. They have been used in reductions showing hardmeles$ frequently decid-
ability) for apparently unrelated problems in modal logjgsir06], in temporal log-
ics [OWO07], in timed automata [LWO08], in data-extended mofl#l7], etc. More and
more, LCS’s appear to be a pivotal model whose range goegfyanil asynchronous
protocols.

Fueling this line of investigation, we recently discovetbdt the “Regular Post
Embedding Problem”, a new decidable variant of Post's Gpwadence Problem, is
equivalent (in a non-trivial way) to LCS reachability [CSQB08a]. This discovery
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was an unexpected outcome of our studyuafdirectional channel systems (UCS),
where a Sender can send messages to a Receiver via two fifoatbaone reliable and
one lossy, but where there is no communication in the ottrection (seé’zd in Fig. 1
below). As far as we know, this simple arrangement had nesen istudied before.

Our contribution. This paper considers the general casenifed channel systems,
where some channels are reliable and some are lossy. Thetsensycan be Turing-
powerful (one process using one reliable fifo buffer is edgugut not all network
topologies allow this (e.g., systems with only lossy chds\ner systems where com-
munication is arranged in a tree pattern with no feedbackl@®'s as above). We pro-
vide a complete classification of network topologies actwydo whether they lead to
undecidable reachability problems, or not. This relies vgioal and non-trivial trans-
formation techniques for reducing large topologies to #naines while preserving
decidability.

This is a fundamental study, aiming at understanding theF&nnel model in pres-
ence of message losses. A long-term goal would be to cont@sgeds a uniform treat-
ment and understanding of the various decidable familiehafinel systems, including
half-duplex systems [CF05], linear and monogeneous sysi&if3], etc.

Beyond providing a complete classification, the presentrimrion has several
interesting outcomes. First, we discovered new decidabdemgements of channel sys-
tems, as well as new undecidable ones, and these new rasuttien surprising. They
enlarge the existing toolkit currently used when trangfgrresults from channel sys-
tems to other areas, according to the “ubiquitous modetjato Secondly, the transfor-
mation techniques we develop may eventually prove usefuldducing/delaying the
combinatorial explosion one faces when verifying asynobts protocols.

Outline of the paperWe describanixed channel systenasid their topologies in Sec-
tion 2 and provide in Section 3 a few original results clags the basic topologies to
which we reduce larger networks. Section 4 shows that “fuessential channels” pre-
serves decidability. An additional “splitting” techniqigedescribed in Section 5. After
these three sections, we have enough technical tools atbaledcribe our main result,
the complete classification method, and prove its correstimeSections 6 and 7. Proofs
omitted in the main text are given in the technical appendix.

2 Systems with reliable and lossy channels

We classify channel systems according to thegtwork topologywhich is a graph
describing who are the participant processes and what elsatirey are connected to.

2.1 Network topologies

Formally, anetwork topologyor shortly atopology is a tupleT = (N,R L,s,d) where

N, RandL are three mutually disjoint finite sets of, respectivelydes reliable chan-

nels andlossy channelsand where, writingC ®'RUL for the set of channels d :
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C — N are two mappings that associatsaurceand adestinationnode to each chan-
nel. We do not distinguish between isomorphic topologiesesN, R and L simply
contain “names” for nodes and channels: these are irrdiéneaa and only the directed
graph structure with two types of edges matters.

Graphical examples of simple topologies will be found belawe use dashed arrows
to single out the lossy channels (reliable channels aretizbwith full arrows).

2.2 Mixed channel systems and their operational semantics

AssumeT = (N,R/L,s,d) is a topology withn nodes, i.e., wittN = {Py,P,,...,P,}.
Write C = RUL for the set of channels. Alixed channel syste(iCS) having topol-
ogy T is a tupleS= (T,M,Q1,Aq,...,Qn,An) whereM = {a,b,...} is a finitemessage
alphabetand where, foi = 1,...,n, Q; is the finite set of (control) states of a process
(also denoted?) that will be located at nodg € N, and4; is the finite set ofransition
rules or shortly “rules”, governing the behaviour Bf. A rule d € 4 is either awrit-
ing rule of the form(q,c,!,a,q), usually denotedqd—a>q”’, with 9,9’ € Q;, s(c) = PR,
anda € M, or itis areading rule(q,c, ?,a,q'), usually denotedqc—r‘)iq’”, with this time
d(c) = R. Hence the way a topology is respected by a channel system is via restric-
tions upon the set of channels to which a given participant mead from, or write
to.

Our terminology fixedchannel system” is meant to emphasize the fact that we
allow systems where lossy channels coexist with reliabéanobls.

The behaviour of som8= (T,M,Q1,Aq, ...,Qn,An) is given under the form of a
transition system. Assunm@= {cy, ..., cx} containsk channels. A configuration @is
atuplec = (q,...,qn, U, ..., Us) where, fori = 1,...,n, g € Q; is the current state d¥,
and where, for =1, ...,k, u; € M* is the current contents of chanregl

Assumeo = (qy, ..., 0n, Ui, ..., Ux) andao’ = (qy, ..., 0, U, ..., ) are two configura-
tions of some syster8as above, and € 4; is a rule of participanB. Thend witnesses

a transition betweea andd’, also called step and denotedrio’, if and only if

— the control states agree with, and are modified accordifgite.,qi = q, g =/,
q; =qj forall j #1i;
— the channel contents agree with, and are modified accordidg.e., either
e 0=(q,q,?a,q) is areading rule, and = a.uj, or
e 5=(q,c,!,a,q) is a writing rule, andiyf = uj.a, or¢ € L is a lossy channel
andu = uj;
in both cases, the other channels are untouahfled::uj forall j #1.

Such a step is calleda“step by P and we say that iteffectis “readinga on c”’, or
“writing a to ", or “losing a”. A run (from g to op) is a sequence of steps of the form

& & 5 : , : :
I = 0p—>01-507 - —0p, SOMetimes shortly writteao—0p. A run is perfectif none
of its steps loses a message.

Remark 2.1.With this operational semantics for lossy channels, messagn only be
lost when a rule writes them to a channel. Once inside thergianmessages can
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only be removed by reading rules. This definition is calleglthite-lossysemantics
for lossy channels: it differs from the more classical défniwhere messages in lossy
channels can be lost at any time. We use it because it is thiecmogenient one for our
current concerns, and because this choice does not imgadbhability questions we
consider (see [CS08b, Appendix A] for a formal comparison). ad

2.3 The reachability problem for network topologies

Thereachability problenfor mixed channel systems asks, for a gi&esnd two config-
urationsinit = (41, - - -, On, &, - - ., €) andCfinal = (j,- - -, Un, €, - . - ,€) in which the chan-
nels are empty, whetheé® has a run fromoj,;t to Ofing. That we restrict reachability
questions to configurations with empty channelsiénotes the empty word iM*) is
technically convenient, but it is no real loss of generality

Thereachability problenfor a topologyT is the restriction of the reachability prob-
lem to mixed systems having topolody Hence if reachability is decidable fdr, it
is decidable for all MCS'’s having topolody. If reachability is not decidable foF, it
may be decidable or not for MCS’s having topolobybut it must be undecidable for
one of them). Clearly, ir’ is a subgraph of and reachability is decidable far, then
it is for T/ too.

Our goal is to determine for which topologies reach-
ability is decidable. Let us illustrate the question and
outline some of our resultd; " is a topology describ-
ing a directed ring of processes, where each participa
sends to its right-hand neighbour, and receives from its
left-hand neighbour. A folk claim is that such cyclic net-
works have decidable reachability as soon as one cha
nel is lossy (as here withy). The proof ideas behind
this claim have not been formally published and the
do not easily adapt to related questions like “what about
T,"9?”, where a lossy channel in the other direction is

added, or abouT, " where more channels are lossy in the ring.

Our techniques answer all three questions uniformly. Oreuofresults states that
all channels along the pathi to ¢4 to ¢s5 to ¢ to ¢; can be fused into a single channel
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going fromP; to P, without affecting the decidability of reachability. Thatisforma-
tions are modular (we fuse one channel at a time). Dependtirijeostarting topology,
we end up with different two-node topologies, from which wesldce thafl;""® and
T4 have decidable reachability, whil™ does not (see Corollary 4.6 below).

3 Reachability for basic topologies

This section is concerned with the basic topologies to whehwill later reduce all
larger cases.

Theorem 3.1 (Basic topologies)Reachability is decidable for the network topologies
Td and T (see Fig. 1). It is not decidable for the topologie$, T}, T3, T#, T, and
Ts' (see Fig. 2).

We start with the decidable cases:

That Tld, and more generally all topolo- d.
gies with only lossy channels (aka LCS's), T @ 1 C1 (lossy)
leads to decidable problems is the classic result
from [AJ96]. Cz (lossy)

Regarding T§, we recently proved it has T2d2 @ 7777777 e
decidable reachability in [CS07], whergS- ¢1 (reliable
systems are called “unidirectional channel sys-
tems”, or UCS's. Our reason for investigatingri9- 1- Basic decidable topologies
UCS'’s was indeed that this appeared as a necessary prepdiatithe classification
of mixed topologies. Showing thé’f has decidable reachability is quite involved, go-
ing through the introduction of the “Regular Post Embeddirgblem”. In addition,
[CS07,CS08a] exhibit non-trivial reductions between hednility for UCS's and reach-
ability for LCS's: the two problems are equivalent.

Now to the undecidable cases:

cy (reliable) co (reliable
u. u.
Tl - e @ T3 . e

c; (reliable
03 (Iossy) C3 (Iossy)
02 (lossy [ (Iossy\
U. /_ Na flaeevy -\ TU. ) X-e2---7 U. /o \-5----°-
ks @ () T @
c1 (reliable c1 (reliable

Fig. 2. Basic topologies with undecidable reachability

It is well-known thatT;' may lead to undecidable problems [BZ83], and this is
also known, though less well, fai;' (restated, e.g., as the non-emptiness problem for
the intersection of two rational transductions). The otfeerr results mix lossy and
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reliable channels and are new. We actually prove all sixscasa uniform framework,
by reduction from Post’s Correspondence Problem, &R, or its directed variant,
PCPir.

Recall that an instance fCP is a family X1,y1,%2,¥2, . .., Xn, ¥n Of 2n words over
some alphabet. The question is whether there is a non-emaptyeace (asolutior)
i1,...,ix of indexes such thag, i, ... X, = Yi, Vi, - - -Vi,- PCPgir asks whether there is a
directedsolutionig, ..., ik, i.e., a solution such that, in addition, Vi, . . . i, is a prefix of
Xi X, - X, forallh=1,... k. It is well-known thatPCP andPCPgj are undecidable,
and more precisel%—complete.

ReducingPCP to T;'-networks. With a PCP instance(x;,Yi)i—1,...n, We associate a
ci!x coly

process; having a single statp; andn loopst p; p1, one for each indek=
1,...,n. Proces$; guesses a solutidniiz. .. and sends the concatenatiofns, X . . -
andy;, ¥i,Yi, - .. on, respectivelyg; andcy. Proces$ checks that the two channeds

. . % Cp%a
andc; have the same contents, using reading an;pcé& p2, one for each symbol

a,b,...in the alphabet. An extra control state, for exampilevith rules p’lw P1,

is required to check the®, picks a non-empty solution. Then, in the resultifig-
network, (pj, P2,€,€)—(p1, P2, €,€) if and only if thePCP instance has a solution.

ReducingPCP to T3'-networks. For T3', the same idea is adapted to a situation with

: a X; il
three channels, two of which are lossy. H&ehas rulesp; 22 ™ o Thus

P1 sends andy; on lossy channels and simultaneously sends the numbeiterfslén
unary (L is a special tally symbol) on;, the perfect channeR, matches these with

. 211 cy?a 32
reading loops of the formzw p2 for each letten. If P, can consume all’'s
out of ¢;, this means that no message has been lost on the lossy chaammttherP,
really witnessed a solution tH&CP instance.

ReducingPCPy;r to T;'-networks. For T}, we consider the directe®lCPg;. P, hasn

loops plm p1 where the guessing and the matching is done by a single @roces

Since at any step = 1,...,k the concatenatiow;, Xi,...x;, is (partly) consumed while
matching fory;, i, ...yi,, only directed solutions will be accepted.

ReducingPCPgj to T5'-networks. For T¢' too, we start fromPCPg;r and use a variant
of the previous counting mechanism to detect whether sonssaiges have been lost.
C3!1‘xi‘ c1!% C3?1‘yi‘ Colyi

P1 has rules of the fornp; p1, i.e., it sendsg on c; (the reliable
C17a Cp?a

channel) ang; onc; (unreliable) whileP, checks the match with loogs—=——=—p». In
addition,P; also maintains irtg a count of the number of symbols writtendpminus
1 Transition rules like plw p1” above, where several reads and writes are combined in
a same rule, and where one writes or reads words rather than justessage at a time,
are standard short-hand notations for sequences of rules usingediargnstates that are left
implicit. We avoid using this notation in situations where the specific orderingeafdmbined
actions is important as, e.g., ir)(below.
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the number of symbols written to, or #, def iy - Xiy| — Vi - --Yip|- The counting
scheme forbids partial sequenggs ..y;, that would be longer than the corresponding
Xi; - - Xi,, but this is right since we look for directed solutions. Ifyaymbols oncs are
lost, or if part of they;’s on ¢, are lost, then it will never be possible fBs to consume
all messages fromy. Finally a run from(pj, pz, €, €, €) to (p1, p2, €, €, €) must be perfect
and witness a directed solution.

ReducingPCPy;r to Tg'-networks. For Tg', we adapt the same idea, this time having

L il il coty:1/Xil
P, monitoring the count #on c3. P; has Ioopspl% p1 where a guessed

solution is sent ore; andc, with interspersed tally symbols. The guessed solution is
checked with the usual Ioopp@cl?a cz% p2. Thel's onc; are stored t@z and matched

. , . 71 c3ll Cc3?71 C171
(later) with thel’s on c¢; via two loops: p,=——p, and p;————p». In a perfect
run, there are always as many messages;a@s there are on, andcs together, and
strictly more if a message is lost. Hence a run frop, po, €, €,€) to (p1, P2,€,€,€)
must be perfect and witness a solution. Only direct solstican be accepted since the
tally symbols incz count #, that cannot be negative.

ReducingPCPgi to T)-networks. For T,!, we further adapt the idea, again with the
count #, stored orcs but now sent fron, to P;. The loops inP; now are

c!x colyitil  cg7alvil
" '

G P1. (*)

Thel’s oncy are sent back vieg to be matched later by, thanks to a |00@2M> p2.
Again a message loss will leave strictly more messagestinan inc, andcs together,
and cannot be recovered from. Only direct solutions can beped since the tally
symbols incz count #,.

4 Fusion for essential channels

Sections 4 and 5 develop techniques for “simplifying” tamies while preserving the
decidability status of reachability problems. We startwétreduction called “fusion”.

LetT = (N,R/L,s,d) be a network topology. For any chanmet C, T — c denotes
the topology obtained fromm by deletingc. For any two distinct nodeBy,P, € N,
T [P, = P,] denotes the topology obtained frofnby mergingP; andP; in the obvious
way: channel extremities are redirected accordingly.

Clearly, any MCS with topology¥ — c can be seen as having topolofyThusT —c¢
has decidable reachability wh&nhas, but the converse is not true in general.

Similarly, any MCS having topology can be transformed into an equivalent MCS
having topologyT [P; = P;] (using the asynchronous product of two control automata).
ThusT has decidable reachability wha@niP, = P] has, but the converse is not true in
general.
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For any channet such thats(c) # d(c), we letT /c denoteT [s(c) = d(c)] — c and
say thafT /cis “obtained from T by contracting'cHenceT /c is obtained by merging
c's source and destination, and then remowving

SinceT /cis obtained via a combination of merging and channel remadkate is,
in general, no connection between the decidability of rebily for T and forT /c.
However, there is a strong connection for so-called “ess@rthannels, as stated in
Theorem 4.5 below.

Before we can get to that point, we need to explain what arengéiss channels and
how they can be used.

4.1 Essential channels are existentially-bounded
In this section, we assume a given MSS: (T,M,Qq,A1,...) with T = (N,R/L,s,d).

Definition 4.1. A channel c= C is essentialf s(c) # d(c) and all directed paths from
s(c)tod(c) in T go through c.

In other words, removing modifies the connectivity of the directed graph underlying
T.

The crucial feature of an essential chanoé that causality between the actions
of s(c) and the actions afi(c) is constrained. As a consequence, it is always possible
to reorder the actions in a run so that reading fromaccurs immediately after the
corresponding writing t@. As a consequence, bounding the number of messages that
can be stored in does not really restrict the system behaviour.

Formally, forb € N, we say a channelis b-bounded along a run= 006—1> ... ﬁcn
if |oi(c)| < bfori=0,...,n. We saycis synchronousn mif it is 1-bounded and at least
one ofgj(c) andoj,1(c) is€for all 0 <i < n. Hence a synchronous channel only stores
at most one message at a time, and the message is read inehedftdr it has been
written toc.

Proposition 4.2. If c is essential andt= ooi . ﬁon is a run withap(c) = on(c) =k,
then S has a rum’ from ag to g, in which c is synchronous.

This notion is similar to the existentially-bounded syssewh [LM04] but is applies to
a single channel, not to the whole system.
We prove Proposition 4.2 using techniques and concepts froenconcurrency

theory and message flow graphs (see, e.qg., [HI@K]). With a runrt= 006—1> .. ﬁcn as
above, we associate a 8t {1,...,n} of n events, that can be thought of the actions
performed by then steps ofrt firing a transition and reading or writing or losing a
message. Observe that different occurrences of a samditangith same effect are
two different events. We simply identify the events withémds from 1 tan. We write
e €,...to denote events, and also use the lettensdw for reading and writing events.
Any ec E is an event of some procel$e) € N and we writeE = [ Jpn Ep the cor-
responding partition. There exist several (standard)aldyselations between events.
For every procesB € N, the events oP are linearly ordered byp: i <p j iff i,] € Ep
andi < j. For every channel € C, the events that write to or read frarrare related by
<cwithi < j iff i is an event that writes sonmeto ¢, andj is the event that reads that
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(occurrence ofm. (Here, events that lose messages are considered as irgetioas
where no channel is involved.) We let (and<) denote the transitive (resp. reflexive-
transitive) closure ofJpcy <p UUccc <c- (E, =) is then a poset, angd is called the
visualorder (also causality order, or dependency order) in teeditire. Foe € E, we
let | edenote the past @, i.e., the se{€ c E | € x €}.

It is well-known that any linear extensias, ..., e, of (E, <) is causally consistent
and can be transformed into a rah= ooiim starting fromap. This run ends in
op like 1, though it may go through different intermediary configimas. All the runs
obtained by considering different linear extensions atsably equivalent tat, denoted
i~ 17, and they all give rise to the same pofEt<).

We now state properties enjoyed [y, <) in our context that are useful for prov-
ing Proposition 4.2. First, observe that, since the chanai fifo, and since only one
process, namelgi(c) (resp.s(c)), is allowed to read from (resp. write to) a chanael

(W <crpandws <crz) imply (wy <gc) Wz iff r1 <g(c r2)- @)

(1) is sometimes taken as a definition of fifo communication.
Another important observation is the following: assueng €. Then, and since
is defined as a reflexive-transitive closure, there must e of the form

B: e=ep<peh<ge1<p € <c...<qg@ <pfg=¢

where, for 1<i <1, s(¢;) = R_1 andd(c;) = R. HenceT has a pattty,...,¢ going
fromPytoB.

Lemma 4.3. If e; < &2 < ez and c is essential, then & es.

Proof. By contradiction. Assume; < e, < ez ande; < ez for an essentiat. Since all
paths fromP = N(e;) = s(c) to P’ = N(e3) = d(c) go throughc (by essentiality), there
must exist a paiw,r € E with e X W <c r < & or, symmetricallyge, x w < r < €3,
depending on whether the <. r pair occurs before or aftex in the chain frome;
toeytoes. If &1 W< I <& < e thenr <p e3, hencew <p €; using (). Ife; <

& IW<crI <63 thene <pw, hencees <p r using (T). In both cases we obtain a
contradiction. O

We now assume thatis essential and that hasop(c) = o,(c) = € (henceE has
the same number, sag, of events reading frorn and writing to it). WriteP for s(c)
andP’ for d(c). Letws <pWs... <p W be them events that write te, listed in causal
order. Letr; <p &... <p I'm be them events that read fromlisted in causal order.

Lemma 4.4. There exists a linear extension(@, <) where, fori=1,...,m, w occurs
just before r.

Proof. The linear extension is constructed incrementally. Folyngr i =1,...,m, let

E % ri andF £'E < {wi,r;}. Observe thaFy C E1 C F>---F C E C F44, with the
convention thaf,, 1 = E. EveryE; is a<-closed subset dt, also called a down-cut
of (E, x). FurthermoreF; is a down-cut oE; by Lemma 4.3. Hence a linear extension
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of K followed by wi.r; gives a linear extension d;, and following it with a linear
extension of5 1 \ E; gives a linear extension &f,1. Any linear extension df; 1 \ E;
can be chosen since this subset does not contain reads frarites to,c. a

The linear extension we just built gives rise to a miin which ¢ is synchronous. This
concludes the proof of Proposition 4.2.

Observe that when several channels are essentialiinis in general not possible
to replace a rumwith an equivalentt where all essential channels are simultaneously
synchronous.

4.2 Decidability by fusion

We call “fusiorf the transformation ofT to T/c wherec is essential, andréliable
fusiort the special case whereis also a reliable channel.

Theorem 4.5 (Decidability by fusion).Let ¢ be an essential channel in T:
1. T has decidable reachability if /€ has.
2. If cis a reliable channel, then /& has decidable reachability if T has.

Proof. 1. LetShe aT-MCS. We replace it by a syste8 wherec has been removed
and where the processes at noBes: s(c) andP, = d(c) have been replaced by a larger
process that simulate boF andP, and where communication alormgs replaced by
synchronizing the sends & with the reads i, (message losses are simulated even
more simply by theP; part). S has topologyT /c and simulatesS restricted to runs
where c¢ is synchronouy Proposition 4.2, this is sufficient to reach any reachabl
configuration. Since reachability 8 is decidable, we conclude that reachability3n

is decidable.

2. We now also assume thatis reliable and consider @ /c)-MCS S. With S we
associate &-MCS S that simulatess. S has two node®; andP, whereSonly had a
mergedP node.

A AN A T
\ , \ \ , \

. N
’

\\”‘/\?l C%/\\”‘/ \”‘,\?1 C%/\\”‘/
Cc
CZ@‘M €2 @ @ G4
ST AT ST AT
Cc1?a1 / C17ay,
Pr—pP; p1——p}
pch!aZ p/2 pZCZ!aZ p/2 *C7<C3,?,aa> C3?ag .
— cz?ag - cl(cs,?a3) — c2(Cq,?,84) Ca724
bp p3—>' P3 bpy p3—>< > P3 Ap, *—>< ) *
Cqlay cl(cy,!aq
Pa=—P) pa——p)

Fig. 3. Associating al -MCS with aT /c-MCS
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The construction is illustrated in Fig. 3. Informally; inherits states fron® and
all rules that read from channeds with d(c;) = Py in T, or write to channels; with
s(cz) = P1. Regarding the other rules, the communication action (negidom somecs
or writing to somec,) is sent toP; via ¢. S uses an extended alphalbét that extends

the message alphabidtfrom Svia M’ ©'MU (Cx {2} xM). P, only has simple loops
around a central statethat read communication instructions frdp via c and carry
them out.

S simulatesSin a strong way. Any step i can be simulated i, perhaps by two
consecutive steps if a communication operation has toitrfros P, to P, via c. In the
other direction, there are some runs3drthat cannot be simulated directly 18/ e.g.,
whenP, does not carry out the instructions senty(or carries them out with a delay).
But all runs inS in which ¢ is synchronous are simulated By

Since runs in whicle is synchronous are sufficient to reach any configuratiortreac
able inS (Proposition 4.2), the two-way simulation reduces reaititain Sto reach-
ability in S, which is decidable il has decidable reachability. O

The usefulness of Theorem 4.5 is illustrated by the follgntino corollaries.

Corollary 4.6. T, and T{"? (from Section 2.1) have decidable reachability"s
does not.

Proof. Building T,""? /cs/ca/cs/cs/c1 only fuses essential channels and ends up with
a decidable topology (only lossy channels).

Starting withT,", we can buildT = T,"%/c3/ca/cs/ce but have to stop thereq is

not essential). The resulting, isomorphic toT,' from Fig. 2, does not have decidable
reachability. Hencd,"® does not have decidable reachability since we fused reliabl
channels only. _

with T;"9, it is better to buildT;"®/cs/ca/cs/c1. Here too we cannot fuse any more
because ot), but the end result is a topology with decidable reachahdiihcecs is
lossy. Hencel,"" has decidable reachability. 0

Corollary 4.7. A topology in the form of an undirected forest has decidabéehabil-
ity.

Proof (Sketch)If T is a forest, every channelis essential, and evei¥/c is still a
forest. Hencd reduces to a topology with lossy channels only. O

5 Splitting along lossy channels

Let Ty = (Ng,Ry,L1,81,d1) and cs (lossy

T2= <N2,R2,L2,Sg,d2> be two dis- ””j” loss
joint topologies. We say that = 5 (reliable c9( )
(N,RL,s,d) is a(lossy) gluing of cg (lossy) :

Ty on T if T is a juxtaposition C2 (lossy c7 (lossy c47(I7Q§§37})

of Ty and T, (henceN = Ny UNy) @ _ @ ******

with an additional set of lossy 1 (reliable 3 (reliable
Fig. 4. A topology that splits in three
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channels (henc® = R{ UR, and
L = L1 ULpUL3) connecting from
Ty to T, in a unidirectional ways(Lz) € N; andd(L3) C N.

This situation is written informally T = T > T,”, omitting details onL3 and its
connections. In practice this notion is used to split a largato subparts rather than
build larger topologies out of; andTs,.

Theorem 5.1 (Decidability by splitting). Reachability is decidable fon B T2 if, and
only if, it is for both T and .

The proof of Theorem 5.1 (see Appendix A) uses techniquesateastandard for
LCS’s but that have to be adapted to the more general settiigCS's.

We can apply Theorem 5.1 to prove that the topology in Fig.sidexidable reach-
ability. Indeed, this topology can be split along lossy afela (first{cs,co}, thency),
giving rise to two copies 0T2d (from Fig. 1) and a two-node ring that can be reduced to
T by fusion.

6 A complete classification

In this section, we prove that the results from the previagsisns provide a complete
classification.

Theorem 6.1 (Completeness)A network topology T has decidable reachability if,
and only if, it can be reduced toZdT(from Fig. 1) and LCS’s using fusion and splitting
only?

Note that, via splitting, the reduction above usually tfames T into severaltopolo-
gies. All of them must bé’zd or LCS’s forT to have decidable reachability.

The “<" direction is immediate in view of Theorems 4.5.1 and 5.1,

For the ‘=" direction, we can assume w.l.0.g. thitis reduced i.e., it cannot be
split as somd > T,, and it does not contain any reliable essential channdl ¢thad
be fused).

We now assume, by way of contradiction, thiatannot be transformed, via general
fusions, toT{ or to a LCS. From this we show that reachability is not dedieldor
T. When showing this, we sometimes mention three additioaakformations (“sim-
plification”, “doubling of loops” and “non-essential fusiy that are described in Ap-
pendix B. We now start an involved case analysis.

1. SinceT cannot be transformed to a LCS, it contains a reliable cHamnknking
nodeA = s(cr) to nodeB = d(c;). We can assum@ # B, otherwiseT containsT;"'
(from Fig. 2) and we conclude immediately with undecidaili

2. T must contain a patB of the formA = Py, cy,Py,Cp,...,Ch, Py = B that links
A to B without usingc;, otherwisec, would be essential, contradicting the assumption
thatT is reduced. We pick the shortest suit is a simple path) and we call’ the
subgraph ofl that only contain®, c¢;, and the nodes to which they connect.

2 As is well-known, it is possible to further reduce any LCS if‘iﬁ) However, we preferred a
statement for Theorem 6.1 where only our two main transformationis\artved.
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3.Ifall s alongB are reliableT’ can be transformed B’ (from Fig. 2) by reliable
fusions, hencd’, and thenT itself, have undecidable reachability. Therefore we can
assume that at least ogealong® is lossy.

4. Assume that there exist two nod@sP; along® that are connected via a third path
@ disjoint fromc; and®. We put no restrictions on the relative position$o&ndP; but
we assume thd is not a trivial empty path if = j. In that case, I€T” be the subgraph
of T that containg;, 6, and®’, and where all channels exceptare downgraded to
lossy if they were reliable. Using simplification and doniliof lossy loopsT” can
be transformed to an undecidable topology amémy, T,', To', T¢'}. HenceT” does
not have decidable reachability. Neither Hasince taking subgraphs and downgrading
channels can only improve decidability.

5. If we are not in case 4, the nodes aldhglo not admit a third path liké'.
Therefore all channels alorfgmust be lossy, since we assumeds reduced. Thug’
can be transformed &' by general fusion. Since we assuniedannot be transformed
to T2d, T must contain extra nodes or channels beyond thoSE.dh particular, this
must include extra nodes since we just assumedThiaés no third patl®’ between
the T’ nodes. Furthermore these extra nodes must be connectelltoptart otherwise
splitting T would be possible. There are now several cases.

6. We first consider the case of an extra n@deith a reliable channeat from C to
T’. SinceT is reducedg is not essential and there must be a second @dtiom C to
T'. Call T” the subgraph of that only containg’, C, c and®’. Applying non-essential
fusion onc, & becomes a path between soReP; and we are back to case 4. Hence
undecidability.

7. Next is the case of an extra no@eavith a reliable channet from T’ to C. Again,
sincec is not essential, there must be a second paftom T’ to C. Again, the induced
subgraphl” can be shown undecidable as in case 6, reducing to case 4.

8. If there is no extra node linked fB' via a reliablec, the extra nodes must be
linked to T’ via lossy channels. Now the connection must go both waysraike
splitting would be possible. The simplest case is an extde@owith a lossyc from C
to T’ and a lossy’ from T’ to C. But this would have been covered in case 4.

9. Finally there must be at least two extra no@eandC’, with a lossy channet
from C to T’ and a lossyc’ from T’ to C'. We can assume that all paths betwdén
andC,C’ go throughc andc’, otherwise we would be in one of the cases we already
considered. Furthermof@andC’ must be connected otherwi$ecould be split. There
are several possibilities here.

10. If there is a path fror®@’ to C we are back to case 4. Hence undecidability.

11. Thus all paths connectif@yandC’ go fromC to C'. If one such path is made of
reliable channels only, reliable fusion can be applied enitduced subgraph, merging
C andC’ and leading to case 8 where undecidability has been shotheyfall contain
one lossy channel, can be split, contradicting our assumption. that it is rediic

We have now covered all possibilities whéns reduced but cannot be transformed
to a LCS or toT{. In all cases is has been shown that reachability is not dbtador
T. This concludes the proof of Theorem 6.1.
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7 A classification algorithm

Theorem 7.1 (Polynomial-time classification)There exists a polynomial-time algo-
rithm that classifies topologies according to whether thayehdecidable reachability.

The algorithm relies on Theorem 6.1:

Stage 1: Starting from a topology, apply splitting andeliable fusion as much as
possible. When several transformations are possible, pigkohthem nondeter-
ministically. At any step, the transformation reduces tize sf the topologies at
hand, hence termination is guaranteed in a linear numbetepssAt this stage
we preserved decidability in both directions, hefficdas decidability iff all the
reduced topologie¥;, ..., T, have.

Stage 2: EachT; is now simplified using general fusion (not just reliableidung. If
this ends with a LCS or witFrzd, decidability forT; has been proved. When fusion
can be applied in several ways, we pick one nondetermialtia consequence of
Theorem 6.1's proof is that these choices lead to the san@usion when starting
from a system that cannot be reduced with splitting or rédidlsion. Thus stage 2
terminates in a linear number of steps. When it terminatédsgeeveryT; has been
transformed into a LCS 6Fy', and we conclude that reachability is decidableTor
or oneT; remains unsimplified and we conclude that reachability isdecidable
forT.

We observe that when stage 1 finishes, there will never be amwyapportunity for
reliable fusion or for splitting since stage 2, i.e., gehdugion, does not create or
destroy any path between nodes.

8 Concluding remarks

Summary.We introducednixed channel systerrise., fifo channel systems where both
lossy and reliable channels can be combined in arbitrayloges. These systems are
a generalization of the lossy channel system model (whéhahnels are lossy and
where reachability is decidable) and of the standard moalith (unbounded reliable
fifo channels, where reachability is undecidable).

For mixed systems, we provide a complete classificationehttwork topologies
according to whether they lead to decidable reachabiliypiems or not. Our main tool
are reductions methods that transform a topology into sntppologies with an equiv-
alent decidability status. These reductions produce dwmaalt topologies for which the
decidability status is established in Section 3.

Directions for future work.At the moment our classification is given implicitly, via a
simplification procedure. A more satisfactory classificativould be a higher-level de-
scription, in the form of a structural criterion, prefenabkpressible in logical form (or
via excluded minors, . ..). Obtaining such a descriptioruisroore pressing objective.

Beyond this issue, the two main avenues for future work atenekng the MCS
model (e.g., by considering other kinds of unreliabilitytive style of [CFP96], or by
allowing guards in the style of [BBS06], etc.) and considgrguestions beyond just
reachability and safety (e.g., termination and liveness).
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Technical appendix. i

A Proofs for Section 5

This section proves Theorem 5.1, i.€l3 > T, has decidable reachability ity andT,
have”, wheréel; > T, is a juxtaposition off; and T, with additional glue in the form of
lossy channels with source i and destination iff,.

First observe that the=" direction is immediate sinc& andT, are subgraphs of
T.

For the “=” direction, we assum@& = T; > T, with T, T; and T, as in Section 5.
We consider a MCS with topology T. FromSwe extract two subsysten® andS
with topologiesT; andT, that are slight augmentations Bf andT,. More preciselyT;
is Ty augmented with the interface channejs...,c from Lz, and with dummy extra
processeBy, ..., Dy, one for eaclt; € Lz, so thatd(c;) = Dj is not left undefinedT is
T, augmented in a similar way, this time wisic;) = D;. The MCS'sS; andS; are the
restrictions ofSto T; andT, assuming that the extra proces8gs. .., Dy are inactive.

Observe that, for = 1,2, the channels i3 are essential iffy’ (also note thafl/
is in general not a subgraph ofsince different interface channelslia may share a
common source or a common destination). Since applyingfusnLs-channels gives
exactlyT;, and since we assumed reachability is decidabl&ifove conclude it is for
T/ too by Theorem 4.5.

We now show how to decide reachability f8assuming that reachability is decid-
able for topologied; andT;, hence for MCS's5; andS,.

A configurationo of Scan be written under the foro?, 6%, uy, ..., ux) wherea?
is the restriction ob to Ty, 02 is the restriction tdl,, andug, .. ., ux are the contents of
the extra channels frofns. (In particular, the contents of channelsRyiJL; are part of
o).
Lemma A.1. Let Ginit = (0L, 02,€, - ., €) and Ofinal = (Ofnap; O2ngps & - - -, €) bE tWO
configurations of S with empty channels. There is a oW Oiinal in S if, and only
if, there is a tuple(uy, ..., uk) such that $has a run(ok,.&, ..., €)= (0F, 4 U1, .- ., Uc)

*
and S has a run(o2,,, Uy, ..., U)— (04 1€, ... ,€).

Proof (Sketch)indeed, since the steps in tBg part of Snever depend on the steps in
the S part (interface channels I only go from$; to $), it is always possible to use
all the §; steps first and th&, steps later. a

Lemma A.2. The following problems are decidable:

(1) Given soméuy, ..., uy) € (M*)K, does $have arun(al,, €, ..., €)= (Gha, Ut, - -, Uk)?
(2) Given soméuy, ..., ug) € (M*)K, does Shave arun(a2,,,us, ..., Ux)— (084, € - - - €)?
(3) Given some regular languages,R ., R« C M*, does there exists a tuplay, ..., Ux) €

Ry x -+ x R such that $has a run(o2,,, Uy, . . ., Ux) (024, €, - - -, €)?

Proof. (1) is almost immediate since reachability is decidabl&/inSince we insist on
asking reachability questions with empty channels in th@irand final configurations,
we have to program the extra componddis. .., Dy so that they empty thg and check
that they contained; and only accept if this is the case. The resulting systemilisst
T/ system.
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For (2), the same idea applies but this time B fill the interface channels with
theu;. Ensuring thaty is really inserted irw; is done by upgrading the interface channels
from lossy to reliable channels. This does not impact thedadity of reachability
since it is established by fusing essential channels anttihegl toT>.

For (3) we program th®;’s so that they nondeterministically write onee R; in
¢i. SinceR is regular, a finite-statB; can do the generation. Hence we reduced (3) to a
reachability question on a decidable topolo@y ith reliable interface channels).0

Lemma A.3. The set RC (M*)X of all minimal (w.r.t. the subword ordering) tuples
(ug,...,uy) allowing <0§m,u1,...,uk>i><0f2ma|,s,...,s> is finite and can be computed
effectively.

Proof. Ris finite since the subword ordering is a well-quasi-orddag(hin’s Lemma).

Regarding its computation, we cannot apply the backwardhagdzility algorithm
for LCS’s sinceT; may contain reliable channels. However, by Lemma A.2.(2)can
check any candidate tuple. Therefore it is possible to dRilgdcrementally by enumer-
ating all candidate tuples. Enumerating them in order afgasing length ensures that
only minimal tuples are retained.

This procedure is bound to eventually bulRi(since it is finite) and there only
remains to ensure termination by detecting when the cuR&tomplete. This can be
done using Lemma A.2.(3): the $etof all tuples that do not contain a tuple frdRas
subword is a regular language, being the complement of thewapclosure of a finite
set. Thus we can decide whetH&rcontains some tuple that is not yet accounted for
in R. One detail is thaR/, though regular, is not in general a prod&gtx - -- x R of
regular languages, one for each part of the tuple. Howevsnill-known that such
sets are a finite uniof; R} ; x --- x R ; of products of regular languages. 0

We now have enough tools to implement Lemma A.1 and therebigle@&eachability
for S. We computeR and check, using Lemma A.2.1, that one of the tupleR iis
reachable withs;. Observe that restricting to minimal tuples does not inlak the
algorithm:cy, ..., ck being lossy, the set of tuples that can write there is downward-
closed.

B Some additional transformations

This section describes additional transformations andthey preserve decidability of
reachability. The correctness proofs are only sketchekisgneixtended abstract, but the
missing parts are easy to fill in since the transformatioassamilar to existing ones.

We list these transformations for the sake of completen®&y @re used in the
proof of Theorem 6.1) but the reader should understand liegtdo not occur in the
classification algorithm, or in the statement of the classifon theorem, where only
essential fusion and splitting are needed.

1. Double lossy loops We say thafl has adouble lossy loojf there are distinct,c’ €
L with s(c) = d(c) = s(c') =d(c).
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Lemma B.1. If c and ¢ are a double lossy loop in T then reachability is decidable
for T if, and only if, it is for T—c'.

Proof (Idea).A single loop can simulate two loops the way a single lossy loan
simulate an arbitrary LCS: we concatenate the contentsedfith original channels
in the remaining one, using special markers to separateMhedntents (see, e.g.,
[Sch02, Section 5]). Acting on one part of the contents nexguiotating the contents
of the channels, and this can be achieved with the help of #r&ers. The markers
are inserted at the start of the run, and removed at the ethieyfare lost during
the simulation, correct simulation cannot be guaranteetdt twill be impossible to
reach an accepting state. Hence the simulation is correct&ahability questions.
The new observation is that it remains correct with an aabjtmixed topology
around the two loops under consideration. ad

Remark B.2.Paradoxically, we do not use Lemma B.1 for simplifying syste
Rather we use it for doubling loops, which may prove usefutmive try to obtain
basic topologies from Fig. 2 via simplification (see belot#gnce it is important
that Lemma B.1 preserves decidability in both directions. O

2. Simplification. Let T be a topology with a lossy channel systenbetween two
nodesP; andP,. The simplification of T by ds a topologyT’ wherec has been
removed and where all channefswith s(c’) = P, in T are redirected and have
s(c)=PinT".

Lemma B.3. Reachability is decidable for Tif it is for T.

Proof (Idea). T misses many features of which only improves decidability. The
features ofl’ thatT misses are the channelsrom P, to someP that go fromP, to
PinT.InT, these can be simulated by a standard multiplexing trickgytirough
P, via c. O

3. Non-essential fusion.Let ¢ be a reliable channel from, to P, (P, # P») in some
topology T. Assume that there is an additional path frénto P, that does not
usec (hencec is not essential). Further assume that this path only coslassy
channels, and that there is no other path fignto P..

Lemma B.4. Reachability is decidable for fic if it is for T .

Proving Lemma B.4 is quite different from proving Theorerf.4t uses the same
simulation we use in [CS07] to Iinlrzd andTld, but this time in a more general
context since extra channels and processes may ocgur in



